Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===------ VirtualInstruction.cpp ------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Tools for determining which instructions are within a statement and the
10
// nature of their operands.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef POLLY_SUPPORT_VIRTUALINSTRUCTION_H
15
#define POLLY_SUPPORT_VIRTUALINSTRUCTION_H
16
 
17
#include "polly/ScopInfo.h"
18
 
19
namespace polly {
20
using llvm::User;
21
 
22
/// Determine the nature of a value's use within a statement.
23
///
24
/// These are not always representable by llvm::Use. For instance, scalar write
25
/// MemoryAccesses do use a value, but are not associated with an instruction's
26
/// argument.
27
///
28
/// Despite its name it is not tied to virtual instructions (although it works
29
/// fine with them), but to promote consistent handling of values used in
30
/// statements.
31
class VirtualUse final {
32
public:
33
  /// The different types of uses. Handling usually differentiates a lot between
34
  /// these; one can use a switch to handle each case (and get warned by the
35
  /// compiler if one is not handled).
36
  enum UseKind {
37
    // An llvm::Constant.
38
    Constant,
39
 
40
    // An llvm::BasicBlock.
41
    Block,
42
 
43
    // A value that can be generated using ScopExpander.
44
    Synthesizable,
45
 
46
    // A load that always reads the same value throughout the SCoP (address and
47
    // the value located there a SCoP-invariant) and has been hoisted in front
48
    // of the SCoP.
49
    Hoisted,
50
 
51
    // Definition before the SCoP and not synthesizable. Can be an instruction
52
    // outside the SCoP, a function argument or a global value. Whether there is
53
    // a scalar MemoryAccess in this statement for reading it depends on the
54
    // -polly-analyze-read-only-scalars switch.
55
    ReadOnly,
56
 
57
    // A definition within the same statement. No MemoryAccess between
58
    // definition and use are necessary.
59
    Intra,
60
 
61
    // Definition in another statement. There is a scalar MemoryAccess that
62
    // makes it available in this statement.
63
    Inter
64
  };
65
 
66
private:
67
  /// The statement where a value is used.
68
  ScopStmt *User;
69
 
70
  /// The value that is used.
71
  Value *Val;
72
 
73
  /// The type of value use.
74
  UseKind Kind;
75
 
76
  /// The value represented as llvm::SCEV expression.
77
  const SCEV *ScevExpr;
78
 
79
  /// If this is an inter-statement (or read-only) use, contains the
80
  /// MemoryAccess that makes the value available in this statement. In case of
81
  /// intra-statement uses, can contain a MemoryKind::Array access. In all other
82
  /// cases, it is a nullptr.
83
  MemoryAccess *InputMA;
84
 
85
  VirtualUse(ScopStmt *User, Value *Val, UseKind Kind, const SCEV *ScevExpr,
86
             MemoryAccess *InputMA)
87
      : User(User), Val(Val), Kind(Kind), ScevExpr(ScevExpr), InputMA(InputMA) {
88
  }
89
 
90
public:
91
  /// Get a VirtualUse for an llvm::Use.
92
  ///
93
  /// @param S       The Scop object.
94
  /// @param U       The llvm::Use the get information for.
95
  /// @param LI      The LoopInfo analysis. Needed to determine whether the
96
  ///                value is synthesizable.
97
  /// @param Virtual Whether to ignore existing MemoryAccess.
98
  ///
99
  /// @return The VirtualUse representing the same use as @p U.
100
  static VirtualUse create(Scop *S, const Use &U, LoopInfo *LI, bool Virtual);
101
 
102
  /// Get a VirtualUse for uses within statements.
103
  ///
104
  /// It is assumed that the user is not a PHINode. Such uses are always
105
  /// VirtualUse::Inter unless in a regions statement.
106
  ///
107
  /// @param S         The Scop object.
108
  /// @param UserStmt  The statement in which @p Val is used. Can be nullptr, in
109
  ///                  which case it assumed that the statement has been
110
  ///                  removed, which is only possible if no instruction in it
111
  ///                  had side-effects or computes a value used by another
112
  ///                  statement.
113
  /// @param UserScope Loop scope in which the value is used. Needed to
114
  ///                  determine whether the value is synthesizable.
115
  /// @param Val       The value being used.
116
  /// @param Virtual   Whether to use (and prioritize over instruction location)
117
  ///                  information about MemoryAccesses.
118
  ///
119
  /// @return A VirtualUse object that gives information about @p Val's use in
120
  ///         @p UserStmt.
121
  static VirtualUse create(Scop *S, ScopStmt *UserStmt, Loop *UserScope,
122
                           Value *Val, bool Virtual);
123
 
124
  static VirtualUse create(ScopStmt *UserStmt, Loop *UserScope, Value *Val,
125
                           bool Virtual) {
126
    return create(UserStmt->getParent(), UserStmt, UserScope, Val, Virtual);
127
  }
128
 
129
  bool isConstant() const { return Kind == Constant; }
130
  bool isBlock() const { return Kind == Block; }
131
  bool isSynthesizable() const { return Kind == Synthesizable; }
132
  bool isHoisted() const { return Kind == Hoisted; }
133
  bool isReadOnly() const { return Kind == ReadOnly; }
134
  bool isIntra() const { return Kind == Intra; }
135
  bool isInter() const { return Kind == Inter; }
136
 
137
  /// Return user statement.
138
  ScopStmt *getUser() const { return User; }
139
 
140
  /// Return the used value.
141
  llvm::Value *getValue() const { return Val; }
142
 
143
  /// Return the type of use.
144
  UseKind getKind() const { return Kind; }
145
 
146
  /// Return the ScalarEvolution representation of @p Val.
147
  const SCEV *getScevExpr() const { return ScevExpr; }
148
 
149
  /// Return the MemoryAccess that makes the value available in this statement,
150
  /// if any.
151
  MemoryAccess *getMemoryAccess() const { return InputMA; }
152
 
153
  /// Print a description of this object.
154
  ///
155
  /// @param OS           Stream to print to.
156
  /// @param Reproducible If true, ensures that the output is stable between
157
  ///                     runs and is suitable to check in regression tests.
158
  ///                     This excludes printing e.g. pointer values. If false,
159
  ///                     the output should not be used for regression tests,
160
  ///                     but may contain more information useful in debugger
161
  ///                     sessions.
162
  void print(raw_ostream &OS, bool Reproducible = true) const;
163
 
164
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
165
  void dump() const;
166
#endif
167
};
168
 
169
/// An iterator for virtual operands.
170
class VirtualOperandIterator final {
171
  friend class VirtualInstruction;
172
  friend class VirtualUse;
173
 
174
  using Self = VirtualOperandIterator;
175
 
176
  ScopStmt *User;
177
  User::op_iterator U;
178
 
179
  VirtualOperandIterator(ScopStmt *User, User::op_iterator U)
180
      : User(User), U(U) {}
181
 
182
public:
183
  using iterator_category = std::forward_iterator_tag;
184
  using value_type = VirtualUse;
185
  using difference_type = std::ptrdiff_t;
186
  using pointer = value_type *;
187
  using reference = value_type &;
188
 
189
  inline bool operator==(const Self &that) const {
190
    assert(this->User == that.User);
191
    return this->U == that.U;
192
  }
193
 
194
  inline bool operator!=(const Self &that) const {
195
    assert(this->User == that.User);
196
    return this->U != that.U;
197
  }
198
 
199
  VirtualUse operator*() const {
200
    return VirtualUse::create(User, User->getSurroundingLoop(), U->get(), true);
201
  }
202
 
203
  Use *operator->() const { return U; }
204
 
205
  Self &operator++() {
206
    U++;
207
    return *this;
208
  }
209
 
210
  Self operator++(int) {
211
    Self tmp = *this;
212
    ++*this;
213
    return tmp;
214
  }
215
};
216
 
217
/// This class represents a "virtual instruction", an instruction in a ScopStmt,
218
/// effectively a ScopStmt/Instruction-pair.
219
///
220
/// An instructions can be moved between statements (e.g. to avoid a scalar
221
/// dependency) and even can be contained in multiple statements (for instance,
222
/// to recompute a value instead of transferring it), hence 'virtual'. This
223
/// class is required to represent such instructions that are not in their
224
/// 'physical' location anymore.
225
///
226
/// A statement can currently not contain the same instructions multiple times
227
/// (that is, from different loop iterations). Therefore, a
228
/// ScopStmt/Instruction-pair uniquely identifies a virtual instructions.
229
/// ScopStmt::getInstruction() can contain the same instruction multiple times,
230
/// but they necessarily compute the same value.
231
class VirtualInstruction final {
232
  friend class VirtualOperandIterator;
233
  friend struct llvm::DenseMapInfo<VirtualInstruction>;
234
 
235
private:
236
  /// The statement this virtual instruction is in.
237
  ScopStmt *Stmt = nullptr;
238
 
239
  /// The instruction of a statement.
240
  Instruction *Inst = nullptr;
241
 
242
public:
243
  VirtualInstruction() {}
244
 
245
  /// Create a new virtual instruction of an instruction @p Inst in @p Stmt.
246
  VirtualInstruction(ScopStmt *Stmt, Instruction *Inst)
247
      : Stmt(Stmt), Inst(Inst) {
248
    assert(Stmt && Inst);
249
  }
250
 
251
  VirtualOperandIterator operand_begin() const {
252
    return VirtualOperandIterator(Stmt, Inst->op_begin());
253
  }
254
 
255
  VirtualOperandIterator operand_end() const {
256
    return VirtualOperandIterator(Stmt, Inst->op_end());
257
  }
258
 
259
  /// Returns a list of virtual operands.
260
  ///
261
  /// Virtual operands, like virtual instructions, need to encode the ScopStmt
262
  /// they are in.
263
  llvm::iterator_range<VirtualOperandIterator> operands() const {
264
    return {operand_begin(), operand_end()};
265
  }
266
 
267
  /// Return the SCoP everything is contained in.
268
  Scop *getScop() const { return Stmt->getParent(); }
269
 
270
  /// Return the ScopStmt this virtual instruction is in.
271
  ScopStmt *getStmt() const { return Stmt; }
272
 
273
  /// Return the instruction in the statement.
274
  Instruction *getInstruction() const { return Inst; }
275
 
276
  /// Print a description of this object.
277
  ///
278
  /// @param OS           Stream to print to.
279
  /// @param Reproducible If true, ensures that the output is stable between
280
  ///                     runs and is suitable for checks in regression tests.
281
  ///                     This excludes printing e.g., pointer values. If false,
282
  ///                     the output should not be used for regression tests,
283
  ///                     but may contain more information useful in debugger
284
  ///                     sessions.
285
  void print(raw_ostream &OS, bool Reproducible = true) const;
286
 
287
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
288
  void dump() const;
289
#endif
290
};
291
 
292
static inline bool operator==(VirtualInstruction LHS, VirtualInstruction RHS) {
293
  return LHS.getStmt() == RHS.getStmt() &&
294
         LHS.getInstruction() == RHS.getInstruction();
295
}
296
 
297
/// Find all reachable instructions and accesses.
298
///
299
/// @param S              The SCoP to find everything reachable in.
300
/// @param LI             LoopInfo required for analysis.
301
/// @param UsedInsts[out] Receives all reachable instructions.
302
/// @param UsedAccs[out]  Receives all reachable accesses.
303
/// @param OnlyLocal      If non-nullptr, activates local mode: The SCoP is
304
///                       assumed to consist only of this statement and is
305
///                       conservatively correct. Does not require walking the
306
///                       whole SCoP.
307
void markReachable(Scop *S, LoopInfo *LI,
308
                   DenseSet<VirtualInstruction> &UsedInsts,
309
                   DenseSet<MemoryAccess *> &UsedAccs,
310
                   ScopStmt *OnlyLocal = nullptr);
311
} // namespace polly
312
 
313
namespace llvm {
314
/// Support VirtualInstructions in llvm::DenseMaps.
315
template <> struct DenseMapInfo<polly::VirtualInstruction> {
316
public:
317
  static bool isEqual(polly::VirtualInstruction LHS,
318
                      polly::VirtualInstruction RHS) {
319
    return DenseMapInfo<polly::ScopStmt *>::isEqual(LHS.getStmt(),
320
                                                    RHS.getStmt()) &&
321
           DenseMapInfo<Instruction *>::isEqual(LHS.getInstruction(),
322
                                                RHS.getInstruction());
323
  }
324
 
325
  static polly::VirtualInstruction getTombstoneKey() {
326
    polly::VirtualInstruction TombstoneKey;
327
    TombstoneKey.Stmt = DenseMapInfo<polly::ScopStmt *>::getTombstoneKey();
328
    TombstoneKey.Inst = DenseMapInfo<Instruction *>::getTombstoneKey();
329
    return TombstoneKey;
330
  }
331
 
332
  static polly::VirtualInstruction getEmptyKey() {
333
    polly::VirtualInstruction EmptyKey;
334
    EmptyKey.Stmt = DenseMapInfo<polly::ScopStmt *>::getEmptyKey();
335
    EmptyKey.Inst = DenseMapInfo<Instruction *>::getEmptyKey();
336
    return EmptyKey;
337
  }
338
 
339
  static unsigned getHashValue(polly::VirtualInstruction Val) {
340
    return DenseMapInfo<std::pair<polly::ScopStmt *, Instruction *>>::
341
        getHashValue(std::make_pair(Val.getStmt(), Val.getInstruction()));
342
  }
343
};
344
} // namespace llvm
345
 
346
#endif /* POLLY_SUPPORT_VIRTUALINSTRUCTION_H */