Subversion Repositories QNX 8.QNX8 IFS tool

Rev

Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
16 pmbaty 1
// sha512.c
2
 
3
 
4
// standard C includes
5
#include <stdio.h>
6
#include <stdlib.h>
7
#include <string.h>
8
 
9
// own includes
10
#include "sha512.h"
11
 
12
 
13
// bring TLS support to antique compilers
14
#ifndef thread_local
15
#ifdef _MSC_VER
16
#define thread_local __declspec(thread) // the thread_local keyword wasn't defined before C++11 and C23
17
#else // a saner compiler
18
#define thread_local __thread // the thread_local keyword wasn't defined before C++11 and C23
19
#endif // _MSC_VER
20
#endif // !thread_local
21
 
22
 
23
// compiler-specific glue
24
#ifdef _WIN32
25
#ifndef __BYTE_ORDER__
26
#define __ORDER_BIG_ENDIAN__    4321
27
#define __ORDER_LITTLE_ENDIAN__ 1234
28
#define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__ // all Windows machines are little endian
29
#endif // !__BYTE_ORDER__
30
#ifdef _MSC_VER
31
#define __builtin_bswap64(x) _byteswap_uint64 ((unsigned long long) (x))
32
#endif // _MSC_VER
33
#else // !WIN32, thus POSIX
34
#define sprintf_s(dst,siz,...) sprintf ((dst), __VA_ARGS__)
35
#endif // _WIN32
36
 
37
 
38
static void sha512_private_transform (SHA512_CTX *context, const uint64_t *data)
39
{
40
   // logical functions used in SHA-384 and SHA-512
41
   #define S64(b,x)      (((x) >> (b)) | ((x) << (64 - (b)))) // 64-bit rotate right
42
   #define Ch(x,y,z)     (((x) & (y)) ^ ((~(x)) & (z)))
43
   #define Maj(x,y,z)    (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
44
   #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
45
   #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
46
   #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ ((x) >> 7))
47
   #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ ((x) >> 6))
48
 
49
   // hash constant words K for SHA-384 and SHA-512
50
   static const uint64_t K512[80] = {
51
      0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
52
      0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
53
      0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
54
      0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
55
      0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
56
      0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
57
      0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
58
      0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
59
      0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
60
      0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
61
   };
62
 
63
   uint64_t     a, b, c, d, e, f, g, h, s0, s1;
64
   uint64_t     T1, T2, *W512 = (uint64_t *) context->buffer;
65
   int j;
66
 
67
   // initialize registers with the prev. intermediate value
68
   a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7];
69
 
70
   for (j = 0; j < 16; j++)
71
   {
72
#if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
73
      W512[j] = __builtin_bswap64 (*data); // convert to host byte order
74
#elif // __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
75
      W512[j] = *data;
76
#else // __BYTE_ORDER__ == ???
77
#error Please port this SHA-512 code to your exotic endianness platform. What are you compiling this on? PDP? Honeywell?
78
#endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
79
 
80
      // apply the SHA-512 compression function to update a..h
81
      T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + W512[j];
82
      T2 = Sigma0_512 (a) + Maj (a, b, c);
83
 
84
      // update registers
85
      h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
86
 
87
      data++;
88
   }
89
 
90
   for (; j < 80; j++)
91
   {
92
      // part of the message block expansion
93
      s0 = W512[(j + 1) & 0x0f];
94
      s0 = sigma0_512 (s0);
95
      s1 = W512[(j + 14) & 0x0f];
96
      s1 = sigma1_512 (s1);
97
 
98
      // apply the SHA-512 compression function to update a..h
99
      T1 = h + Sigma1_512 (e) + Ch (e, f, g) + K512[j] + (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0);
100
      T2 = Sigma0_512 (a) + Maj (a, b, c);
101
 
102
      // update registers
103
      h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2;
104
   }
105
 
106
   // compute the current intermediate hash value
107
   context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h;
108
 
109
   // clean up
110
   a = b = c = d = e = f = g = h = T1 = T2 = 0;
111
   #undef sigma1_512
112
   #undef sigma0_512
113
   #undef Sigma1_512
114
   #undef Sigma0_512
115
   #undef Maj
116
   #undef Ch
117
   #undef S64
118
   return;
119
}
120
 
121
 
122
void SHA512_Init (SHA512_CTX *context)
123
{
124
   // initial hash value H for SHA-512
125
   static const uint64_t sha512_initial_hash_value[8] = {
126
      0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL
127
   };
128
 
129
   memcpy (context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
130
   memset (context->buffer, 0, SHA512_BLOCK_LENGTH);
131
   context->bitcount[0] = context->bitcount[1] = 0;
132
}
133
 
134
 
135
void SHA512_Update (SHA512_CTX *context, void *datain, size_t len)
136
{
137
   #define ADDINC128(w,n) do { \
138
           (w)[0] += (uint64_t) (n); \
139
           if ((w)[0] < (n)) \
140
                   (w)[1]++; \
141
   } while (0) // macro for incrementally adding the unsigned 64-bit integer n to the unsigned 128-bit integer (represented using a two-element array of 64-bit words
142
 
143
   size_t freespace, usedspace;
144
   const uint8_t *data = (const uint8_t *) datain;
145
 
146
   if (len == 0)
147
      return; // calling with empty data is valid - we do nothing
148
 
149
   usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
150
   if (usedspace > 0)
151
   {
152
      // calculate how much free space is available in the buffer
153
      freespace = SHA512_BLOCK_LENGTH - usedspace;
154
 
155
      if (len >= freespace)
156
      {
157
         // fill the buffer completely and process it
158
         memcpy (&context->buffer[usedspace], data, freespace);
159
         ADDINC128 (context->bitcount, freespace << 3);
160
         len -= freespace;
161
         data += freespace;
162
         sha512_private_transform (context, (uint64_t *) context->buffer);
163
      }
164
      else
165
      {
166
         // the buffer is not full yet
167
         memcpy (&context->buffer[usedspace], data, len);
168
         ADDINC128 (context->bitcount, len << 3);
169
 
170
         // clean up
171
         usedspace = freespace = 0;
172
         return;
173
      }
174
   }
175
 
176
   while (len >= SHA512_BLOCK_LENGTH)
177
   {
178
      // process as many complete blocks as we can
179
      sha512_private_transform (context, (uint64_t *) data);
180
      ADDINC128 (context->bitcount, SHA512_BLOCK_LENGTH << 3);
181
      len -= SHA512_BLOCK_LENGTH;
182
      data += SHA512_BLOCK_LENGTH;
183
   }
184
 
185
   if (len > 0)
186
   {
187
      // save leftovers
188
      memcpy (context->buffer, data, len);
189
      ADDINC128 (context->bitcount, len << 3);
190
   }
191
 
192
   // clean up
193
   usedspace = freespace = 0;
194
   #undef ADDINC128
195
   return;
196
}
197
 
198
 
199
void SHA512_Final (uint8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
200
{
201
   #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
202
 
203
   size_t usedspace;
204
   union { uint8_t *as_bytes; uint64_t *as_uint64s; } cast_var = { NULL };
205
 
206
   // if no digest buffer is passed, don't bother finalizing the computation
207
   if (digest != NULL)
208
   {
209
      usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
210
 
211
#if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
212
      context->bitcount[0] = __builtin_bswap64 (context->bitcount[0]); // convert from host byte order
213
      context->bitcount[1] = __builtin_bswap64 (context->bitcount[1]); // convert from host byte order
214
#endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
215
 
216
      if (usedspace > 0)
217
      {
218
         // begin padding with a 1 bit
219
         context->buffer[usedspace++] = 0x80;
220
 
221
         if (usedspace <= SHA512_SHORT_BLOCK_LENGTH)
222
            memset (&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace); // set-up for the last transform
223
         else
224
         {
225
            if (usedspace < SHA512_BLOCK_LENGTH)
226
               memset (&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
227
 
228
            sha512_private_transform (context, (uint64_t *) context->buffer); // do second-to-last transform
229
            memset (context->buffer, 0, SHA512_BLOCK_LENGTH - 2); // and set-up for the last transform
230
         }
231
      }
232
      else // usedspace == 0
233
      {
234
         memset (context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH); // prepare for final transform
235
         *context->buffer = 0x80; // begin padding with a 1 bit
236
      }
237
 
238
      // store the length of input data (in bits)
239
      cast_var.as_bytes = context->buffer;
240
      cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 0] = context->bitcount[1];
241
      cast_var.as_uint64s[SHA512_SHORT_BLOCK_LENGTH / 8 + 1] = context->bitcount[0];
242
 
243
      // final transform
244
      sha512_private_transform (context, (uint64_t *) context->buffer);
245
 
246
      // save the hash data for output
247
#if __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
248
      for (int j = 0; j < 8; j++)
249
         context->state[j] = __builtin_bswap64 (context->state[j]); // convert to host byte order
250
#endif // __BYTE_ORDER__ ==  __ORDER_LITTLE_ENDIAN__
251
      memcpy (digest, context->state, SHA512_DIGEST_LENGTH);
252
   }
253
 
254
   // zero out state data
255
   memset (context, 0, sizeof (SHA512_CTX));
256
   #undef SHA512_SHORT_BLOCK_LENGTH
257
   return;
258
}
259
 
260
 
261
uint8_t *SHA512 (void *data, size_t data_len, uint8_t *digest_or_NULL)
262
{
263
   // computes the SHA-512 hash of a block of data in one pass and write it to digest, or to a static buffer if NULL
264
   // returns the STRING REPRESENTATION of digest in a statically-allocated string
265
 
266
   static thread_local uint8_t static_digest[SHA512_DIGEST_LENGTH] = "";
267
   static thread_local char digest_as_string[2 * SHA512_DIGEST_LENGTH + 1] = "";
268
 
269
   SHA512_CTX ctx;
270
   size_t byte_index;
271
 
272
   SHA512_Init (&ctx);
273
   SHA512_Update (&ctx, data, data_len);
274
   if (digest_or_NULL == NULL)
275
      digest_or_NULL = static_digest;
276
   SHA512_Final (digest_or_NULL, &ctx);
277
 
278
   for (byte_index = 0; byte_index < SHA512_DIGEST_LENGTH; byte_index++)
279
      sprintf_s (&digest_as_string[2 * byte_index], 3, "%02x", digest_or_NULL[byte_index]);
280
   return (digest_as_string);
281
}