Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- polly/ScopInfo.h -----------------------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // Store the polyhedral model representation of a static control flow region, |
||
10 | // also called SCoP (Static Control Part). |
||
11 | // |
||
12 | // This representation is shared among several tools in the polyhedral |
||
13 | // community, which are e.g. CLooG, Pluto, Loopo, Graphite. |
||
14 | // |
||
15 | //===----------------------------------------------------------------------===// |
||
16 | |||
17 | #ifndef POLLY_SCOPINFO_H |
||
18 | #define POLLY_SCOPINFO_H |
||
19 | |||
20 | #include "polly/ScopDetection.h" |
||
21 | #include "polly/Support/SCEVAffinator.h" |
||
22 | #include "polly/Support/ScopHelper.h" |
||
23 | #include "llvm/ADT/ArrayRef.h" |
||
24 | #include "llvm/ADT/MapVector.h" |
||
25 | #include "llvm/ADT/SetVector.h" |
||
26 | #include "llvm/Analysis/RegionPass.h" |
||
27 | #include "llvm/IR/DebugLoc.h" |
||
28 | #include "llvm/IR/Instruction.h" |
||
29 | #include "llvm/IR/Instructions.h" |
||
30 | #include "llvm/IR/PassManager.h" |
||
31 | #include "llvm/IR/ValueHandle.h" |
||
32 | #include "llvm/Pass.h" |
||
33 | #include "isl/isl-noexceptions.h" |
||
34 | #include <cassert> |
||
35 | #include <cstddef> |
||
36 | #include <forward_list> |
||
37 | #include <optional> |
||
38 | |||
39 | namespace polly { |
||
40 | using llvm::AnalysisInfoMixin; |
||
41 | using llvm::ArrayRef; |
||
42 | using llvm::AssertingVH; |
||
43 | using llvm::AssumptionCache; |
||
44 | using llvm::cast; |
||
45 | using llvm::DataLayout; |
||
46 | using llvm::DenseMap; |
||
47 | using llvm::DenseSet; |
||
48 | using llvm::function_ref; |
||
49 | using llvm::isa; |
||
50 | using llvm::iterator_range; |
||
51 | using llvm::LoadInst; |
||
52 | using llvm::make_range; |
||
53 | using llvm::MapVector; |
||
54 | using llvm::MemIntrinsic; |
||
55 | using llvm::PassInfoMixin; |
||
56 | using llvm::PHINode; |
||
57 | using llvm::RegionNode; |
||
58 | using llvm::RegionPass; |
||
59 | using llvm::RGPassManager; |
||
60 | using llvm::SetVector; |
||
61 | using llvm::SmallPtrSetImpl; |
||
62 | using llvm::SmallVector; |
||
63 | using llvm::SmallVectorImpl; |
||
64 | using llvm::StringMap; |
||
65 | using llvm::Type; |
||
66 | using llvm::Use; |
||
67 | using llvm::Value; |
||
68 | using llvm::ValueToValueMap; |
||
69 | |||
70 | class MemoryAccess; |
||
71 | |||
72 | //===---------------------------------------------------------------------===// |
||
73 | |||
74 | extern bool UseInstructionNames; |
||
75 | |||
76 | // The maximal number of basic sets we allow during domain construction to |
||
77 | // be created. More complex scops will result in very high compile time and |
||
78 | // are also unlikely to result in good code. |
||
79 | extern unsigned const MaxDisjunctsInDomain; |
||
80 | |||
81 | /// The different memory kinds used in Polly. |
||
82 | /// |
||
83 | /// We distinguish between arrays and various scalar memory objects. We use |
||
84 | /// the term ``array'' to describe memory objects that consist of a set of |
||
85 | /// individual data elements arranged in a multi-dimensional grid. A scalar |
||
86 | /// memory object describes an individual data element and is used to model |
||
87 | /// the definition and uses of llvm::Values. |
||
88 | /// |
||
89 | /// The polyhedral model does traditionally not reason about SSA values. To |
||
90 | /// reason about llvm::Values we model them "as if" they were zero-dimensional |
||
91 | /// memory objects, even though they were not actually allocated in (main) |
||
92 | /// memory. Memory for such objects is only alloca[ed] at CodeGeneration |
||
93 | /// time. To relate the memory slots used during code generation with the |
||
94 | /// llvm::Values they belong to the new names for these corresponding stack |
||
95 | /// slots are derived by appending suffixes (currently ".s2a" and ".phiops") |
||
96 | /// to the name of the original llvm::Value. To describe how def/uses are |
||
97 | /// modeled exactly we use these suffixes here as well. |
||
98 | /// |
||
99 | /// There are currently four different kinds of memory objects: |
||
100 | enum class MemoryKind { |
||
101 | /// MemoryKind::Array: Models a one or multi-dimensional array |
||
102 | /// |
||
103 | /// A memory object that can be described by a multi-dimensional array. |
||
104 | /// Memory objects of this type are used to model actual multi-dimensional |
||
105 | /// arrays as they exist in LLVM-IR, but they are also used to describe |
||
106 | /// other objects: |
||
107 | /// - A single data element allocated on the stack using 'alloca' is |
||
108 | /// modeled as a one-dimensional, single-element array. |
||
109 | /// - A single data element allocated as a global variable is modeled as |
||
110 | /// one-dimensional, single-element array. |
||
111 | /// - Certain multi-dimensional arrays with variable size, which in |
||
112 | /// LLVM-IR are commonly expressed as a single-dimensional access with a |
||
113 | /// complicated access function, are modeled as multi-dimensional |
||
114 | /// memory objects (grep for "delinearization"). |
||
115 | Array, |
||
116 | |||
117 | /// MemoryKind::Value: Models an llvm::Value |
||
118 | /// |
||
119 | /// Memory objects of type MemoryKind::Value are used to model the data flow |
||
120 | /// induced by llvm::Values. For each llvm::Value that is used across |
||
121 | /// BasicBlocks, one ScopArrayInfo object is created. A single memory WRITE |
||
122 | /// stores the llvm::Value at its definition into the memory object and at |
||
123 | /// each use of the llvm::Value (ignoring trivial intra-block uses) a |
||
124 | /// corresponding READ is added. For instance, the use/def chain of a |
||
125 | /// llvm::Value %V depicted below |
||
126 | /// ______________________ |
||
127 | /// |DefBB: | |
||
128 | /// | %V = float op ... | |
||
129 | /// ---------------------- |
||
130 | /// | | |
||
131 | /// _________________ _________________ |
||
132 | /// |UseBB1: | |UseBB2: | |
||
133 | /// | use float %V | | use float %V | |
||
134 | /// ----------------- ----------------- |
||
135 | /// |
||
136 | /// is modeled as if the following memory accesses occurred: |
||
137 | /// |
||
138 | /// __________________________ |
||
139 | /// |entry: | |
||
140 | /// | %V.s2a = alloca float | |
||
141 | /// -------------------------- |
||
142 | /// | |
||
143 | /// ___________________________________ |
||
144 | /// |DefBB: | |
||
145 | /// | store %float %V, float* %V.s2a | |
||
146 | /// ----------------------------------- |
||
147 | /// | | |
||
148 | /// ____________________________________ ___________________________________ |
||
149 | /// |UseBB1: | |UseBB2: | |
||
150 | /// | %V.reload1 = load float* %V.s2a | | %V.reload2 = load float* %V.s2a| |
||
151 | /// | use float %V.reload1 | | use float %V.reload2 | |
||
152 | /// ------------------------------------ ----------------------------------- |
||
153 | /// |
||
154 | Value, |
||
155 | |||
156 | /// MemoryKind::PHI: Models PHI nodes within the SCoP |
||
157 | /// |
||
158 | /// Besides the MemoryKind::Value memory object used to model the normal |
||
159 | /// llvm::Value dependences described above, PHI nodes require an additional |
||
160 | /// memory object of type MemoryKind::PHI to describe the forwarding of values |
||
161 | /// to |
||
162 | /// the PHI node. |
||
163 | /// |
||
164 | /// As an example, a PHIInst instructions |
||
165 | /// |
||
166 | /// %PHI = phi float [ %Val1, %IncomingBlock1 ], [ %Val2, %IncomingBlock2 ] |
||
167 | /// |
||
168 | /// is modeled as if the accesses occurred this way: |
||
169 | /// |
||
170 | /// _______________________________ |
||
171 | /// |entry: | |
||
172 | /// | %PHI.phiops = alloca float | |
||
173 | /// ------------------------------- |
||
174 | /// | | |
||
175 | /// __________________________________ __________________________________ |
||
176 | /// |IncomingBlock1: | |IncomingBlock2: | |
||
177 | /// | ... | | ... | |
||
178 | /// | store float %Val1 %PHI.phiops | | store float %Val2 %PHI.phiops | |
||
179 | /// | br label % JoinBlock | | br label %JoinBlock | |
||
180 | /// ---------------------------------- ---------------------------------- |
||
181 | /// \ / |
||
182 | /// \ / |
||
183 | /// _________________________________________ |
||
184 | /// |JoinBlock: | |
||
185 | /// | %PHI = load float, float* PHI.phiops | |
||
186 | /// ----------------------------------------- |
||
187 | /// |
||
188 | /// Note that there can also be a scalar write access for %PHI if used in a |
||
189 | /// different BasicBlock, i.e. there can be a memory object %PHI.phiops as |
||
190 | /// well as a memory object %PHI.s2a. |
||
191 | PHI, |
||
192 | |||
193 | /// MemoryKind::ExitPHI: Models PHI nodes in the SCoP's exit block |
||
194 | /// |
||
195 | /// For PHI nodes in the Scop's exit block a special memory object kind is |
||
196 | /// used. The modeling used is identical to MemoryKind::PHI, with the |
||
197 | /// exception |
||
198 | /// that there are no READs from these memory objects. The PHINode's |
||
199 | /// llvm::Value is treated as a value escaping the SCoP. WRITE accesses |
||
200 | /// write directly to the escaping value's ".s2a" alloca. |
||
201 | ExitPHI |
||
202 | }; |
||
203 | |||
204 | /// Maps from a loop to the affine function expressing its backedge taken count. |
||
205 | /// The backedge taken count already enough to express iteration domain as we |
||
206 | /// only allow loops with canonical induction variable. |
||
207 | /// A canonical induction variable is: |
||
208 | /// an integer recurrence that starts at 0 and increments by one each time |
||
209 | /// through the loop. |
||
210 | using LoopBoundMapType = std::map<const Loop *, const SCEV *>; |
||
211 | |||
212 | using AccFuncVector = std::vector<std::unique_ptr<MemoryAccess>>; |
||
213 | |||
214 | /// A class to store information about arrays in the SCoP. |
||
215 | /// |
||
216 | /// Objects are accessible via the ScoP, MemoryAccess or the id associated with |
||
217 | /// the MemoryAccess access function. |
||
218 | /// |
||
219 | class ScopArrayInfo final { |
||
220 | public: |
||
221 | /// Construct a ScopArrayInfo object. |
||
222 | /// |
||
223 | /// @param BasePtr The array base pointer. |
||
224 | /// @param ElementType The type of the elements stored in the array. |
||
225 | /// @param IslCtx The isl context used to create the base pointer id. |
||
226 | /// @param DimensionSizes A vector containing the size of each dimension. |
||
227 | /// @param Kind The kind of the array object. |
||
228 | /// @param DL The data layout of the module. |
||
229 | /// @param S The scop this array object belongs to. |
||
230 | /// @param BaseName The optional name of this memory reference. |
||
231 | ScopArrayInfo(Value *BasePtr, Type *ElementType, isl::ctx IslCtx, |
||
232 | ArrayRef<const SCEV *> DimensionSizes, MemoryKind Kind, |
||
233 | const DataLayout &DL, Scop *S, const char *BaseName = nullptr); |
||
234 | |||
235 | /// Destructor to free the isl id of the base pointer. |
||
236 | ~ScopArrayInfo(); |
||
237 | |||
238 | /// Update the element type of the ScopArrayInfo object. |
||
239 | /// |
||
240 | /// Memory accesses referencing this ScopArrayInfo object may use |
||
241 | /// different element sizes. This function ensures the canonical element type |
||
242 | /// stored is small enough to model accesses to the current element type as |
||
243 | /// well as to @p NewElementType. |
||
244 | /// |
||
245 | /// @param NewElementType An element type that is used to access this array. |
||
246 | void updateElementType(Type *NewElementType); |
||
247 | |||
248 | /// Update the sizes of the ScopArrayInfo object. |
||
249 | /// |
||
250 | /// A ScopArrayInfo object may be created without all outer dimensions being |
||
251 | /// available. This function is called when new memory accesses are added for |
||
252 | /// this ScopArrayInfo object. It verifies that sizes are compatible and adds |
||
253 | /// additional outer array dimensions, if needed. |
||
254 | /// |
||
255 | /// @param Sizes A vector of array sizes where the rightmost array |
||
256 | /// sizes need to match the innermost array sizes already |
||
257 | /// defined in SAI. |
||
258 | /// @param CheckConsistency Update sizes, even if new sizes are inconsistent |
||
259 | /// with old sizes |
||
260 | bool updateSizes(ArrayRef<const SCEV *> Sizes, bool CheckConsistency = true); |
||
261 | |||
262 | /// Set the base pointer to @p BP. |
||
263 | void setBasePtr(Value *BP) { BasePtr = BP; } |
||
264 | |||
265 | /// Return the base pointer. |
||
266 | Value *getBasePtr() const { return BasePtr; } |
||
267 | |||
268 | // Set IsOnHeap to the value in parameter. |
||
269 | void setIsOnHeap(bool value) { IsOnHeap = value; } |
||
270 | |||
271 | /// For indirect accesses return the origin SAI of the BP, else null. |
||
272 | const ScopArrayInfo *getBasePtrOriginSAI() const { return BasePtrOriginSAI; } |
||
273 | |||
274 | /// The set of derived indirect SAIs for this origin SAI. |
||
275 | const SmallSetVector<ScopArrayInfo *, 2> &getDerivedSAIs() const { |
||
276 | return DerivedSAIs; |
||
277 | } |
||
278 | |||
279 | /// Return the number of dimensions. |
||
280 | unsigned getNumberOfDimensions() const { |
||
281 | if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI || |
||
282 | Kind == MemoryKind::Value) |
||
283 | return 0; |
||
284 | return DimensionSizes.size(); |
||
285 | } |
||
286 | |||
287 | /// Return the size of dimension @p dim as SCEV*. |
||
288 | // |
||
289 | // Scalars do not have array dimensions and the first dimension of |
||
290 | // a (possibly multi-dimensional) array also does not carry any size |
||
291 | // information, in case the array is not newly created. |
||
292 | const SCEV *getDimensionSize(unsigned Dim) const { |
||
293 | assert(Dim < getNumberOfDimensions() && "Invalid dimension"); |
||
294 | return DimensionSizes[Dim]; |
||
295 | } |
||
296 | |||
297 | /// Return the size of dimension @p dim as isl::pw_aff. |
||
298 | // |
||
299 | // Scalars do not have array dimensions and the first dimension of |
||
300 | // a (possibly multi-dimensional) array also does not carry any size |
||
301 | // information, in case the array is not newly created. |
||
302 | isl::pw_aff getDimensionSizePw(unsigned Dim) const { |
||
303 | assert(Dim < getNumberOfDimensions() && "Invalid dimension"); |
||
304 | return DimensionSizesPw[Dim]; |
||
305 | } |
||
306 | |||
307 | /// Get the canonical element type of this array. |
||
308 | /// |
||
309 | /// @returns The canonical element type of this array. |
||
310 | Type *getElementType() const { return ElementType; } |
||
311 | |||
312 | /// Get element size in bytes. |
||
313 | int getElemSizeInBytes() const; |
||
314 | |||
315 | /// Get the name of this memory reference. |
||
316 | std::string getName() const; |
||
317 | |||
318 | /// Return the isl id for the base pointer. |
||
319 | isl::id getBasePtrId() const; |
||
320 | |||
321 | /// Return what kind of memory this represents. |
||
322 | MemoryKind getKind() const { return Kind; } |
||
323 | |||
324 | /// Is this array info modeling an llvm::Value? |
||
325 | bool isValueKind() const { return Kind == MemoryKind::Value; } |
||
326 | |||
327 | /// Is this array info modeling special PHI node memory? |
||
328 | /// |
||
329 | /// During code generation of PHI nodes, there is a need for two kinds of |
||
330 | /// virtual storage. The normal one as it is used for all scalar dependences, |
||
331 | /// where the result of the PHI node is stored and later loaded from as well |
||
332 | /// as a second one where the incoming values of the PHI nodes are stored |
||
333 | /// into and reloaded when the PHI is executed. As both memories use the |
||
334 | /// original PHI node as virtual base pointer, we have this additional |
||
335 | /// attribute to distinguish the PHI node specific array modeling from the |
||
336 | /// normal scalar array modeling. |
||
337 | bool isPHIKind() const { return Kind == MemoryKind::PHI; } |
||
338 | |||
339 | /// Is this array info modeling an MemoryKind::ExitPHI? |
||
340 | bool isExitPHIKind() const { return Kind == MemoryKind::ExitPHI; } |
||
341 | |||
342 | /// Is this array info modeling an array? |
||
343 | bool isArrayKind() const { return Kind == MemoryKind::Array; } |
||
344 | |||
345 | /// Is this array allocated on heap |
||
346 | /// |
||
347 | /// This property is only relevant if the array is allocated by Polly instead |
||
348 | /// of pre-existing. If false, it is allocated using alloca instead malloca. |
||
349 | bool isOnHeap() const { return IsOnHeap; } |
||
350 | |||
351 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
352 | /// Dump a readable representation to stderr. |
||
353 | void dump() const; |
||
354 | #endif |
||
355 | |||
356 | /// Print a readable representation to @p OS. |
||
357 | /// |
||
358 | /// @param SizeAsPwAff Print the size as isl::pw_aff |
||
359 | void print(raw_ostream &OS, bool SizeAsPwAff = false) const; |
||
360 | |||
361 | /// Access the ScopArrayInfo associated with an access function. |
||
362 | static const ScopArrayInfo *getFromAccessFunction(isl::pw_multi_aff PMA); |
||
363 | |||
364 | /// Access the ScopArrayInfo associated with an isl Id. |
||
365 | static const ScopArrayInfo *getFromId(isl::id Id); |
||
366 | |||
367 | /// Get the space of this array access. |
||
368 | isl::space getSpace() const; |
||
369 | |||
370 | /// If the array is read only |
||
371 | bool isReadOnly(); |
||
372 | |||
373 | /// Verify that @p Array is compatible to this ScopArrayInfo. |
||
374 | /// |
||
375 | /// Two arrays are compatible if their dimensionality, the sizes of their |
||
376 | /// dimensions, and their element sizes match. |
||
377 | /// |
||
378 | /// @param Array The array to compare against. |
||
379 | /// |
||
380 | /// @returns True, if the arrays are compatible, False otherwise. |
||
381 | bool isCompatibleWith(const ScopArrayInfo *Array) const; |
||
382 | |||
383 | private: |
||
384 | void addDerivedSAI(ScopArrayInfo *DerivedSAI) { |
||
385 | DerivedSAIs.insert(DerivedSAI); |
||
386 | } |
||
387 | |||
388 | /// For indirect accesses this is the SAI of the BP origin. |
||
389 | const ScopArrayInfo *BasePtrOriginSAI; |
||
390 | |||
391 | /// For origin SAIs the set of derived indirect SAIs. |
||
392 | SmallSetVector<ScopArrayInfo *, 2> DerivedSAIs; |
||
393 | |||
394 | /// The base pointer. |
||
395 | AssertingVH<Value> BasePtr; |
||
396 | |||
397 | /// The canonical element type of this array. |
||
398 | /// |
||
399 | /// The canonical element type describes the minimal accessible element in |
||
400 | /// this array. Not all elements accessed, need to be of the very same type, |
||
401 | /// but the allocation size of the type of the elements loaded/stored from/to |
||
402 | /// this array needs to be a multiple of the allocation size of the canonical |
||
403 | /// type. |
||
404 | Type *ElementType; |
||
405 | |||
406 | /// The isl id for the base pointer. |
||
407 | isl::id Id; |
||
408 | |||
409 | /// True if the newly allocated array is on heap. |
||
410 | bool IsOnHeap = false; |
||
411 | |||
412 | /// The sizes of each dimension as SCEV*. |
||
413 | SmallVector<const SCEV *, 4> DimensionSizes; |
||
414 | |||
415 | /// The sizes of each dimension as isl::pw_aff. |
||
416 | SmallVector<isl::pw_aff, 4> DimensionSizesPw; |
||
417 | |||
418 | /// The type of this scop array info object. |
||
419 | /// |
||
420 | /// We distinguish between SCALAR, PHI and ARRAY objects. |
||
421 | MemoryKind Kind; |
||
422 | |||
423 | /// The data layout of the module. |
||
424 | const DataLayout &DL; |
||
425 | |||
426 | /// The scop this SAI object belongs to. |
||
427 | Scop &S; |
||
428 | }; |
||
429 | |||
430 | /// Represent memory accesses in statements. |
||
431 | class MemoryAccess final { |
||
432 | friend class Scop; |
||
433 | friend class ScopStmt; |
||
434 | friend class ScopBuilder; |
||
435 | |||
436 | public: |
||
437 | /// The access type of a memory access |
||
438 | /// |
||
439 | /// There are three kind of access types: |
||
440 | /// |
||
441 | /// * A read access |
||
442 | /// |
||
443 | /// A certain set of memory locations are read and may be used for internal |
||
444 | /// calculations. |
||
445 | /// |
||
446 | /// * A must-write access |
||
447 | /// |
||
448 | /// A certain set of memory locations is definitely written. The old value is |
||
449 | /// replaced by a newly calculated value. The old value is not read or used at |
||
450 | /// all. |
||
451 | /// |
||
452 | /// * A may-write access |
||
453 | /// |
||
454 | /// A certain set of memory locations may be written. The memory location may |
||
455 | /// contain a new value if there is actually a write or the old value may |
||
456 | /// remain, if no write happens. |
||
457 | enum AccessType { |
||
458 | READ = 0x1, |
||
459 | MUST_WRITE = 0x2, |
||
460 | MAY_WRITE = 0x3, |
||
461 | }; |
||
462 | |||
463 | /// Reduction access type |
||
464 | /// |
||
465 | /// Commutative and associative binary operations suitable for reductions |
||
466 | enum ReductionType { |
||
467 | RT_NONE, ///< Indicate no reduction at all |
||
468 | RT_ADD, ///< Addition |
||
469 | RT_MUL, ///< Multiplication |
||
470 | RT_BOR, ///< Bitwise Or |
||
471 | RT_BXOR, ///< Bitwise XOr |
||
472 | RT_BAND, ///< Bitwise And |
||
473 | }; |
||
474 | |||
475 | using SubscriptsTy = SmallVector<const SCEV *, 4>; |
||
476 | |||
477 | private: |
||
478 | /// A unique identifier for this memory access. |
||
479 | /// |
||
480 | /// The identifier is unique between all memory accesses belonging to the same |
||
481 | /// scop statement. |
||
482 | isl::id Id; |
||
483 | |||
484 | /// What is modeled by this MemoryAccess. |
||
485 | /// @see MemoryKind |
||
486 | MemoryKind Kind; |
||
487 | |||
488 | /// Whether it a reading or writing access, and if writing, whether it |
||
489 | /// is conditional (MAY_WRITE). |
||
490 | enum AccessType AccType; |
||
491 | |||
492 | /// Reduction type for reduction like accesses, RT_NONE otherwise |
||
493 | /// |
||
494 | /// An access is reduction like if it is part of a load-store chain in which |
||
495 | /// both access the same memory location (use the same LLVM-IR value |
||
496 | /// as pointer reference). Furthermore, between the load and the store there |
||
497 | /// is exactly one binary operator which is known to be associative and |
||
498 | /// commutative. |
||
499 | /// |
||
500 | /// TODO: |
||
501 | /// |
||
502 | /// We can later lift the constraint that the same LLVM-IR value defines the |
||
503 | /// memory location to handle scops such as the following: |
||
504 | /// |
||
505 | /// for i |
||
506 | /// for j |
||
507 | /// sum[i+j] = sum[i] + 3; |
||
508 | /// |
||
509 | /// Here not all iterations access the same memory location, but iterations |
||
510 | /// for which j = 0 holds do. After lifting the equality check in ScopBuilder, |
||
511 | /// subsequent transformations do not only need check if a statement is |
||
512 | /// reduction like, but they also need to verify that that the reduction |
||
513 | /// property is only exploited for statement instances that load from and |
||
514 | /// store to the same data location. Doing so at dependence analysis time |
||
515 | /// could allow us to handle the above example. |
||
516 | ReductionType RedType = RT_NONE; |
||
517 | |||
518 | /// Parent ScopStmt of this access. |
||
519 | ScopStmt *Statement; |
||
520 | |||
521 | /// The domain under which this access is not modeled precisely. |
||
522 | /// |
||
523 | /// The invalid domain for an access describes all parameter combinations |
||
524 | /// under which the statement looks to be executed but is in fact not because |
||
525 | /// some assumption/restriction makes the access invalid. |
||
526 | isl::set InvalidDomain; |
||
527 | |||
528 | // Properties describing the accessed array. |
||
529 | // TODO: It might be possible to move them to ScopArrayInfo. |
||
530 | // @{ |
||
531 | |||
532 | /// The base address (e.g., A for A[i+j]). |
||
533 | /// |
||
534 | /// The #BaseAddr of a memory access of kind MemoryKind::Array is the base |
||
535 | /// pointer of the memory access. |
||
536 | /// The #BaseAddr of a memory access of kind MemoryKind::PHI or |
||
537 | /// MemoryKind::ExitPHI is the PHI node itself. |
||
538 | /// The #BaseAddr of a memory access of kind MemoryKind::Value is the |
||
539 | /// instruction defining the value. |
||
540 | AssertingVH<Value> BaseAddr; |
||
541 | |||
542 | /// Type a single array element wrt. this access. |
||
543 | Type *ElementType; |
||
544 | |||
545 | /// Size of each dimension of the accessed array. |
||
546 | SmallVector<const SCEV *, 4> Sizes; |
||
547 | // @} |
||
548 | |||
549 | // Properties describing the accessed element. |
||
550 | // @{ |
||
551 | |||
552 | /// The access instruction of this memory access. |
||
553 | /// |
||
554 | /// For memory accesses of kind MemoryKind::Array the access instruction is |
||
555 | /// the Load or Store instruction performing the access. |
||
556 | /// |
||
557 | /// For memory accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI the |
||
558 | /// access instruction of a load access is the PHI instruction. The access |
||
559 | /// instruction of a PHI-store is the incoming's block's terminator |
||
560 | /// instruction. |
||
561 | /// |
||
562 | /// For memory accesses of kind MemoryKind::Value the access instruction of a |
||
563 | /// load access is nullptr because generally there can be multiple |
||
564 | /// instructions in the statement using the same llvm::Value. The access |
||
565 | /// instruction of a write access is the instruction that defines the |
||
566 | /// llvm::Value. |
||
567 | Instruction *AccessInstruction = nullptr; |
||
568 | |||
569 | /// Incoming block and value of a PHINode. |
||
570 | SmallVector<std::pair<BasicBlock *, Value *>, 4> Incoming; |
||
571 | |||
572 | /// The value associated with this memory access. |
||
573 | /// |
||
574 | /// - For array memory accesses (MemoryKind::Array) it is the loaded result |
||
575 | /// or the stored value. If the access instruction is a memory intrinsic it |
||
576 | /// the access value is also the memory intrinsic. |
||
577 | /// - For accesses of kind MemoryKind::Value it is the access instruction |
||
578 | /// itself. |
||
579 | /// - For accesses of kind MemoryKind::PHI or MemoryKind::ExitPHI it is the |
||
580 | /// PHI node itself (for both, READ and WRITE accesses). |
||
581 | /// |
||
582 | AssertingVH<Value> AccessValue; |
||
583 | |||
584 | /// Are all the subscripts affine expression? |
||
585 | bool IsAffine = true; |
||
586 | |||
587 | /// Subscript expression for each dimension. |
||
588 | SubscriptsTy Subscripts; |
||
589 | |||
590 | /// Relation from statement instances to the accessed array elements. |
||
591 | /// |
||
592 | /// In the common case this relation is a function that maps a set of loop |
||
593 | /// indices to the memory address from which a value is loaded/stored: |
||
594 | /// |
||
595 | /// for i |
||
596 | /// for j |
||
597 | /// S: A[i + 3 j] = ... |
||
598 | /// |
||
599 | /// => { S[i,j] -> A[i + 3j] } |
||
600 | /// |
||
601 | /// In case the exact access function is not known, the access relation may |
||
602 | /// also be a one to all mapping { S[i,j] -> A[o] } describing that any |
||
603 | /// element accessible through A might be accessed. |
||
604 | /// |
||
605 | /// In case of an access to a larger element belonging to an array that also |
||
606 | /// contains smaller elements, the access relation models the larger access |
||
607 | /// with multiple smaller accesses of the size of the minimal array element |
||
608 | /// type: |
||
609 | /// |
||
610 | /// short *A; |
||
611 | /// |
||
612 | /// for i |
||
613 | /// S: A[i] = *((double*)&A[4 * i]); |
||
614 | /// |
||
615 | /// => { S[i] -> A[i]; S[i] -> A[o] : 4i <= o <= 4i + 3 } |
||
616 | isl::map AccessRelation; |
||
617 | |||
618 | /// Updated access relation read from JSCOP file. |
||
619 | isl::map NewAccessRelation; |
||
620 | // @} |
||
621 | |||
622 | isl::basic_map createBasicAccessMap(ScopStmt *Statement); |
||
623 | |||
624 | isl::set assumeNoOutOfBound(); |
||
625 | |||
626 | /// Compute bounds on an over approximated access relation. |
||
627 | /// |
||
628 | /// @param ElementSize The size of one element accessed. |
||
629 | void computeBoundsOnAccessRelation(unsigned ElementSize); |
||
630 | |||
631 | /// Get the original access function as read from IR. |
||
632 | isl::map getOriginalAccessRelation() const; |
||
633 | |||
634 | /// Return the space in which the access relation lives in. |
||
635 | isl::space getOriginalAccessRelationSpace() const; |
||
636 | |||
637 | /// Get the new access function imported or set by a pass |
||
638 | isl::map getNewAccessRelation() const; |
||
639 | |||
640 | /// Fold the memory access to consider parametric offsets |
||
641 | /// |
||
642 | /// To recover memory accesses with array size parameters in the subscript |
||
643 | /// expression we post-process the delinearization results. |
||
644 | /// |
||
645 | /// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an |
||
646 | /// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid |
||
647 | /// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the |
||
648 | /// range of exp1(i) - may be preferable. Specifically, for cases where we |
||
649 | /// know exp1(i) is negative, we want to choose the latter expression. |
||
650 | /// |
||
651 | /// As we commonly do not have any information about the range of exp1(i), |
||
652 | /// we do not choose one of the two options, but instead create a piecewise |
||
653 | /// access function that adds the (-1, N) offsets as soon as exp1(i) becomes |
||
654 | /// negative. For a 2D array such an access function is created by applying |
||
655 | /// the piecewise map: |
||
656 | /// |
||
657 | /// [i,j] -> [i, j] : j >= 0 |
||
658 | /// [i,j] -> [i-1, j+N] : j < 0 |
||
659 | /// |
||
660 | /// We can generalize this mapping to arbitrary dimensions by applying this |
||
661 | /// piecewise mapping pairwise from the rightmost to the leftmost access |
||
662 | /// dimension. It would also be possible to cover a wider range by introducing |
||
663 | /// more cases and adding multiple of Ns to these cases. However, this has |
||
664 | /// not yet been necessary. |
||
665 | /// The introduction of different cases necessarily complicates the memory |
||
666 | /// access function, but cases that can be statically proven to not happen |
||
667 | /// will be eliminated later on. |
||
668 | void foldAccessRelation(); |
||
669 | |||
670 | /// Create the access relation for the underlying memory intrinsic. |
||
671 | void buildMemIntrinsicAccessRelation(); |
||
672 | |||
673 | /// Assemble the access relation from all available information. |
||
674 | /// |
||
675 | /// In particular, used the information passes in the constructor and the |
||
676 | /// parent ScopStmt set by setStatment(). |
||
677 | /// |
||
678 | /// @param SAI Info object for the accessed array. |
||
679 | void buildAccessRelation(const ScopArrayInfo *SAI); |
||
680 | |||
681 | /// Carry index overflows of dimensions with constant size to the next higher |
||
682 | /// dimension. |
||
683 | /// |
||
684 | /// For dimensions that have constant size, modulo the index by the size and |
||
685 | /// add up the carry (floored division) to the next higher dimension. This is |
||
686 | /// how overflow is defined in row-major order. |
||
687 | /// It happens e.g. when ScalarEvolution computes the offset to the base |
||
688 | /// pointer and would algebraically sum up all lower dimensions' indices of |
||
689 | /// constant size. |
||
690 | /// |
||
691 | /// Example: |
||
692 | /// float (*A)[4]; |
||
693 | /// A[1][6] -> A[2][2] |
||
694 | void wrapConstantDimensions(); |
||
695 | |||
696 | public: |
||
697 | /// Create a new MemoryAccess. |
||
698 | /// |
||
699 | /// @param Stmt The parent statement. |
||
700 | /// @param AccessInst The instruction doing the access. |
||
701 | /// @param BaseAddr The accessed array's address. |
||
702 | /// @param ElemType The type of the accessed array elements. |
||
703 | /// @param AccType Whether read or write access. |
||
704 | /// @param IsAffine Whether the subscripts are affine expressions. |
||
705 | /// @param Kind The kind of memory accessed. |
||
706 | /// @param Subscripts Subscript expressions |
||
707 | /// @param Sizes Dimension lengths of the accessed array. |
||
708 | MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst, AccessType AccType, |
||
709 | Value *BaseAddress, Type *ElemType, bool Affine, |
||
710 | ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes, |
||
711 | Value *AccessValue, MemoryKind Kind); |
||
712 | |||
713 | /// Create a new MemoryAccess that corresponds to @p AccRel. |
||
714 | /// |
||
715 | /// Along with @p Stmt and @p AccType it uses information about dimension |
||
716 | /// lengths of the accessed array, the type of the accessed array elements, |
||
717 | /// the name of the accessed array that is derived from the object accessible |
||
718 | /// via @p AccRel. |
||
719 | /// |
||
720 | /// @param Stmt The parent statement. |
||
721 | /// @param AccType Whether read or write access. |
||
722 | /// @param AccRel The access relation that describes the memory access. |
||
723 | MemoryAccess(ScopStmt *Stmt, AccessType AccType, isl::map AccRel); |
||
724 | |||
725 | MemoryAccess(const MemoryAccess &) = delete; |
||
726 | MemoryAccess &operator=(const MemoryAccess &) = delete; |
||
727 | ~MemoryAccess(); |
||
728 | |||
729 | /// Add a new incoming block/value pairs for this PHI/ExitPHI access. |
||
730 | /// |
||
731 | /// @param IncomingBlock The PHI's incoming block. |
||
732 | /// @param IncomingValue The value when reaching the PHI from the @p |
||
733 | /// IncomingBlock. |
||
734 | void addIncoming(BasicBlock *IncomingBlock, Value *IncomingValue) { |
||
735 | assert(!isRead()); |
||
736 | assert(isAnyPHIKind()); |
||
737 | Incoming.emplace_back(std::make_pair(IncomingBlock, IncomingValue)); |
||
738 | } |
||
739 | |||
740 | /// Return the list of possible PHI/ExitPHI values. |
||
741 | /// |
||
742 | /// After code generation moves some PHIs around during region simplification, |
||
743 | /// we cannot reliably locate the original PHI node and its incoming values |
||
744 | /// anymore. For this reason we remember these explicitly for all PHI-kind |
||
745 | /// accesses. |
||
746 | ArrayRef<std::pair<BasicBlock *, Value *>> getIncoming() const { |
||
747 | assert(isAnyPHIKind()); |
||
748 | return Incoming; |
||
749 | } |
||
750 | |||
751 | /// Get the type of a memory access. |
||
752 | enum AccessType getType() { return AccType; } |
||
753 | |||
754 | /// Is this a reduction like access? |
||
755 | bool isReductionLike() const { return RedType != RT_NONE; } |
||
756 | |||
757 | /// Is this a read memory access? |
||
758 | bool isRead() const { return AccType == MemoryAccess::READ; } |
||
759 | |||
760 | /// Is this a must-write memory access? |
||
761 | bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; } |
||
762 | |||
763 | /// Is this a may-write memory access? |
||
764 | bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; } |
||
765 | |||
766 | /// Is this a write memory access? |
||
767 | bool isWrite() const { return isMustWrite() || isMayWrite(); } |
||
768 | |||
769 | /// Is this a memory intrinsic access (memcpy, memset, memmove)? |
||
770 | bool isMemoryIntrinsic() const { |
||
771 | return isa<MemIntrinsic>(getAccessInstruction()); |
||
772 | } |
||
773 | |||
774 | /// Check if a new access relation was imported or set by a pass. |
||
775 | bool hasNewAccessRelation() const { return !NewAccessRelation.is_null(); } |
||
776 | |||
777 | /// Return the newest access relation of this access. |
||
778 | /// |
||
779 | /// There are two possibilities: |
||
780 | /// 1) The original access relation read from the LLVM-IR. |
||
781 | /// 2) A new access relation imported from a json file or set by another |
||
782 | /// pass (e.g., for privatization). |
||
783 | /// |
||
784 | /// As 2) is by construction "newer" than 1) we return the new access |
||
785 | /// relation if present. |
||
786 | /// |
||
787 | isl::map getLatestAccessRelation() const { |
||
788 | return hasNewAccessRelation() ? getNewAccessRelation() |
||
789 | : getOriginalAccessRelation(); |
||
790 | } |
||
791 | |||
792 | /// Old name of getLatestAccessRelation(). |
||
793 | isl::map getAccessRelation() const { return getLatestAccessRelation(); } |
||
794 | |||
795 | /// Get an isl map describing the memory address accessed. |
||
796 | /// |
||
797 | /// In most cases the memory address accessed is well described by the access |
||
798 | /// relation obtained with getAccessRelation. However, in case of arrays |
||
799 | /// accessed with types of different size the access relation maps one access |
||
800 | /// to multiple smaller address locations. This method returns an isl map that |
||
801 | /// relates each dynamic statement instance to the unique memory location |
||
802 | /// that is loaded from / stored to. |
||
803 | /// |
||
804 | /// For an access relation { S[i] -> A[o] : 4i <= o <= 4i + 3 } this method |
||
805 | /// will return the address function { S[i] -> A[4i] }. |
||
806 | /// |
||
807 | /// @returns The address function for this memory access. |
||
808 | isl::map getAddressFunction() const; |
||
809 | |||
810 | /// Return the access relation after the schedule was applied. |
||
811 | isl::pw_multi_aff |
||
812 | applyScheduleToAccessRelation(isl::union_map Schedule) const; |
||
813 | |||
814 | /// Get an isl string representing the access function read from IR. |
||
815 | std::string getOriginalAccessRelationStr() const; |
||
816 | |||
817 | /// Get an isl string representing a new access function, if available. |
||
818 | std::string getNewAccessRelationStr() const; |
||
819 | |||
820 | /// Get an isl string representing the latest access relation. |
||
821 | std::string getAccessRelationStr() const; |
||
822 | |||
823 | /// Get the original base address of this access (e.g. A for A[i+j]) when |
||
824 | /// detected. |
||
825 | /// |
||
826 | /// This address may differ from the base address referenced by the original |
||
827 | /// ScopArrayInfo to which this array belongs, as this memory access may |
||
828 | /// have been canonicalized to a ScopArrayInfo which has a different but |
||
829 | /// identically-valued base pointer in case invariant load hoisting is |
||
830 | /// enabled. |
||
831 | Value *getOriginalBaseAddr() const { return BaseAddr; } |
||
832 | |||
833 | /// Get the detection-time base array isl::id for this access. |
||
834 | isl::id getOriginalArrayId() const; |
||
835 | |||
836 | /// Get the base array isl::id for this access, modifiable through |
||
837 | /// setNewAccessRelation(). |
||
838 | isl::id getLatestArrayId() const; |
||
839 | |||
840 | /// Old name of getOriginalArrayId(). |
||
841 | isl::id getArrayId() const { return getOriginalArrayId(); } |
||
842 | |||
843 | /// Get the detection-time ScopArrayInfo object for the base address. |
||
844 | const ScopArrayInfo *getOriginalScopArrayInfo() const; |
||
845 | |||
846 | /// Get the ScopArrayInfo object for the base address, or the one set |
||
847 | /// by setNewAccessRelation(). |
||
848 | const ScopArrayInfo *getLatestScopArrayInfo() const; |
||
849 | |||
850 | /// Legacy name of getOriginalScopArrayInfo(). |
||
851 | const ScopArrayInfo *getScopArrayInfo() const { |
||
852 | return getOriginalScopArrayInfo(); |
||
853 | } |
||
854 | |||
855 | /// Return a string representation of the access's reduction type. |
||
856 | const std::string getReductionOperatorStr() const; |
||
857 | |||
858 | /// Return a string representation of the reduction type @p RT. |
||
859 | static const std::string getReductionOperatorStr(ReductionType RT); |
||
860 | |||
861 | /// Return the element type of the accessed array wrt. this access. |
||
862 | Type *getElementType() const { return ElementType; } |
||
863 | |||
864 | /// Return the access value of this memory access. |
||
865 | Value *getAccessValue() const { return AccessValue; } |
||
866 | |||
867 | /// Return llvm::Value that is stored by this access, if available. |
||
868 | /// |
||
869 | /// PHI nodes may not have a unique value available that is stored, as in |
||
870 | /// case of region statements one out of possibly several llvm::Values |
||
871 | /// might be stored. In this case nullptr is returned. |
||
872 | Value *tryGetValueStored() { |
||
873 | assert(isWrite() && "Only write statement store values"); |
||
874 | if (isAnyPHIKind()) { |
||
875 | if (Incoming.size() == 1) |
||
876 | return Incoming[0].second; |
||
877 | return nullptr; |
||
878 | } |
||
879 | return AccessValue; |
||
880 | } |
||
881 | |||
882 | /// Return the access instruction of this memory access. |
||
883 | Instruction *getAccessInstruction() const { return AccessInstruction; } |
||
884 | |||
885 | /// Return an iterator range containing the subscripts. |
||
886 | iterator_range<SubscriptsTy::const_iterator> subscripts() const { |
||
887 | return make_range(Subscripts.begin(), Subscripts.end()); |
||
888 | } |
||
889 | |||
890 | /// Return the number of access function subscript. |
||
891 | unsigned getNumSubscripts() const { return Subscripts.size(); } |
||
892 | |||
893 | /// Return the access function subscript in the dimension @p Dim. |
||
894 | const SCEV *getSubscript(unsigned Dim) const { return Subscripts[Dim]; } |
||
895 | |||
896 | /// Compute the isl representation for the SCEV @p E wrt. this access. |
||
897 | /// |
||
898 | /// Note that this function will also adjust the invalid context accordingly. |
||
899 | isl::pw_aff getPwAff(const SCEV *E); |
||
900 | |||
901 | /// Get the invalid domain for this access. |
||
902 | isl::set getInvalidDomain() const { return InvalidDomain; } |
||
903 | |||
904 | /// Get the invalid context for this access. |
||
905 | isl::set getInvalidContext() const { return getInvalidDomain().params(); } |
||
906 | |||
907 | /// Get the stride of this memory access in the specified Schedule. Schedule |
||
908 | /// is a map from the statement to a schedule where the innermost dimension is |
||
909 | /// the dimension of the innermost loop containing the statement. |
||
910 | isl::set getStride(isl::map Schedule) const; |
||
911 | |||
912 | /// Is the stride of the access equal to a certain width? Schedule is a map |
||
913 | /// from the statement to a schedule where the innermost dimension is the |
||
914 | /// dimension of the innermost loop containing the statement. |
||
915 | bool isStrideX(isl::map Schedule, int StrideWidth) const; |
||
916 | |||
917 | /// Is consecutive memory accessed for a given statement instance set? |
||
918 | /// Schedule is a map from the statement to a schedule where the innermost |
||
919 | /// dimension is the dimension of the innermost loop containing the |
||
920 | /// statement. |
||
921 | bool isStrideOne(isl::map Schedule) const; |
||
922 | |||
923 | /// Is always the same memory accessed for a given statement instance set? |
||
924 | /// Schedule is a map from the statement to a schedule where the innermost |
||
925 | /// dimension is the dimension of the innermost loop containing the |
||
926 | /// statement. |
||
927 | bool isStrideZero(isl::map Schedule) const; |
||
928 | |||
929 | /// Return the kind when this access was first detected. |
||
930 | MemoryKind getOriginalKind() const { |
||
931 | assert(!getOriginalScopArrayInfo() /* not yet initialized */ || |
||
932 | getOriginalScopArrayInfo()->getKind() == Kind); |
||
933 | return Kind; |
||
934 | } |
||
935 | |||
936 | /// Return the kind considering a potential setNewAccessRelation. |
||
937 | MemoryKind getLatestKind() const { |
||
938 | return getLatestScopArrayInfo()->getKind(); |
||
939 | } |
||
940 | |||
941 | /// Whether this is an access of an explicit load or store in the IR. |
||
942 | bool isOriginalArrayKind() const { |
||
943 | return getOriginalKind() == MemoryKind::Array; |
||
944 | } |
||
945 | |||
946 | /// Whether storage memory is either an custom .s2a/.phiops alloca |
||
947 | /// (false) or an existing pointer into an array (true). |
||
948 | bool isLatestArrayKind() const { |
||
949 | return getLatestKind() == MemoryKind::Array; |
||
950 | } |
||
951 | |||
952 | /// Old name of isOriginalArrayKind. |
||
953 | bool isArrayKind() const { return isOriginalArrayKind(); } |
||
954 | |||
955 | /// Whether this access is an array to a scalar memory object, without |
||
956 | /// considering changes by setNewAccessRelation. |
||
957 | /// |
||
958 | /// Scalar accesses are accesses to MemoryKind::Value, MemoryKind::PHI or |
||
959 | /// MemoryKind::ExitPHI. |
||
960 | bool isOriginalScalarKind() const { |
||
961 | return getOriginalKind() != MemoryKind::Array; |
||
962 | } |
||
963 | |||
964 | /// Whether this access is an array to a scalar memory object, also |
||
965 | /// considering changes by setNewAccessRelation. |
||
966 | bool isLatestScalarKind() const { |
||
967 | return getLatestKind() != MemoryKind::Array; |
||
968 | } |
||
969 | |||
970 | /// Old name of isOriginalScalarKind. |
||
971 | bool isScalarKind() const { return isOriginalScalarKind(); } |
||
972 | |||
973 | /// Was this MemoryAccess detected as a scalar dependences? |
||
974 | bool isOriginalValueKind() const { |
||
975 | return getOriginalKind() == MemoryKind::Value; |
||
976 | } |
||
977 | |||
978 | /// Is this MemoryAccess currently modeling scalar dependences? |
||
979 | bool isLatestValueKind() const { |
||
980 | return getLatestKind() == MemoryKind::Value; |
||
981 | } |
||
982 | |||
983 | /// Old name of isOriginalValueKind(). |
||
984 | bool isValueKind() const { return isOriginalValueKind(); } |
||
985 | |||
986 | /// Was this MemoryAccess detected as a special PHI node access? |
||
987 | bool isOriginalPHIKind() const { |
||
988 | return getOriginalKind() == MemoryKind::PHI; |
||
989 | } |
||
990 | |||
991 | /// Is this MemoryAccess modeling special PHI node accesses, also |
||
992 | /// considering a potential change by setNewAccessRelation? |
||
993 | bool isLatestPHIKind() const { return getLatestKind() == MemoryKind::PHI; } |
||
994 | |||
995 | /// Old name of isOriginalPHIKind. |
||
996 | bool isPHIKind() const { return isOriginalPHIKind(); } |
||
997 | |||
998 | /// Was this MemoryAccess detected as the accesses of a PHI node in the |
||
999 | /// SCoP's exit block? |
||
1000 | bool isOriginalExitPHIKind() const { |
||
1001 | return getOriginalKind() == MemoryKind::ExitPHI; |
||
1002 | } |
||
1003 | |||
1004 | /// Is this MemoryAccess modeling the accesses of a PHI node in the |
||
1005 | /// SCoP's exit block? Can be changed to an array access using |
||
1006 | /// setNewAccessRelation(). |
||
1007 | bool isLatestExitPHIKind() const { |
||
1008 | return getLatestKind() == MemoryKind::ExitPHI; |
||
1009 | } |
||
1010 | |||
1011 | /// Old name of isOriginalExitPHIKind(). |
||
1012 | bool isExitPHIKind() const { return isOriginalExitPHIKind(); } |
||
1013 | |||
1014 | /// Was this access detected as one of the two PHI types? |
||
1015 | bool isOriginalAnyPHIKind() const { |
||
1016 | return isOriginalPHIKind() || isOriginalExitPHIKind(); |
||
1017 | } |
||
1018 | |||
1019 | /// Does this access originate from one of the two PHI types? Can be |
||
1020 | /// changed to an array access using setNewAccessRelation(). |
||
1021 | bool isLatestAnyPHIKind() const { |
||
1022 | return isLatestPHIKind() || isLatestExitPHIKind(); |
||
1023 | } |
||
1024 | |||
1025 | /// Old name of isOriginalAnyPHIKind(). |
||
1026 | bool isAnyPHIKind() const { return isOriginalAnyPHIKind(); } |
||
1027 | |||
1028 | /// Get the statement that contains this memory access. |
||
1029 | ScopStmt *getStatement() const { return Statement; } |
||
1030 | |||
1031 | /// Get the reduction type of this access |
||
1032 | ReductionType getReductionType() const { return RedType; } |
||
1033 | |||
1034 | /// Update the original access relation. |
||
1035 | /// |
||
1036 | /// We need to update the original access relation during scop construction, |
||
1037 | /// when unifying the memory accesses that access the same scop array info |
||
1038 | /// object. After the scop has been constructed, the original access relation |
||
1039 | /// should not be changed any more. Instead setNewAccessRelation should |
||
1040 | /// be called. |
||
1041 | void setAccessRelation(isl::map AccessRelation); |
||
1042 | |||
1043 | /// Set the updated access relation read from JSCOP file. |
||
1044 | void setNewAccessRelation(isl::map NewAccessRelation); |
||
1045 | |||
1046 | /// Return whether the MemoryyAccess is a partial access. That is, the access |
||
1047 | /// is not executed in some instances of the parent statement's domain. |
||
1048 | bool isLatestPartialAccess() const; |
||
1049 | |||
1050 | /// Mark this a reduction like access |
||
1051 | void markAsReductionLike(ReductionType RT) { RedType = RT; } |
||
1052 | |||
1053 | /// Align the parameters in the access relation to the scop context |
||
1054 | void realignParams(); |
||
1055 | |||
1056 | /// Update the dimensionality of the memory access. |
||
1057 | /// |
||
1058 | /// During scop construction some memory accesses may not be constructed with |
||
1059 | /// their full dimensionality, but outer dimensions may have been omitted if |
||
1060 | /// they took the value 'zero'. By updating the dimensionality of the |
||
1061 | /// statement we add additional zero-valued dimensions to match the |
||
1062 | /// dimensionality of the ScopArrayInfo object that belongs to this memory |
||
1063 | /// access. |
||
1064 | void updateDimensionality(); |
||
1065 | |||
1066 | /// Get identifier for the memory access. |
||
1067 | /// |
||
1068 | /// This identifier is unique for all accesses that belong to the same scop |
||
1069 | /// statement. |
||
1070 | isl::id getId() const; |
||
1071 | |||
1072 | /// Print the MemoryAccess. |
||
1073 | /// |
||
1074 | /// @param OS The output stream the MemoryAccess is printed to. |
||
1075 | void print(raw_ostream &OS) const; |
||
1076 | |||
1077 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
1078 | /// Print the MemoryAccess to stderr. |
||
1079 | void dump() const; |
||
1080 | #endif |
||
1081 | |||
1082 | /// Is the memory access affine? |
||
1083 | bool isAffine() const { return IsAffine; } |
||
1084 | }; |
||
1085 | |||
1086 | raw_ostream &operator<<(raw_ostream &OS, MemoryAccess::ReductionType RT); |
||
1087 | |||
1088 | /// Ordered list type to hold accesses. |
||
1089 | using MemoryAccessList = std::forward_list<MemoryAccess *>; |
||
1090 | |||
1091 | /// Helper structure for invariant memory accesses. |
||
1092 | struct InvariantAccess { |
||
1093 | /// The memory access that is (partially) invariant. |
||
1094 | MemoryAccess *MA; |
||
1095 | |||
1096 | /// The context under which the access is not invariant. |
||
1097 | isl::set NonHoistableCtx; |
||
1098 | }; |
||
1099 | |||
1100 | /// Ordered container type to hold invariant accesses. |
||
1101 | using InvariantAccessesTy = SmallVector<InvariantAccess, 8>; |
||
1102 | |||
1103 | /// Type for equivalent invariant accesses and their domain context. |
||
1104 | struct InvariantEquivClassTy { |
||
1105 | /// The pointer that identifies this equivalence class |
||
1106 | const SCEV *IdentifyingPointer; |
||
1107 | |||
1108 | /// Memory accesses now treated invariant |
||
1109 | /// |
||
1110 | /// These memory accesses access the pointer location that identifies |
||
1111 | /// this equivalence class. They are treated as invariant and hoisted during |
||
1112 | /// code generation. |
||
1113 | MemoryAccessList InvariantAccesses; |
||
1114 | |||
1115 | /// The execution context under which the memory location is accessed |
||
1116 | /// |
||
1117 | /// It is the union of the execution domains of the memory accesses in the |
||
1118 | /// InvariantAccesses list. |
||
1119 | isl::set ExecutionContext; |
||
1120 | |||
1121 | /// The type of the invariant access |
||
1122 | /// |
||
1123 | /// It is used to differentiate between differently typed invariant loads from |
||
1124 | /// the same location. |
||
1125 | Type *AccessType; |
||
1126 | }; |
||
1127 | |||
1128 | /// Type for invariant accesses equivalence classes. |
||
1129 | using InvariantEquivClassesTy = SmallVector<InvariantEquivClassTy, 8>; |
||
1130 | |||
1131 | /// Statement of the Scop |
||
1132 | /// |
||
1133 | /// A Scop statement represents an instruction in the Scop. |
||
1134 | /// |
||
1135 | /// It is further described by its iteration domain, its schedule and its data |
||
1136 | /// accesses. |
||
1137 | /// At the moment every statement represents a single basic block of LLVM-IR. |
||
1138 | class ScopStmt final { |
||
1139 | friend class ScopBuilder; |
||
1140 | |||
1141 | public: |
||
1142 | /// Create the ScopStmt from a BasicBlock. |
||
1143 | ScopStmt(Scop &parent, BasicBlock &bb, StringRef Name, Loop *SurroundingLoop, |
||
1144 | std::vector<Instruction *> Instructions); |
||
1145 | |||
1146 | /// Create an overapproximating ScopStmt for the region @p R. |
||
1147 | /// |
||
1148 | /// @param EntryBlockInstructions The list of instructions that belong to the |
||
1149 | /// entry block of the region statement. |
||
1150 | /// Instructions are only tracked for entry |
||
1151 | /// blocks for now. We currently do not allow |
||
1152 | /// to modify the instructions of blocks later |
||
1153 | /// in the region statement. |
||
1154 | ScopStmt(Scop &parent, Region &R, StringRef Name, Loop *SurroundingLoop, |
||
1155 | std::vector<Instruction *> EntryBlockInstructions); |
||
1156 | |||
1157 | /// Create a copy statement. |
||
1158 | /// |
||
1159 | /// @param Stmt The parent statement. |
||
1160 | /// @param SourceRel The source location. |
||
1161 | /// @param TargetRel The target location. |
||
1162 | /// @param Domain The original domain under which the copy statement would |
||
1163 | /// be executed. |
||
1164 | ScopStmt(Scop &parent, isl::map SourceRel, isl::map TargetRel, |
||
1165 | isl::set Domain); |
||
1166 | |||
1167 | ScopStmt(const ScopStmt &) = delete; |
||
1168 | const ScopStmt &operator=(const ScopStmt &) = delete; |
||
1169 | ~ScopStmt(); |
||
1170 | |||
1171 | private: |
||
1172 | /// Polyhedral description |
||
1173 | //@{ |
||
1174 | |||
1175 | /// The Scop containing this ScopStmt. |
||
1176 | Scop &Parent; |
||
1177 | |||
1178 | /// The domain under which this statement is not modeled precisely. |
||
1179 | /// |
||
1180 | /// The invalid domain for a statement describes all parameter combinations |
||
1181 | /// under which the statement looks to be executed but is in fact not because |
||
1182 | /// some assumption/restriction makes the statement/scop invalid. |
||
1183 | isl::set InvalidDomain; |
||
1184 | |||
1185 | /// The iteration domain describes the set of iterations for which this |
||
1186 | /// statement is executed. |
||
1187 | /// |
||
1188 | /// Example: |
||
1189 | /// for (i = 0; i < 100 + b; ++i) |
||
1190 | /// for (j = 0; j < i; ++j) |
||
1191 | /// S(i,j); |
||
1192 | /// |
||
1193 | /// 'S' is executed for different values of i and j. A vector of all |
||
1194 | /// induction variables around S (i, j) is called iteration vector. |
||
1195 | /// The domain describes the set of possible iteration vectors. |
||
1196 | /// |
||
1197 | /// In this case it is: |
||
1198 | /// |
||
1199 | /// Domain: 0 <= i <= 100 + b |
||
1200 | /// 0 <= j <= i |
||
1201 | /// |
||
1202 | /// A pair of statement and iteration vector (S, (5,3)) is called statement |
||
1203 | /// instance. |
||
1204 | isl::set Domain; |
||
1205 | |||
1206 | /// The memory accesses of this statement. |
||
1207 | /// |
||
1208 | /// The only side effects of a statement are its memory accesses. |
||
1209 | using MemoryAccessVec = llvm::SmallVector<MemoryAccess *, 8>; |
||
1210 | MemoryAccessVec MemAccs; |
||
1211 | |||
1212 | /// Mapping from instructions to (scalar) memory accesses. |
||
1213 | DenseMap<const Instruction *, MemoryAccessList> InstructionToAccess; |
||
1214 | |||
1215 | /// The set of values defined elsewhere required in this ScopStmt and |
||
1216 | /// their MemoryKind::Value READ MemoryAccesses. |
||
1217 | DenseMap<Value *, MemoryAccess *> ValueReads; |
||
1218 | |||
1219 | /// The set of values defined in this ScopStmt that are required |
||
1220 | /// elsewhere, mapped to their MemoryKind::Value WRITE MemoryAccesses. |
||
1221 | DenseMap<Instruction *, MemoryAccess *> ValueWrites; |
||
1222 | |||
1223 | /// Map from PHI nodes to its incoming value when coming from this |
||
1224 | /// statement. |
||
1225 | /// |
||
1226 | /// Non-affine subregions can have multiple exiting blocks that are incoming |
||
1227 | /// blocks of the PHI nodes. This map ensures that there is only one write |
||
1228 | /// operation for the complete subregion. A PHI selecting the relevant value |
||
1229 | /// will be inserted. |
||
1230 | DenseMap<PHINode *, MemoryAccess *> PHIWrites; |
||
1231 | |||
1232 | /// Map from PHI nodes to its read access in this statement. |
||
1233 | DenseMap<PHINode *, MemoryAccess *> PHIReads; |
||
1234 | |||
1235 | //@} |
||
1236 | |||
1237 | /// A SCoP statement represents either a basic block (affine/precise case) or |
||
1238 | /// a whole region (non-affine case). |
||
1239 | /// |
||
1240 | /// Only one of the following two members will therefore be set and indicate |
||
1241 | /// which kind of statement this is. |
||
1242 | /// |
||
1243 | ///{ |
||
1244 | |||
1245 | /// The BasicBlock represented by this statement (in the affine case). |
||
1246 | BasicBlock *BB = nullptr; |
||
1247 | |||
1248 | /// The region represented by this statement (in the non-affine case). |
||
1249 | Region *R = nullptr; |
||
1250 | |||
1251 | ///} |
||
1252 | |||
1253 | /// The isl AST build for the new generated AST. |
||
1254 | isl::ast_build Build; |
||
1255 | |||
1256 | SmallVector<Loop *, 4> NestLoops; |
||
1257 | |||
1258 | std::string BaseName; |
||
1259 | |||
1260 | /// The closest loop that contains this statement. |
||
1261 | Loop *SurroundingLoop; |
||
1262 | |||
1263 | /// Vector for Instructions in this statement. |
||
1264 | std::vector<Instruction *> Instructions; |
||
1265 | |||
1266 | /// Remove @p MA from dictionaries pointing to them. |
||
1267 | void removeAccessData(MemoryAccess *MA); |
||
1268 | |||
1269 | public: |
||
1270 | /// Get an isl_ctx pointer. |
||
1271 | isl::ctx getIslCtx() const; |
||
1272 | |||
1273 | /// Get the iteration domain of this ScopStmt. |
||
1274 | /// |
||
1275 | /// @return The iteration domain of this ScopStmt. |
||
1276 | isl::set getDomain() const; |
||
1277 | |||
1278 | /// Get the space of the iteration domain |
||
1279 | /// |
||
1280 | /// @return The space of the iteration domain |
||
1281 | isl::space getDomainSpace() const; |
||
1282 | |||
1283 | /// Get the id of the iteration domain space |
||
1284 | /// |
||
1285 | /// @return The id of the iteration domain space |
||
1286 | isl::id getDomainId() const; |
||
1287 | |||
1288 | /// Get an isl string representing this domain. |
||
1289 | std::string getDomainStr() const; |
||
1290 | |||
1291 | /// Get the schedule function of this ScopStmt. |
||
1292 | /// |
||
1293 | /// @return The schedule function of this ScopStmt, if it does not contain |
||
1294 | /// extension nodes, and nullptr, otherwise. |
||
1295 | isl::map getSchedule() const; |
||
1296 | |||
1297 | /// Get an isl string representing this schedule. |
||
1298 | /// |
||
1299 | /// @return An isl string representing this schedule, if it does not contain |
||
1300 | /// extension nodes, and an empty string, otherwise. |
||
1301 | std::string getScheduleStr() const; |
||
1302 | |||
1303 | /// Get the invalid domain for this statement. |
||
1304 | isl::set getInvalidDomain() const { return InvalidDomain; } |
||
1305 | |||
1306 | /// Get the invalid context for this statement. |
||
1307 | isl::set getInvalidContext() const { return getInvalidDomain().params(); } |
||
1308 | |||
1309 | /// Set the invalid context for this statement to @p ID. |
||
1310 | void setInvalidDomain(isl::set ID); |
||
1311 | |||
1312 | /// Get the BasicBlock represented by this ScopStmt (if any). |
||
1313 | /// |
||
1314 | /// @return The BasicBlock represented by this ScopStmt, or null if the |
||
1315 | /// statement represents a region. |
||
1316 | BasicBlock *getBasicBlock() const { return BB; } |
||
1317 | |||
1318 | /// Return true if this statement represents a single basic block. |
||
1319 | bool isBlockStmt() const { return BB != nullptr; } |
||
1320 | |||
1321 | /// Return true if this is a copy statement. |
||
1322 | bool isCopyStmt() const { return BB == nullptr && R == nullptr; } |
||
1323 | |||
1324 | /// Get the region represented by this ScopStmt (if any). |
||
1325 | /// |
||
1326 | /// @return The region represented by this ScopStmt, or null if the statement |
||
1327 | /// represents a basic block. |
||
1328 | Region *getRegion() const { return R; } |
||
1329 | |||
1330 | /// Return true if this statement represents a whole region. |
||
1331 | bool isRegionStmt() const { return R != nullptr; } |
||
1332 | |||
1333 | /// Return a BasicBlock from this statement. |
||
1334 | /// |
||
1335 | /// For block statements, it returns the BasicBlock itself. For subregion |
||
1336 | /// statements, return its entry block. |
||
1337 | BasicBlock *getEntryBlock() const; |
||
1338 | |||
1339 | /// Return whether @p L is boxed within this statement. |
||
1340 | bool contains(const Loop *L) const { |
||
1341 | // Block statements never contain loops. |
||
1342 | if (isBlockStmt()) |
||
1343 | return false; |
||
1344 | |||
1345 | return getRegion()->contains(L); |
||
1346 | } |
||
1347 | |||
1348 | /// Return whether this statement represents @p BB. |
||
1349 | bool represents(BasicBlock *BB) const { |
||
1350 | if (isCopyStmt()) |
||
1351 | return false; |
||
1352 | if (isBlockStmt()) |
||
1353 | return BB == getBasicBlock(); |
||
1354 | return getRegion()->contains(BB); |
||
1355 | } |
||
1356 | |||
1357 | /// Return whether this statement contains @p Inst. |
||
1358 | bool contains(Instruction *Inst) const { |
||
1359 | if (!Inst) |
||
1360 | return false; |
||
1361 | if (isBlockStmt()) |
||
1362 | return llvm::is_contained(Instructions, Inst); |
||
1363 | return represents(Inst->getParent()); |
||
1364 | } |
||
1365 | |||
1366 | /// Return the closest innermost loop that contains this statement, but is not |
||
1367 | /// contained in it. |
||
1368 | /// |
||
1369 | /// For block statement, this is just the loop that contains the block. Region |
||
1370 | /// statements can contain boxed loops, so getting the loop of one of the |
||
1371 | /// region's BBs might return such an inner loop. For instance, the region's |
||
1372 | /// entry could be a header of a loop, but the region might extend to BBs |
||
1373 | /// after the loop exit. Similarly, the region might only contain parts of the |
||
1374 | /// loop body and still include the loop header. |
||
1375 | /// |
||
1376 | /// Most of the time the surrounding loop is the top element of #NestLoops, |
||
1377 | /// except when it is empty. In that case it return the loop that the whole |
||
1378 | /// SCoP is contained in. That can be nullptr if there is no such loop. |
||
1379 | Loop *getSurroundingLoop() const { |
||
1380 | assert(!isCopyStmt() && |
||
1381 | "No surrounding loop for artificially created statements"); |
||
1382 | return SurroundingLoop; |
||
1383 | } |
||
1384 | |||
1385 | /// Return true if this statement does not contain any accesses. |
||
1386 | bool isEmpty() const { return MemAccs.empty(); } |
||
1387 | |||
1388 | /// Find all array accesses for @p Inst. |
||
1389 | /// |
||
1390 | /// @param Inst The instruction accessing an array. |
||
1391 | /// |
||
1392 | /// @return A list of array accesses (MemoryKind::Array) accessed by @p Inst. |
||
1393 | /// If there is no such access, it returns nullptr. |
||
1394 | const MemoryAccessList * |
||
1395 | lookupArrayAccessesFor(const Instruction *Inst) const { |
||
1396 | auto It = InstructionToAccess.find(Inst); |
||
1397 | if (It == InstructionToAccess.end()) |
||
1398 | return nullptr; |
||
1399 | if (It->second.empty()) |
||
1400 | return nullptr; |
||
1401 | return &It->second; |
||
1402 | } |
||
1403 | |||
1404 | /// Return the only array access for @p Inst, if existing. |
||
1405 | /// |
||
1406 | /// @param Inst The instruction for which to look up the access. |
||
1407 | /// @returns The unique array memory access related to Inst or nullptr if |
||
1408 | /// no array access exists |
||
1409 | MemoryAccess *getArrayAccessOrNULLFor(const Instruction *Inst) const { |
||
1410 | auto It = InstructionToAccess.find(Inst); |
||
1411 | if (It == InstructionToAccess.end()) |
||
1412 | return nullptr; |
||
1413 | |||
1414 | MemoryAccess *ArrayAccess = nullptr; |
||
1415 | |||
1416 | for (auto Access : It->getSecond()) { |
||
1417 | if (!Access->isArrayKind()) |
||
1418 | continue; |
||
1419 | |||
1420 | assert(!ArrayAccess && "More then one array access for instruction"); |
||
1421 | |||
1422 | ArrayAccess = Access; |
||
1423 | } |
||
1424 | |||
1425 | return ArrayAccess; |
||
1426 | } |
||
1427 | |||
1428 | /// Return the only array access for @p Inst. |
||
1429 | /// |
||
1430 | /// @param Inst The instruction for which to look up the access. |
||
1431 | /// @returns The unique array memory access related to Inst. |
||
1432 | MemoryAccess &getArrayAccessFor(const Instruction *Inst) const { |
||
1433 | MemoryAccess *ArrayAccess = getArrayAccessOrNULLFor(Inst); |
||
1434 | |||
1435 | assert(ArrayAccess && "No array access found for instruction!"); |
||
1436 | return *ArrayAccess; |
||
1437 | } |
||
1438 | |||
1439 | /// Return the MemoryAccess that writes the value of an instruction |
||
1440 | /// defined in this statement, or nullptr if not existing, respectively |
||
1441 | /// not yet added. |
||
1442 | MemoryAccess *lookupValueWriteOf(Instruction *Inst) const { |
||
1443 | assert((isRegionStmt() && R->contains(Inst)) || |
||
1444 | (!isRegionStmt() && Inst->getParent() == BB)); |
||
1445 | return ValueWrites.lookup(Inst); |
||
1446 | } |
||
1447 | |||
1448 | /// Return the MemoryAccess that reloads a value, or nullptr if not |
||
1449 | /// existing, respectively not yet added. |
||
1450 | MemoryAccess *lookupValueReadOf(Value *Inst) const { |
||
1451 | return ValueReads.lookup(Inst); |
||
1452 | } |
||
1453 | |||
1454 | /// Return the MemoryAccess that loads a PHINode value, or nullptr if not |
||
1455 | /// existing, respectively not yet added. |
||
1456 | MemoryAccess *lookupPHIReadOf(PHINode *PHI) const { |
||
1457 | return PHIReads.lookup(PHI); |
||
1458 | } |
||
1459 | |||
1460 | /// Return the PHI write MemoryAccess for the incoming values from any |
||
1461 | /// basic block in this ScopStmt, or nullptr if not existing, |
||
1462 | /// respectively not yet added. |
||
1463 | MemoryAccess *lookupPHIWriteOf(PHINode *PHI) const { |
||
1464 | assert(isBlockStmt() || R->getExit() == PHI->getParent()); |
||
1465 | return PHIWrites.lookup(PHI); |
||
1466 | } |
||
1467 | |||
1468 | /// Return the input access of the value, or null if no such MemoryAccess |
||
1469 | /// exists. |
||
1470 | /// |
||
1471 | /// The input access is the MemoryAccess that makes an inter-statement value |
||
1472 | /// available in this statement by reading it at the start of this statement. |
||
1473 | /// This can be a MemoryKind::Value if defined in another statement or a |
||
1474 | /// MemoryKind::PHI if the value is a PHINode in this statement. |
||
1475 | MemoryAccess *lookupInputAccessOf(Value *Val) const { |
||
1476 | if (isa<PHINode>(Val)) |
||
1477 | if (auto InputMA = lookupPHIReadOf(cast<PHINode>(Val))) { |
||
1478 | assert(!lookupValueReadOf(Val) && "input accesses must be unique; a " |
||
1479 | "statement cannot read a .s2a and " |
||
1480 | ".phiops simultaneously"); |
||
1481 | return InputMA; |
||
1482 | } |
||
1483 | |||
1484 | if (auto *InputMA = lookupValueReadOf(Val)) |
||
1485 | return InputMA; |
||
1486 | |||
1487 | return nullptr; |
||
1488 | } |
||
1489 | |||
1490 | /// Add @p Access to this statement's list of accesses. |
||
1491 | /// |
||
1492 | /// @param Access The access to add. |
||
1493 | /// @param Prepend If true, will add @p Access before all other instructions |
||
1494 | /// (instead of appending it). |
||
1495 | void addAccess(MemoryAccess *Access, bool Preprend = false); |
||
1496 | |||
1497 | /// Remove a MemoryAccess from this statement. |
||
1498 | /// |
||
1499 | /// Note that scalar accesses that are caused by MA will |
||
1500 | /// be eliminated too. |
||
1501 | void removeMemoryAccess(MemoryAccess *MA); |
||
1502 | |||
1503 | /// Remove @p MA from this statement. |
||
1504 | /// |
||
1505 | /// In contrast to removeMemoryAccess(), no other access will be eliminated. |
||
1506 | /// |
||
1507 | /// @param MA The MemoryAccess to be removed. |
||
1508 | /// @param AfterHoisting If true, also remove from data access lists. |
||
1509 | /// These lists are filled during |
||
1510 | /// ScopBuilder::buildAccessRelations. Therefore, if this |
||
1511 | /// method is called before buildAccessRelations, false |
||
1512 | /// must be passed. |
||
1513 | void removeSingleMemoryAccess(MemoryAccess *MA, bool AfterHoisting = true); |
||
1514 | |||
1515 | using iterator = MemoryAccessVec::iterator; |
||
1516 | using const_iterator = MemoryAccessVec::const_iterator; |
||
1517 | |||
1518 | iterator begin() { return MemAccs.begin(); } |
||
1519 | iterator end() { return MemAccs.end(); } |
||
1520 | const_iterator begin() const { return MemAccs.begin(); } |
||
1521 | const_iterator end() const { return MemAccs.end(); } |
||
1522 | size_t size() const { return MemAccs.size(); } |
||
1523 | |||
1524 | unsigned getNumIterators() const; |
||
1525 | |||
1526 | Scop *getParent() { return &Parent; } |
||
1527 | const Scop *getParent() const { return &Parent; } |
||
1528 | |||
1529 | const std::vector<Instruction *> &getInstructions() const { |
||
1530 | return Instructions; |
||
1531 | } |
||
1532 | |||
1533 | /// Set the list of instructions for this statement. It replaces the current |
||
1534 | /// list. |
||
1535 | void setInstructions(ArrayRef<Instruction *> Range) { |
||
1536 | Instructions.assign(Range.begin(), Range.end()); |
||
1537 | } |
||
1538 | |||
1539 | std::vector<Instruction *>::const_iterator insts_begin() const { |
||
1540 | return Instructions.begin(); |
||
1541 | } |
||
1542 | |||
1543 | std::vector<Instruction *>::const_iterator insts_end() const { |
||
1544 | return Instructions.end(); |
||
1545 | } |
||
1546 | |||
1547 | /// The range of instructions in this statement. |
||
1548 | iterator_range<std::vector<Instruction *>::const_iterator> insts() const { |
||
1549 | return {insts_begin(), insts_end()}; |
||
1550 | } |
||
1551 | |||
1552 | /// Insert an instruction before all other instructions in this statement. |
||
1553 | void prependInstruction(Instruction *Inst) { |
||
1554 | Instructions.insert(Instructions.begin(), Inst); |
||
1555 | } |
||
1556 | |||
1557 | const char *getBaseName() const; |
||
1558 | |||
1559 | /// Set the isl AST build. |
||
1560 | void setAstBuild(isl::ast_build B) { Build = B; } |
||
1561 | |||
1562 | /// Get the isl AST build. |
||
1563 | isl::ast_build getAstBuild() const { return Build; } |
||
1564 | |||
1565 | /// Restrict the domain of the statement. |
||
1566 | /// |
||
1567 | /// @param NewDomain The new statement domain. |
||
1568 | void restrictDomain(isl::set NewDomain); |
||
1569 | |||
1570 | /// Get the loop for a dimension. |
||
1571 | /// |
||
1572 | /// @param Dimension The dimension of the induction variable |
||
1573 | /// @return The loop at a certain dimension. |
||
1574 | Loop *getLoopForDimension(unsigned Dimension) const; |
||
1575 | |||
1576 | /// Align the parameters in the statement to the scop context |
||
1577 | void realignParams(); |
||
1578 | |||
1579 | /// Print the ScopStmt. |
||
1580 | /// |
||
1581 | /// @param OS The output stream the ScopStmt is printed to. |
||
1582 | /// @param PrintInstructions Whether to print the statement's instructions as |
||
1583 | /// well. |
||
1584 | void print(raw_ostream &OS, bool PrintInstructions) const; |
||
1585 | |||
1586 | /// Print the instructions in ScopStmt. |
||
1587 | /// |
||
1588 | void printInstructions(raw_ostream &OS) const; |
||
1589 | |||
1590 | /// Check whether there is a value read access for @p V in this statement, and |
||
1591 | /// if not, create one. |
||
1592 | /// |
||
1593 | /// This allows to add MemoryAccesses after the initial creation of the Scop |
||
1594 | /// by ScopBuilder. |
||
1595 | /// |
||
1596 | /// @return The already existing or newly created MemoryKind::Value READ |
||
1597 | /// MemoryAccess. |
||
1598 | /// |
||
1599 | /// @see ScopBuilder::ensureValueRead(Value*,ScopStmt*) |
||
1600 | MemoryAccess *ensureValueRead(Value *V); |
||
1601 | |||
1602 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
1603 | /// Print the ScopStmt to stderr. |
||
1604 | void dump() const; |
||
1605 | #endif |
||
1606 | }; |
||
1607 | |||
1608 | /// Print ScopStmt S to raw_ostream OS. |
||
1609 | raw_ostream &operator<<(raw_ostream &OS, const ScopStmt &S); |
||
1610 | |||
1611 | /// Static Control Part |
||
1612 | /// |
||
1613 | /// A Scop is the polyhedral representation of a control flow region detected |
||
1614 | /// by the Scop detection. It is generated by translating the LLVM-IR and |
||
1615 | /// abstracting its effects. |
||
1616 | /// |
||
1617 | /// A Scop consists of a set of: |
||
1618 | /// |
||
1619 | /// * A set of statements executed in the Scop. |
||
1620 | /// |
||
1621 | /// * A set of global parameters |
||
1622 | /// Those parameters are scalar integer values, which are constant during |
||
1623 | /// execution. |
||
1624 | /// |
||
1625 | /// * A context |
||
1626 | /// This context contains information about the values the parameters |
||
1627 | /// can take and relations between different parameters. |
||
1628 | class Scop final { |
||
1629 | public: |
||
1630 | /// Type to represent a pair of minimal/maximal access to an array. |
||
1631 | using MinMaxAccessTy = std::pair<isl::pw_multi_aff, isl::pw_multi_aff>; |
||
1632 | |||
1633 | /// Vector of minimal/maximal accesses to different arrays. |
||
1634 | using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>; |
||
1635 | |||
1636 | /// Pair of minimal/maximal access vectors representing |
||
1637 | /// read write and read only accesses |
||
1638 | using MinMaxVectorPairTy = std::pair<MinMaxVectorTy, MinMaxVectorTy>; |
||
1639 | |||
1640 | /// Vector of pair of minimal/maximal access vectors representing |
||
1641 | /// non read only and read only accesses for each alias group. |
||
1642 | using MinMaxVectorPairVectorTy = SmallVector<MinMaxVectorPairTy, 4>; |
||
1643 | |||
1644 | private: |
||
1645 | friend class ScopBuilder; |
||
1646 | |||
1647 | /// Isl context. |
||
1648 | /// |
||
1649 | /// We need a shared_ptr with reference counter to delete the context when all |
||
1650 | /// isl objects are deleted. We will distribute the shared_ptr to all objects |
||
1651 | /// that use the context to create isl objects, and increase the reference |
||
1652 | /// counter. By doing this, we guarantee that the context is deleted when we |
||
1653 | /// delete the last object that creates isl objects with the context. This |
||
1654 | /// declaration needs to be the first in class to gracefully destroy all isl |
||
1655 | /// objects before the context. |
||
1656 | std::shared_ptr<isl_ctx> IslCtx; |
||
1657 | |||
1658 | ScalarEvolution *SE; |
||
1659 | DominatorTree *DT; |
||
1660 | |||
1661 | /// The underlying Region. |
||
1662 | Region &R; |
||
1663 | |||
1664 | /// The name of the SCoP (identical to the regions name) |
||
1665 | std::optional<std::string> name; |
||
1666 | |||
1667 | // Access functions of the SCoP. |
||
1668 | // |
||
1669 | // This owns all the MemoryAccess objects of the Scop created in this pass. |
||
1670 | AccFuncVector AccessFunctions; |
||
1671 | |||
1672 | /// Flag to indicate that the scheduler actually optimized the SCoP. |
||
1673 | bool IsOptimized = false; |
||
1674 | |||
1675 | /// True if the underlying region has a single exiting block. |
||
1676 | bool HasSingleExitEdge; |
||
1677 | |||
1678 | /// Flag to remember if the SCoP contained an error block or not. |
||
1679 | bool HasErrorBlock = false; |
||
1680 | |||
1681 | /// Max loop depth. |
||
1682 | unsigned MaxLoopDepth = 0; |
||
1683 | |||
1684 | /// Number of copy statements. |
||
1685 | unsigned CopyStmtsNum = 0; |
||
1686 | |||
1687 | /// Flag to indicate if the Scop is to be skipped. |
||
1688 | bool SkipScop = false; |
||
1689 | |||
1690 | using StmtSet = std::list<ScopStmt>; |
||
1691 | |||
1692 | /// The statements in this Scop. |
||
1693 | StmtSet Stmts; |
||
1694 | |||
1695 | /// Parameters of this Scop |
||
1696 | ParameterSetTy Parameters; |
||
1697 | |||
1698 | /// Mapping from parameters to their ids. |
||
1699 | DenseMap<const SCEV *, isl::id> ParameterIds; |
||
1700 | |||
1701 | /// The context of the SCoP created during SCoP detection. |
||
1702 | ScopDetection::DetectionContext &DC; |
||
1703 | |||
1704 | /// OptimizationRemarkEmitter object for displaying diagnostic remarks |
||
1705 | OptimizationRemarkEmitter &ORE; |
||
1706 | |||
1707 | /// A map from basic blocks to vector of SCoP statements. Currently this |
||
1708 | /// vector comprises only of a single statement. |
||
1709 | DenseMap<BasicBlock *, std::vector<ScopStmt *>> StmtMap; |
||
1710 | |||
1711 | /// A map from instructions to SCoP statements. |
||
1712 | DenseMap<Instruction *, ScopStmt *> InstStmtMap; |
||
1713 | |||
1714 | /// A map from basic blocks to their domains. |
||
1715 | DenseMap<BasicBlock *, isl::set> DomainMap; |
||
1716 | |||
1717 | /// Constraints on parameters. |
||
1718 | isl::set Context; |
||
1719 | |||
1720 | /// The affinator used to translate SCEVs to isl expressions. |
||
1721 | SCEVAffinator Affinator; |
||
1722 | |||
1723 | using ArrayInfoMapTy = |
||
1724 | std::map<std::pair<AssertingVH<const Value>, MemoryKind>, |
||
1725 | std::unique_ptr<ScopArrayInfo>>; |
||
1726 | |||
1727 | using ArrayNameMapTy = StringMap<std::unique_ptr<ScopArrayInfo>>; |
||
1728 | |||
1729 | using ArrayInfoSetTy = SetVector<ScopArrayInfo *>; |
||
1730 | |||
1731 | /// A map to remember ScopArrayInfo objects for all base pointers. |
||
1732 | /// |
||
1733 | /// As PHI nodes may have two array info objects associated, we add a flag |
||
1734 | /// that distinguishes between the PHI node specific ArrayInfo object |
||
1735 | /// and the normal one. |
||
1736 | ArrayInfoMapTy ScopArrayInfoMap; |
||
1737 | |||
1738 | /// A map to remember ScopArrayInfo objects for all names of memory |
||
1739 | /// references. |
||
1740 | ArrayNameMapTy ScopArrayNameMap; |
||
1741 | |||
1742 | /// A set to remember ScopArrayInfo objects. |
||
1743 | /// @see Scop::ScopArrayInfoMap |
||
1744 | ArrayInfoSetTy ScopArrayInfoSet; |
||
1745 | |||
1746 | /// The assumptions under which this scop was built. |
||
1747 | /// |
||
1748 | /// When constructing a scop sometimes the exact representation of a statement |
||
1749 | /// or condition would be very complex, but there is a common case which is a |
||
1750 | /// lot simpler, but which is only valid under certain assumptions. The |
||
1751 | /// assumed context records the assumptions taken during the construction of |
||
1752 | /// this scop and that need to be code generated as a run-time test. |
||
1753 | isl::set AssumedContext; |
||
1754 | |||
1755 | /// The restrictions under which this SCoP was built. |
||
1756 | /// |
||
1757 | /// The invalid context is similar to the assumed context as it contains |
||
1758 | /// constraints over the parameters. However, while we need the constraints |
||
1759 | /// in the assumed context to be "true" the constraints in the invalid context |
||
1760 | /// need to be "false". Otherwise they behave the same. |
||
1761 | isl::set InvalidContext; |
||
1762 | |||
1763 | /// The context under which the SCoP must have defined behavior. Optimizer and |
||
1764 | /// code generator can assume that the SCoP will only be executed with |
||
1765 | /// parameter values within this context. This might be either because we can |
||
1766 | /// prove that other values are impossible or explicitly have undefined |
||
1767 | /// behavior, such as due to no-wrap flags. If this becomes too complex, can |
||
1768 | /// also be nullptr. |
||
1769 | /// |
||
1770 | /// In contrast to Scop::AssumedContext and Scop::InvalidContext, these do not |
||
1771 | /// need to be checked at runtime. |
||
1772 | /// |
||
1773 | /// Scop::Context on the other side is an overapproximation and does not |
||
1774 | /// include all requirements, but is always defined. However, there is still |
||
1775 | /// no guarantee that there is no undefined behavior in |
||
1776 | /// DefinedBehaviorContext. |
||
1777 | isl::set DefinedBehaviorContext; |
||
1778 | |||
1779 | /// The schedule of the SCoP |
||
1780 | /// |
||
1781 | /// The schedule of the SCoP describes the execution order of the statements |
||
1782 | /// in the scop by assigning each statement instance a possibly |
||
1783 | /// multi-dimensional execution time. The schedule is stored as a tree of |
||
1784 | /// schedule nodes. |
||
1785 | /// |
||
1786 | /// The most common nodes in a schedule tree are so-called band nodes. Band |
||
1787 | /// nodes map statement instances into a multi dimensional schedule space. |
||
1788 | /// This space can be seen as a multi-dimensional clock. |
||
1789 | /// |
||
1790 | /// Example: |
||
1791 | /// |
||
1792 | /// <S,(5,4)> may be mapped to (5,4) by this schedule: |
||
1793 | /// |
||
1794 | /// s0 = i (Year of execution) |
||
1795 | /// s1 = j (Day of execution) |
||
1796 | /// |
||
1797 | /// or to (9, 20) by this schedule: |
||
1798 | /// |
||
1799 | /// s0 = i + j (Year of execution) |
||
1800 | /// s1 = 20 (Day of execution) |
||
1801 | /// |
||
1802 | /// The order statement instances are executed is defined by the |
||
1803 | /// schedule vectors they are mapped to. A statement instance |
||
1804 | /// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if |
||
1805 | /// the schedule vector of A is lexicographic smaller than the schedule |
||
1806 | /// vector of B. |
||
1807 | /// |
||
1808 | /// Besides band nodes, schedule trees contain additional nodes that specify |
||
1809 | /// a textual ordering between two subtrees or filter nodes that filter the |
||
1810 | /// set of statement instances that will be scheduled in a subtree. There |
||
1811 | /// are also several other nodes. A full description of the different nodes |
||
1812 | /// in a schedule tree is given in the isl manual. |
||
1813 | isl::schedule Schedule; |
||
1814 | |||
1815 | /// Is this Scop marked as not to be transformed by an optimization heuristic? |
||
1816 | bool HasDisableHeuristicsHint = false; |
||
1817 | |||
1818 | /// Whether the schedule has been modified after derived from the CFG by |
||
1819 | /// ScopBuilder. |
||
1820 | bool ScheduleModified = false; |
||
1821 | |||
1822 | /// The set of minimal/maximal accesses for each alias group. |
||
1823 | /// |
||
1824 | /// When building runtime alias checks we look at all memory instructions and |
||
1825 | /// build so called alias groups. Each group contains a set of accesses to |
||
1826 | /// different base arrays which might alias with each other. However, between |
||
1827 | /// alias groups there is no aliasing possible. |
||
1828 | /// |
||
1829 | /// In a program with int and float pointers annotated with tbaa information |
||
1830 | /// we would probably generate two alias groups, one for the int pointers and |
||
1831 | /// one for the float pointers. |
||
1832 | /// |
||
1833 | /// During code generation we will create a runtime alias check for each alias |
||
1834 | /// group to ensure the SCoP is executed in an alias free environment. |
||
1835 | MinMaxVectorPairVectorTy MinMaxAliasGroups; |
||
1836 | |||
1837 | /// Mapping from invariant loads to the representing invariant load of |
||
1838 | /// their equivalence class. |
||
1839 | ValueToValueMap InvEquivClassVMap; |
||
1840 | |||
1841 | /// List of invariant accesses. |
||
1842 | InvariantEquivClassesTy InvariantEquivClasses; |
||
1843 | |||
1844 | /// The smallest array index not yet assigned. |
||
1845 | long ArrayIdx = 0; |
||
1846 | |||
1847 | /// The smallest statement index not yet assigned. |
||
1848 | long StmtIdx = 0; |
||
1849 | |||
1850 | /// A number that uniquely represents a Scop within its function |
||
1851 | const int ID; |
||
1852 | |||
1853 | /// Map of values to the MemoryAccess that writes its definition. |
||
1854 | /// |
||
1855 | /// There must be at most one definition per llvm::Instruction in a SCoP. |
||
1856 | DenseMap<Value *, MemoryAccess *> ValueDefAccs; |
||
1857 | |||
1858 | /// Map of values to the MemoryAccess that reads a PHI. |
||
1859 | DenseMap<PHINode *, MemoryAccess *> PHIReadAccs; |
||
1860 | |||
1861 | /// List of all uses (i.e. read MemoryAccesses) for a MemoryKind::Value |
||
1862 | /// scalar. |
||
1863 | DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> ValueUseAccs; |
||
1864 | |||
1865 | /// List of all incoming values (write MemoryAccess) of a MemoryKind::PHI or |
||
1866 | /// MemoryKind::ExitPHI scalar. |
||
1867 | DenseMap<const ScopArrayInfo *, SmallVector<MemoryAccess *, 4>> |
||
1868 | PHIIncomingAccs; |
||
1869 | |||
1870 | /// Scop constructor; invoked from ScopBuilder::buildScop. |
||
1871 | Scop(Region &R, ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, |
||
1872 | ScopDetection::DetectionContext &DC, OptimizationRemarkEmitter &ORE, |
||
1873 | int ID); |
||
1874 | |||
1875 | //@} |
||
1876 | |||
1877 | /// Return the access for the base ptr of @p MA if any. |
||
1878 | MemoryAccess *lookupBasePtrAccess(MemoryAccess *MA); |
||
1879 | |||
1880 | /// Create an id for @p Param and store it in the ParameterIds map. |
||
1881 | void createParameterId(const SCEV *Param); |
||
1882 | |||
1883 | /// Build the Context of the Scop. |
||
1884 | void buildContext(); |
||
1885 | |||
1886 | /// Add the bounds of the parameters to the context. |
||
1887 | void addParameterBounds(); |
||
1888 | |||
1889 | /// Simplify the assumed and invalid context. |
||
1890 | void simplifyContexts(); |
||
1891 | |||
1892 | /// Create a new SCoP statement for @p BB. |
||
1893 | /// |
||
1894 | /// A new statement for @p BB will be created and added to the statement |
||
1895 | /// vector |
||
1896 | /// and map. |
||
1897 | /// |
||
1898 | /// @param BB The basic block we build the statement for. |
||
1899 | /// @param Name The name of the new statement. |
||
1900 | /// @param SurroundingLoop The loop the created statement is contained in. |
||
1901 | /// @param Instructions The instructions in the statement. |
||
1902 | void addScopStmt(BasicBlock *BB, StringRef Name, Loop *SurroundingLoop, |
||
1903 | std::vector<Instruction *> Instructions); |
||
1904 | |||
1905 | /// Create a new SCoP statement for @p R. |
||
1906 | /// |
||
1907 | /// A new statement for @p R will be created and added to the statement vector |
||
1908 | /// and map. |
||
1909 | /// |
||
1910 | /// @param R The region we build the statement for. |
||
1911 | /// @param Name The name of the new statement. |
||
1912 | /// @param SurroundingLoop The loop the created statement is contained |
||
1913 | /// in. |
||
1914 | /// @param EntryBlockInstructions The (interesting) instructions in the |
||
1915 | /// entry block of the region statement. |
||
1916 | void addScopStmt(Region *R, StringRef Name, Loop *SurroundingLoop, |
||
1917 | std::vector<Instruction *> EntryBlockInstructions); |
||
1918 | |||
1919 | /// Removes @p Stmt from the StmtMap. |
||
1920 | void removeFromStmtMap(ScopStmt &Stmt); |
||
1921 | |||
1922 | /// Removes all statements where the entry block of the statement does not |
||
1923 | /// have a corresponding domain in the domain map (or it is empty). |
||
1924 | void removeStmtNotInDomainMap(); |
||
1925 | |||
1926 | /// Collect all memory access relations of a given type. |
||
1927 | /// |
||
1928 | /// @param Predicate A predicate function that returns true if an access is |
||
1929 | /// of a given type. |
||
1930 | /// |
||
1931 | /// @returns The set of memory accesses in the scop that match the predicate. |
||
1932 | isl::union_map |
||
1933 | getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate); |
||
1934 | |||
1935 | /// @name Helper functions for printing the Scop. |
||
1936 | /// |
||
1937 | //@{ |
||
1938 | void printContext(raw_ostream &OS) const; |
||
1939 | void printArrayInfo(raw_ostream &OS) const; |
||
1940 | void printStatements(raw_ostream &OS, bool PrintInstructions) const; |
||
1941 | void printAliasAssumptions(raw_ostream &OS) const; |
||
1942 | //@} |
||
1943 | |||
1944 | public: |
||
1945 | Scop(const Scop &) = delete; |
||
1946 | Scop &operator=(const Scop &) = delete; |
||
1947 | ~Scop(); |
||
1948 | |||
1949 | /// Increment actual number of aliasing assumptions taken |
||
1950 | /// |
||
1951 | /// @param Step Number of new aliasing assumptions which should be added to |
||
1952 | /// the number of already taken assumptions. |
||
1953 | static void incrementNumberOfAliasingAssumptions(unsigned Step); |
||
1954 | |||
1955 | /// Get the count of copy statements added to this Scop. |
||
1956 | /// |
||
1957 | /// @return The count of copy statements added to this Scop. |
||
1958 | unsigned getCopyStmtsNum() { return CopyStmtsNum; } |
||
1959 | |||
1960 | /// Create a new copy statement. |
||
1961 | /// |
||
1962 | /// A new statement will be created and added to the statement vector. |
||
1963 | /// |
||
1964 | /// @param SourceRel The source location. |
||
1965 | /// @param TargetRel The target location. |
||
1966 | /// @param Domain The original domain under which the copy statement would |
||
1967 | /// be executed. |
||
1968 | ScopStmt *addScopStmt(isl::map SourceRel, isl::map TargetRel, |
||
1969 | isl::set Domain); |
||
1970 | |||
1971 | /// Add the access function to all MemoryAccess objects of the Scop |
||
1972 | /// created in this pass. |
||
1973 | void addAccessFunction(MemoryAccess *Access) { |
||
1974 | AccessFunctions.emplace_back(Access); |
||
1975 | |||
1976 | // Register value definitions. |
||
1977 | if (Access->isWrite() && Access->isOriginalValueKind()) { |
||
1978 | assert(!ValueDefAccs.count(Access->getAccessValue()) && |
||
1979 | "there can be just one definition per value"); |
||
1980 | ValueDefAccs[Access->getAccessValue()] = Access; |
||
1981 | } else if (Access->isRead() && Access->isOriginalPHIKind()) { |
||
1982 | PHINode *PHI = cast<PHINode>(Access->getAccessInstruction()); |
||
1983 | assert(!PHIReadAccs.count(PHI) && |
||
1984 | "there can be just one PHI read per PHINode"); |
||
1985 | PHIReadAccs[PHI] = Access; |
||
1986 | } |
||
1987 | } |
||
1988 | |||
1989 | /// Add metadata for @p Access. |
||
1990 | void addAccessData(MemoryAccess *Access); |
||
1991 | |||
1992 | /// Add new invariant access equivalence class |
||
1993 | void |
||
1994 | addInvariantEquivClass(const InvariantEquivClassTy &InvariantEquivClass) { |
||
1995 | InvariantEquivClasses.emplace_back(InvariantEquivClass); |
||
1996 | } |
||
1997 | |||
1998 | /// Add mapping from invariant loads to the representing invariant load of |
||
1999 | /// their equivalence class. |
||
2000 | void addInvariantLoadMapping(const Value *LoadInst, Value *ClassRep) { |
||
2001 | InvEquivClassVMap[LoadInst] = ClassRep; |
||
2002 | } |
||
2003 | |||
2004 | /// Remove the metadata stored for @p Access. |
||
2005 | void removeAccessData(MemoryAccess *Access); |
||
2006 | |||
2007 | /// Return the scalar evolution. |
||
2008 | ScalarEvolution *getSE() const; |
||
2009 | |||
2010 | /// Return the dominator tree. |
||
2011 | DominatorTree *getDT() const { return DT; } |
||
2012 | |||
2013 | /// Return the LoopInfo used for this Scop. |
||
2014 | LoopInfo *getLI() const { return Affinator.getLI(); } |
||
2015 | |||
2016 | /// Get the count of parameters used in this Scop. |
||
2017 | /// |
||
2018 | /// @return The count of parameters used in this Scop. |
||
2019 | size_t getNumParams() const { return Parameters.size(); } |
||
2020 | |||
2021 | /// Return whether given SCEV is used as the parameter in this Scop. |
||
2022 | bool isParam(const SCEV *Param) const { return Parameters.count(Param); } |
||
2023 | |||
2024 | /// Take a list of parameters and add the new ones to the scop. |
||
2025 | void addParams(const ParameterSetTy &NewParameters); |
||
2026 | |||
2027 | /// Return an iterator range containing the scop parameters. |
||
2028 | iterator_range<ParameterSetTy::iterator> parameters() const { |
||
2029 | return make_range(Parameters.begin(), Parameters.end()); |
||
2030 | } |
||
2031 | |||
2032 | /// Return an iterator range containing invariant accesses. |
||
2033 | iterator_range<InvariantEquivClassesTy::iterator> invariantEquivClasses() { |
||
2034 | return make_range(InvariantEquivClasses.begin(), |
||
2035 | InvariantEquivClasses.end()); |
||
2036 | } |
||
2037 | |||
2038 | /// Return an iterator range containing all the MemoryAccess objects of the |
||
2039 | /// Scop. |
||
2040 | iterator_range<AccFuncVector::iterator> access_functions() { |
||
2041 | return make_range(AccessFunctions.begin(), AccessFunctions.end()); |
||
2042 | } |
||
2043 | |||
2044 | /// Return whether this scop is empty, i.e. contains no statements that |
||
2045 | /// could be executed. |
||
2046 | bool isEmpty() const { return Stmts.empty(); } |
||
2047 | |||
2048 | StringRef getName() { |
||
2049 | if (!name) |
||
2050 | name = R.getNameStr(); |
||
2051 | return *name; |
||
2052 | } |
||
2053 | |||
2054 | using array_iterator = ArrayInfoSetTy::iterator; |
||
2055 | using const_array_iterator = ArrayInfoSetTy::const_iterator; |
||
2056 | using array_range = iterator_range<ArrayInfoSetTy::iterator>; |
||
2057 | using const_array_range = iterator_range<ArrayInfoSetTy::const_iterator>; |
||
2058 | |||
2059 | inline array_iterator array_begin() { return ScopArrayInfoSet.begin(); } |
||
2060 | |||
2061 | inline array_iterator array_end() { return ScopArrayInfoSet.end(); } |
||
2062 | |||
2063 | inline const_array_iterator array_begin() const { |
||
2064 | return ScopArrayInfoSet.begin(); |
||
2065 | } |
||
2066 | |||
2067 | inline const_array_iterator array_end() const { |
||
2068 | return ScopArrayInfoSet.end(); |
||
2069 | } |
||
2070 | |||
2071 | inline array_range arrays() { |
||
2072 | return array_range(array_begin(), array_end()); |
||
2073 | } |
||
2074 | |||
2075 | inline const_array_range arrays() const { |
||
2076 | return const_array_range(array_begin(), array_end()); |
||
2077 | } |
||
2078 | |||
2079 | /// Return the isl_id that represents a certain parameter. |
||
2080 | /// |
||
2081 | /// @param Parameter A SCEV that was recognized as a Parameter. |
||
2082 | /// |
||
2083 | /// @return The corresponding isl_id or NULL otherwise. |
||
2084 | isl::id getIdForParam(const SCEV *Parameter) const; |
||
2085 | |||
2086 | /// Get the maximum region of this static control part. |
||
2087 | /// |
||
2088 | /// @return The maximum region of this static control part. |
||
2089 | inline const Region &getRegion() const { return R; } |
||
2090 | inline Region &getRegion() { return R; } |
||
2091 | |||
2092 | /// Return the function this SCoP is in. |
||
2093 | Function &getFunction() const { return *R.getEntry()->getParent(); } |
||
2094 | |||
2095 | /// Check if @p L is contained in the SCoP. |
||
2096 | bool contains(const Loop *L) const { return R.contains(L); } |
||
2097 | |||
2098 | /// Check if @p BB is contained in the SCoP. |
||
2099 | bool contains(const BasicBlock *BB) const { return R.contains(BB); } |
||
2100 | |||
2101 | /// Check if @p I is contained in the SCoP. |
||
2102 | bool contains(const Instruction *I) const { return R.contains(I); } |
||
2103 | |||
2104 | /// Return the unique exit block of the SCoP. |
||
2105 | BasicBlock *getExit() const { return R.getExit(); } |
||
2106 | |||
2107 | /// Return the unique exiting block of the SCoP if any. |
||
2108 | BasicBlock *getExitingBlock() const { return R.getExitingBlock(); } |
||
2109 | |||
2110 | /// Return the unique entry block of the SCoP. |
||
2111 | BasicBlock *getEntry() const { return R.getEntry(); } |
||
2112 | |||
2113 | /// Return the unique entering block of the SCoP if any. |
||
2114 | BasicBlock *getEnteringBlock() const { return R.getEnteringBlock(); } |
||
2115 | |||
2116 | /// Return true if @p BB is the exit block of the SCoP. |
||
2117 | bool isExit(BasicBlock *BB) const { return getExit() == BB; } |
||
2118 | |||
2119 | /// Return a range of all basic blocks in the SCoP. |
||
2120 | Region::block_range blocks() const { return R.blocks(); } |
||
2121 | |||
2122 | /// Return true if and only if @p BB dominates the SCoP. |
||
2123 | bool isDominatedBy(const DominatorTree &DT, BasicBlock *BB) const; |
||
2124 | |||
2125 | /// Get the maximum depth of the loop. |
||
2126 | /// |
||
2127 | /// @return The maximum depth of the loop. |
||
2128 | inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; } |
||
2129 | |||
2130 | /// Return the invariant equivalence class for @p Val if any. |
||
2131 | InvariantEquivClassTy *lookupInvariantEquivClass(Value *Val); |
||
2132 | |||
2133 | /// Return the set of invariant accesses. |
||
2134 | InvariantEquivClassesTy &getInvariantAccesses() { |
||
2135 | return InvariantEquivClasses; |
||
2136 | } |
||
2137 | |||
2138 | /// Check if the scop has any invariant access. |
||
2139 | bool hasInvariantAccesses() { return !InvariantEquivClasses.empty(); } |
||
2140 | |||
2141 | /// Mark the SCoP as optimized by the scheduler. |
||
2142 | void markAsOptimized() { IsOptimized = true; } |
||
2143 | |||
2144 | /// Check if the SCoP has been optimized by the scheduler. |
||
2145 | bool isOptimized() const { return IsOptimized; } |
||
2146 | |||
2147 | /// Mark the SCoP to be skipped by ScopPass passes. |
||
2148 | void markAsToBeSkipped() { SkipScop = true; } |
||
2149 | |||
2150 | /// Check if the SCoP is to be skipped by ScopPass passes. |
||
2151 | bool isToBeSkipped() const { return SkipScop; } |
||
2152 | |||
2153 | /// Return the ID of the Scop |
||
2154 | int getID() const { return ID; } |
||
2155 | |||
2156 | /// Get the name of the entry and exit blocks of this Scop. |
||
2157 | /// |
||
2158 | /// These along with the function name can uniquely identify a Scop. |
||
2159 | /// |
||
2160 | /// @return std::pair whose first element is the entry name & second element |
||
2161 | /// is the exit name. |
||
2162 | std::pair<std::string, std::string> getEntryExitStr() const; |
||
2163 | |||
2164 | /// Get the name of this Scop. |
||
2165 | std::string getNameStr() const; |
||
2166 | |||
2167 | /// Get the constraint on parameter of this Scop. |
||
2168 | /// |
||
2169 | /// @return The constraint on parameter of this Scop. |
||
2170 | isl::set getContext() const; |
||
2171 | |||
2172 | /// Return the context where execution behavior is defined. Might return |
||
2173 | /// nullptr. |
||
2174 | isl::set getDefinedBehaviorContext() const { return DefinedBehaviorContext; } |
||
2175 | |||
2176 | /// Return the define behavior context, or if not available, its approximation |
||
2177 | /// from all other contexts. |
||
2178 | isl::set getBestKnownDefinedBehaviorContext() const { |
||
2179 | if (!DefinedBehaviorContext.is_null()) |
||
2180 | return DefinedBehaviorContext; |
||
2181 | |||
2182 | return Context.intersect_params(AssumedContext).subtract(InvalidContext); |
||
2183 | } |
||
2184 | |||
2185 | /// Return space of isl context parameters. |
||
2186 | /// |
||
2187 | /// Returns the set of context parameters that are currently constrained. In |
||
2188 | /// case the full set of parameters is needed, see @getFullParamSpace. |
||
2189 | isl::space getParamSpace() const; |
||
2190 | |||
2191 | /// Return the full space of parameters. |
||
2192 | /// |
||
2193 | /// getParamSpace will only return the parameters of the context that are |
||
2194 | /// actually constrained, whereas getFullParamSpace will return all |
||
2195 | // parameters. This is useful in cases, where we need to ensure all |
||
2196 | // parameters are available, as certain isl functions will abort if this is |
||
2197 | // not the case. |
||
2198 | isl::space getFullParamSpace() const; |
||
2199 | |||
2200 | /// Get the assumed context for this Scop. |
||
2201 | /// |
||
2202 | /// @return The assumed context of this Scop. |
||
2203 | isl::set getAssumedContext() const; |
||
2204 | |||
2205 | /// Return true if the optimized SCoP can be executed. |
||
2206 | /// |
||
2207 | /// In addition to the runtime check context this will also utilize the domain |
||
2208 | /// constraints to decide it the optimized version can actually be executed. |
||
2209 | /// |
||
2210 | /// @returns True if the optimized SCoP can be executed. |
||
2211 | bool hasFeasibleRuntimeContext() const; |
||
2212 | |||
2213 | /// Check if the assumption in @p Set is trivial or not. |
||
2214 | /// |
||
2215 | /// @param Set The relations between parameters that are assumed to hold. |
||
2216 | /// @param Sign Enum to indicate if the assumptions in @p Set are positive |
||
2217 | /// (needed/assumptions) or negative (invalid/restrictions). |
||
2218 | /// |
||
2219 | /// @returns True if the assumption @p Set is not trivial. |
||
2220 | bool isEffectiveAssumption(isl::set Set, AssumptionSign Sign); |
||
2221 | |||
2222 | /// Track and report an assumption. |
||
2223 | /// |
||
2224 | /// Use 'clang -Rpass-analysis=polly-scops' or 'opt |
||
2225 | /// -pass-remarks-analysis=polly-scops' to output the assumptions. |
||
2226 | /// |
||
2227 | /// @param Kind The assumption kind describing the underlying cause. |
||
2228 | /// @param Set The relations between parameters that are assumed to hold. |
||
2229 | /// @param Loc The location in the source that caused this assumption. |
||
2230 | /// @param Sign Enum to indicate if the assumptions in @p Set are positive |
||
2231 | /// (needed/assumptions) or negative (invalid/restrictions). |
||
2232 | /// @param BB The block in which this assumption was taken. Used to |
||
2233 | /// calculate hotness when emitting remark. |
||
2234 | /// |
||
2235 | /// @returns True if the assumption is not trivial. |
||
2236 | bool trackAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc, |
||
2237 | AssumptionSign Sign, BasicBlock *BB); |
||
2238 | |||
2239 | /// Add the conditions from @p Set (or subtract them if @p Sign is |
||
2240 | /// AS_RESTRICTION) to the defined behaviour context. |
||
2241 | void intersectDefinedBehavior(isl::set Set, AssumptionSign Sign); |
||
2242 | |||
2243 | /// Add assumptions to assumed context. |
||
2244 | /// |
||
2245 | /// The assumptions added will be assumed to hold during the execution of the |
||
2246 | /// scop. However, as they are generally not statically provable, at code |
||
2247 | /// generation time run-time checks will be generated that ensure the |
||
2248 | /// assumptions hold. |
||
2249 | /// |
||
2250 | /// WARNING: We currently exploit in simplifyAssumedContext the knowledge |
||
2251 | /// that assumptions do not change the set of statement instances |
||
2252 | /// executed. |
||
2253 | /// |
||
2254 | /// @param Kind The assumption kind describing the underlying cause. |
||
2255 | /// @param Set The relations between parameters that are assumed to hold. |
||
2256 | /// @param Loc The location in the source that caused this assumption. |
||
2257 | /// @param Sign Enum to indicate if the assumptions in @p Set are positive |
||
2258 | /// (needed/assumptions) or negative (invalid/restrictions). |
||
2259 | /// @param BB The block in which this assumption was taken. Used to |
||
2260 | /// calculate hotness when emitting remark. |
||
2261 | /// @param RTC Does the assumption require a runtime check? |
||
2262 | void addAssumption(AssumptionKind Kind, isl::set Set, DebugLoc Loc, |
||
2263 | AssumptionSign Sign, BasicBlock *BB, bool RTC = true); |
||
2264 | |||
2265 | /// Mark the scop as invalid. |
||
2266 | /// |
||
2267 | /// This method adds an assumption to the scop that is always invalid. As a |
||
2268 | /// result, the scop will not be optimized later on. This function is commonly |
||
2269 | /// called when a condition makes it impossible (or too compile time |
||
2270 | /// expensive) to process this scop any further. |
||
2271 | /// |
||
2272 | /// @param Kind The assumption kind describing the underlying cause. |
||
2273 | /// @param Loc The location in the source that triggered . |
||
2274 | /// @param BB The BasicBlock where it was triggered. |
||
2275 | void invalidate(AssumptionKind Kind, DebugLoc Loc, BasicBlock *BB = nullptr); |
||
2276 | |||
2277 | /// Get the invalid context for this Scop. |
||
2278 | /// |
||
2279 | /// @return The invalid context of this Scop. |
||
2280 | isl::set getInvalidContext() const; |
||
2281 | |||
2282 | /// Return true if and only if the InvalidContext is trivial (=empty). |
||
2283 | bool hasTrivialInvalidContext() const { return InvalidContext.is_empty(); } |
||
2284 | |||
2285 | /// Return all alias groups for this SCoP. |
||
2286 | const MinMaxVectorPairVectorTy &getAliasGroups() const { |
||
2287 | return MinMaxAliasGroups; |
||
2288 | } |
||
2289 | |||
2290 | void addAliasGroup(MinMaxVectorTy &MinMaxAccessesReadWrite, |
||
2291 | MinMaxVectorTy &MinMaxAccessesReadOnly) { |
||
2292 | MinMaxAliasGroups.emplace_back(); |
||
2293 | MinMaxAliasGroups.back().first = MinMaxAccessesReadWrite; |
||
2294 | MinMaxAliasGroups.back().second = MinMaxAccessesReadOnly; |
||
2295 | } |
||
2296 | |||
2297 | /// Remove statements from the list of scop statements. |
||
2298 | /// |
||
2299 | /// @param ShouldDelete A function that returns true if the statement passed |
||
2300 | /// to it should be deleted. |
||
2301 | /// @param AfterHoisting If true, also remove from data access lists. |
||
2302 | /// These lists are filled during |
||
2303 | /// ScopBuilder::buildAccessRelations. Therefore, if this |
||
2304 | /// method is called before buildAccessRelations, false |
||
2305 | /// must be passed. |
||
2306 | void removeStmts(function_ref<bool(ScopStmt &)> ShouldDelete, |
||
2307 | bool AfterHoisting = true); |
||
2308 | |||
2309 | /// Get an isl string representing the context. |
||
2310 | std::string getContextStr() const; |
||
2311 | |||
2312 | /// Get an isl string representing the assumed context. |
||
2313 | std::string getAssumedContextStr() const; |
||
2314 | |||
2315 | /// Get an isl string representing the invalid context. |
||
2316 | std::string getInvalidContextStr() const; |
||
2317 | |||
2318 | /// Return the list of ScopStmts that represent the given @p BB. |
||
2319 | ArrayRef<ScopStmt *> getStmtListFor(BasicBlock *BB) const; |
||
2320 | |||
2321 | /// Get the statement to put a PHI WRITE into. |
||
2322 | /// |
||
2323 | /// @param U The operand of a PHINode. |
||
2324 | ScopStmt *getIncomingStmtFor(const Use &U) const; |
||
2325 | |||
2326 | /// Return the last statement representing @p BB. |
||
2327 | /// |
||
2328 | /// Of the sequence of statements that represent a @p BB, this is the last one |
||
2329 | /// to be executed. It is typically used to determine which instruction to add |
||
2330 | /// a MemoryKind::PHI WRITE to. For this purpose, it is not strictly required |
||
2331 | /// to be executed last, only that the incoming value is available in it. |
||
2332 | ScopStmt *getLastStmtFor(BasicBlock *BB) const; |
||
2333 | |||
2334 | /// Return the ScopStmts that represents the Region @p R, or nullptr if |
||
2335 | /// it is not represented by any statement in this Scop. |
||
2336 | ArrayRef<ScopStmt *> getStmtListFor(Region *R) const; |
||
2337 | |||
2338 | /// Return the ScopStmts that represents @p RN; can return nullptr if |
||
2339 | /// the RegionNode is not within the SCoP or has been removed due to |
||
2340 | /// simplifications. |
||
2341 | ArrayRef<ScopStmt *> getStmtListFor(RegionNode *RN) const; |
||
2342 | |||
2343 | /// Return the ScopStmt an instruction belongs to, or nullptr if it |
||
2344 | /// does not belong to any statement in this Scop. |
||
2345 | ScopStmt *getStmtFor(Instruction *Inst) const { |
||
2346 | return InstStmtMap.lookup(Inst); |
||
2347 | } |
||
2348 | |||
2349 | /// Return the number of statements in the SCoP. |
||
2350 | size_t getSize() const { return Stmts.size(); } |
||
2351 | |||
2352 | /// @name Statements Iterators |
||
2353 | /// |
||
2354 | /// These iterators iterate over all statements of this Scop. |
||
2355 | //@{ |
||
2356 | using iterator = StmtSet::iterator; |
||
2357 | using const_iterator = StmtSet::const_iterator; |
||
2358 | |||
2359 | iterator begin() { return Stmts.begin(); } |
||
2360 | iterator end() { return Stmts.end(); } |
||
2361 | const_iterator begin() const { return Stmts.begin(); } |
||
2362 | const_iterator end() const { return Stmts.end(); } |
||
2363 | |||
2364 | using reverse_iterator = StmtSet::reverse_iterator; |
||
2365 | using const_reverse_iterator = StmtSet::const_reverse_iterator; |
||
2366 | |||
2367 | reverse_iterator rbegin() { return Stmts.rbegin(); } |
||
2368 | reverse_iterator rend() { return Stmts.rend(); } |
||
2369 | const_reverse_iterator rbegin() const { return Stmts.rbegin(); } |
||
2370 | const_reverse_iterator rend() const { return Stmts.rend(); } |
||
2371 | //@} |
||
2372 | |||
2373 | /// Return the set of required invariant loads. |
||
2374 | const InvariantLoadsSetTy &getRequiredInvariantLoads() const { |
||
2375 | return DC.RequiredILS; |
||
2376 | } |
||
2377 | |||
2378 | /// Add @p LI to the set of required invariant loads. |
||
2379 | void addRequiredInvariantLoad(LoadInst *LI) { DC.RequiredILS.insert(LI); } |
||
2380 | |||
2381 | /// Return the set of boxed (thus overapproximated) loops. |
||
2382 | const BoxedLoopsSetTy &getBoxedLoops() const { return DC.BoxedLoopsSet; } |
||
2383 | |||
2384 | /// Return true if and only if @p R is a non-affine subregion. |
||
2385 | bool isNonAffineSubRegion(const Region *R) { |
||
2386 | return DC.NonAffineSubRegionSet.count(R); |
||
2387 | } |
||
2388 | |||
2389 | const MapInsnToMemAcc &getInsnToMemAccMap() const { return DC.InsnToMemAcc; } |
||
2390 | |||
2391 | /// Return the (possibly new) ScopArrayInfo object for @p Access. |
||
2392 | /// |
||
2393 | /// @param ElementType The type of the elements stored in this array. |
||
2394 | /// @param Kind The kind of the array info object. |
||
2395 | /// @param BaseName The optional name of this memory reference. |
||
2396 | ScopArrayInfo *getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType, |
||
2397 | ArrayRef<const SCEV *> Sizes, |
||
2398 | MemoryKind Kind, |
||
2399 | const char *BaseName = nullptr); |
||
2400 | |||
2401 | /// Create an array and return the corresponding ScopArrayInfo object. |
||
2402 | /// |
||
2403 | /// @param ElementType The type of the elements stored in this array. |
||
2404 | /// @param BaseName The name of this memory reference. |
||
2405 | /// @param Sizes The sizes of dimensions. |
||
2406 | ScopArrayInfo *createScopArrayInfo(Type *ElementType, |
||
2407 | const std::string &BaseName, |
||
2408 | const std::vector<unsigned> &Sizes); |
||
2409 | |||
2410 | /// Return the cached ScopArrayInfo object for @p BasePtr. |
||
2411 | /// |
||
2412 | /// @param BasePtr The base pointer the object has been stored for. |
||
2413 | /// @param Kind The kind of array info object. |
||
2414 | /// |
||
2415 | /// @returns The ScopArrayInfo pointer or NULL if no such pointer is |
||
2416 | /// available. |
||
2417 | ScopArrayInfo *getScopArrayInfoOrNull(Value *BasePtr, MemoryKind Kind); |
||
2418 | |||
2419 | /// Return the cached ScopArrayInfo object for @p BasePtr. |
||
2420 | /// |
||
2421 | /// @param BasePtr The base pointer the object has been stored for. |
||
2422 | /// @param Kind The kind of array info object. |
||
2423 | /// |
||
2424 | /// @returns The ScopArrayInfo pointer (may assert if no such pointer is |
||
2425 | /// available). |
||
2426 | ScopArrayInfo *getScopArrayInfo(Value *BasePtr, MemoryKind Kind); |
||
2427 | |||
2428 | /// Invalidate ScopArrayInfo object for base address. |
||
2429 | /// |
||
2430 | /// @param BasePtr The base pointer of the ScopArrayInfo object to invalidate. |
||
2431 | /// @param Kind The Kind of the ScopArrayInfo object. |
||
2432 | void invalidateScopArrayInfo(Value *BasePtr, MemoryKind Kind) { |
||
2433 | auto It = ScopArrayInfoMap.find(std::make_pair(BasePtr, Kind)); |
||
2434 | if (It == ScopArrayInfoMap.end()) |
||
2435 | return; |
||
2436 | ScopArrayInfoSet.remove(It->second.get()); |
||
2437 | ScopArrayInfoMap.erase(It); |
||
2438 | } |
||
2439 | |||
2440 | /// Set new isl context. |
||
2441 | void setContext(isl::set NewContext); |
||
2442 | |||
2443 | /// Update maximal loop depth. If @p Depth is smaller than current value, |
||
2444 | /// then maximal loop depth is not updated. |
||
2445 | void updateMaxLoopDepth(unsigned Depth) { |
||
2446 | MaxLoopDepth = std::max(MaxLoopDepth, Depth); |
||
2447 | } |
||
2448 | |||
2449 | /// Align the parameters in the statement to the scop context |
||
2450 | void realignParams(); |
||
2451 | |||
2452 | /// Return true if this SCoP can be profitably optimized. |
||
2453 | /// |
||
2454 | /// @param ScalarsAreUnprofitable Never consider statements with scalar writes |
||
2455 | /// as profitably optimizable. |
||
2456 | /// |
||
2457 | /// @return Whether this SCoP can be profitably optimized. |
||
2458 | bool isProfitable(bool ScalarsAreUnprofitable) const; |
||
2459 | |||
2460 | /// Return true if the SCoP contained at least one error block. |
||
2461 | bool hasErrorBlock() const { return HasErrorBlock; } |
||
2462 | |||
2463 | /// Notify SCoP that it contains an error block |
||
2464 | void notifyErrorBlock() { HasErrorBlock = true; } |
||
2465 | |||
2466 | /// Return true if the underlying region has a single exiting block. |
||
2467 | bool hasSingleExitEdge() const { return HasSingleExitEdge; } |
||
2468 | |||
2469 | /// Print the static control part. |
||
2470 | /// |
||
2471 | /// @param OS The output stream the static control part is printed to. |
||
2472 | /// @param PrintInstructions Whether to print the statement's instructions as |
||
2473 | /// well. |
||
2474 | void print(raw_ostream &OS, bool PrintInstructions) const; |
||
2475 | |||
2476 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
2477 | /// Print the ScopStmt to stderr. |
||
2478 | void dump() const; |
||
2479 | #endif |
||
2480 | |||
2481 | /// Get the isl context of this static control part. |
||
2482 | /// |
||
2483 | /// @return The isl context of this static control part. |
||
2484 | isl::ctx getIslCtx() const; |
||
2485 | |||
2486 | /// Directly return the shared_ptr of the context. |
||
2487 | const std::shared_ptr<isl_ctx> &getSharedIslCtx() const { return IslCtx; } |
||
2488 | |||
2489 | /// Compute the isl representation for the SCEV @p E |
||
2490 | /// |
||
2491 | /// @param E The SCEV that should be translated. |
||
2492 | /// @param BB An (optional) basic block in which the isl_pw_aff is computed. |
||
2493 | /// SCEVs known to not reference any loops in the SCoP can be |
||
2494 | /// passed without a @p BB. |
||
2495 | /// @param NonNegative Flag to indicate the @p E has to be non-negative. |
||
2496 | /// |
||
2497 | /// Note that this function will always return a valid isl_pw_aff. However, if |
||
2498 | /// the translation of @p E was deemed to complex the SCoP is invalidated and |
||
2499 | /// a dummy value of appropriate dimension is returned. This allows to bail |
||
2500 | /// for complex cases without "error handling code" needed on the users side. |
||
2501 | PWACtx getPwAff(const SCEV *E, BasicBlock *BB = nullptr, |
||
2502 | bool NonNegative = false, |
||
2503 | RecordedAssumptionsTy *RecordedAssumptions = nullptr); |
||
2504 | |||
2505 | /// Compute the isl representation for the SCEV @p E |
||
2506 | /// |
||
2507 | /// This function is like @see Scop::getPwAff() but strips away the invalid |
||
2508 | /// domain part associated with the piecewise affine function. |
||
2509 | isl::pw_aff |
||
2510 | getPwAffOnly(const SCEV *E, BasicBlock *BB = nullptr, |
||
2511 | RecordedAssumptionsTy *RecordedAssumptions = nullptr); |
||
2512 | |||
2513 | /// Check if an <nsw> AddRec for the loop L is cached. |
||
2514 | bool hasNSWAddRecForLoop(Loop *L) { return Affinator.hasNSWAddRecForLoop(L); } |
||
2515 | |||
2516 | /// Return the domain of @p Stmt. |
||
2517 | /// |
||
2518 | /// @param Stmt The statement for which the conditions should be returned. |
||
2519 | isl::set getDomainConditions(const ScopStmt *Stmt) const; |
||
2520 | |||
2521 | /// Return the domain of @p BB. |
||
2522 | /// |
||
2523 | /// @param BB The block for which the conditions should be returned. |
||
2524 | isl::set getDomainConditions(BasicBlock *BB) const; |
||
2525 | |||
2526 | /// Return the domain of @p BB. If it does not exist, create an empty one. |
||
2527 | isl::set &getOrInitEmptyDomain(BasicBlock *BB) { return DomainMap[BB]; } |
||
2528 | |||
2529 | /// Check if domain is determined for @p BB. |
||
2530 | bool isDomainDefined(BasicBlock *BB) const { return DomainMap.count(BB) > 0; } |
||
2531 | |||
2532 | /// Set domain for @p BB. |
||
2533 | void setDomain(BasicBlock *BB, isl::set &Domain) { DomainMap[BB] = Domain; } |
||
2534 | |||
2535 | /// Get a union set containing the iteration domains of all statements. |
||
2536 | isl::union_set getDomains() const; |
||
2537 | |||
2538 | /// Get a union map of all may-writes performed in the SCoP. |
||
2539 | isl::union_map getMayWrites(); |
||
2540 | |||
2541 | /// Get a union map of all must-writes performed in the SCoP. |
||
2542 | isl::union_map getMustWrites(); |
||
2543 | |||
2544 | /// Get a union map of all writes performed in the SCoP. |
||
2545 | isl::union_map getWrites(); |
||
2546 | |||
2547 | /// Get a union map of all reads performed in the SCoP. |
||
2548 | isl::union_map getReads(); |
||
2549 | |||
2550 | /// Get a union map of all memory accesses performed in the SCoP. |
||
2551 | isl::union_map getAccesses(); |
||
2552 | |||
2553 | /// Get a union map of all memory accesses performed in the SCoP. |
||
2554 | /// |
||
2555 | /// @param Array The array to which the accesses should belong. |
||
2556 | isl::union_map getAccesses(ScopArrayInfo *Array); |
||
2557 | |||
2558 | /// Get the schedule of all the statements in the SCoP. |
||
2559 | /// |
||
2560 | /// @return The schedule of all the statements in the SCoP, if the schedule of |
||
2561 | /// the Scop does not contain extension nodes, and nullptr, otherwise. |
||
2562 | isl::union_map getSchedule() const; |
||
2563 | |||
2564 | /// Get a schedule tree describing the schedule of all statements. |
||
2565 | isl::schedule getScheduleTree() const; |
||
2566 | |||
2567 | /// Update the current schedule |
||
2568 | /// |
||
2569 | /// NewSchedule The new schedule (given as a flat union-map). |
||
2570 | void setSchedule(isl::union_map NewSchedule); |
||
2571 | |||
2572 | /// Update the current schedule |
||
2573 | /// |
||
2574 | /// NewSchedule The new schedule (given as schedule tree). |
||
2575 | void setScheduleTree(isl::schedule NewSchedule); |
||
2576 | |||
2577 | /// Whether the schedule is the original schedule as derived from the CFG by |
||
2578 | /// ScopBuilder. |
||
2579 | bool isOriginalSchedule() const { return !ScheduleModified; } |
||
2580 | |||
2581 | /// Intersects the domains of all statements in the SCoP. |
||
2582 | /// |
||
2583 | /// @return true if a change was made |
||
2584 | bool restrictDomains(isl::union_set Domain); |
||
2585 | |||
2586 | /// Get the depth of a loop relative to the outermost loop in the Scop. |
||
2587 | /// |
||
2588 | /// This will return |
||
2589 | /// 0 if @p L is an outermost loop in the SCoP |
||
2590 | /// >0 for other loops in the SCoP |
||
2591 | /// -1 if @p L is nullptr or there is no outermost loop in the SCoP |
||
2592 | int getRelativeLoopDepth(const Loop *L) const; |
||
2593 | |||
2594 | /// Find the ScopArrayInfo associated with an isl Id |
||
2595 | /// that has name @p Name. |
||
2596 | ScopArrayInfo *getArrayInfoByName(const std::string BaseName); |
||
2597 | |||
2598 | /// Simplify the SCoP representation. |
||
2599 | /// |
||
2600 | /// @param AfterHoisting Whether it is called after invariant load hoisting. |
||
2601 | /// When true, also removes statements without |
||
2602 | /// side-effects. |
||
2603 | void simplifySCoP(bool AfterHoisting); |
||
2604 | |||
2605 | /// Get the next free array index. |
||
2606 | /// |
||
2607 | /// This function returns a unique index which can be used to identify an |
||
2608 | /// array. |
||
2609 | long getNextArrayIdx() { return ArrayIdx++; } |
||
2610 | |||
2611 | /// Get the next free statement index. |
||
2612 | /// |
||
2613 | /// This function returns a unique index which can be used to identify a |
||
2614 | /// statement. |
||
2615 | long getNextStmtIdx() { return StmtIdx++; } |
||
2616 | |||
2617 | /// Get the representing SCEV for @p S if applicable, otherwise @p S. |
||
2618 | /// |
||
2619 | /// Invariant loads of the same location are put in an equivalence class and |
||
2620 | /// only one of them is chosen as a representing element that will be |
||
2621 | /// modeled as a parameter. The others have to be normalized, i.e., |
||
2622 | /// replaced by the representing element of their equivalence class, in order |
||
2623 | /// to get the correct parameter value, e.g., in the SCEVAffinator. |
||
2624 | /// |
||
2625 | /// @param S The SCEV to normalize. |
||
2626 | /// |
||
2627 | /// @return The representing SCEV for invariant loads or @p S if none. |
||
2628 | const SCEV *getRepresentingInvariantLoadSCEV(const SCEV *S) const; |
||
2629 | |||
2630 | /// Return the MemoryAccess that writes an llvm::Value, represented by a |
||
2631 | /// ScopArrayInfo. |
||
2632 | /// |
||
2633 | /// There can be at most one such MemoryAccess per llvm::Value in the SCoP. |
||
2634 | /// Zero is possible for read-only values. |
||
2635 | MemoryAccess *getValueDef(const ScopArrayInfo *SAI) const; |
||
2636 | |||
2637 | /// Return all MemoryAccesses that us an llvm::Value, represented by a |
||
2638 | /// ScopArrayInfo. |
||
2639 | ArrayRef<MemoryAccess *> getValueUses(const ScopArrayInfo *SAI) const; |
||
2640 | |||
2641 | /// Return the MemoryAccess that represents an llvm::PHINode. |
||
2642 | /// |
||
2643 | /// ExitPHIs's PHINode is not within the SCoPs. This function returns nullptr |
||
2644 | /// for them. |
||
2645 | MemoryAccess *getPHIRead(const ScopArrayInfo *SAI) const; |
||
2646 | |||
2647 | /// Return all MemoryAccesses for all incoming statements of a PHINode, |
||
2648 | /// represented by a ScopArrayInfo. |
||
2649 | ArrayRef<MemoryAccess *> getPHIIncomings(const ScopArrayInfo *SAI) const; |
||
2650 | |||
2651 | /// Return whether @p Inst has a use outside of this SCoP. |
||
2652 | bool isEscaping(Instruction *Inst); |
||
2653 | |||
2654 | struct ScopStatistics { |
||
2655 | int NumAffineLoops = 0; |
||
2656 | int NumBoxedLoops = 0; |
||
2657 | |||
2658 | int NumValueWrites = 0; |
||
2659 | int NumValueWritesInLoops = 0; |
||
2660 | int NumPHIWrites = 0; |
||
2661 | int NumPHIWritesInLoops = 0; |
||
2662 | int NumSingletonWrites = 0; |
||
2663 | int NumSingletonWritesInLoops = 0; |
||
2664 | }; |
||
2665 | |||
2666 | /// Collect statistic about this SCoP. |
||
2667 | /// |
||
2668 | /// These are most commonly used for LLVM's static counters (Statistic.h) in |
||
2669 | /// various places. If statistics are disabled, only zeros are returned to |
||
2670 | /// avoid the overhead. |
||
2671 | ScopStatistics getStatistics() const; |
||
2672 | |||
2673 | /// Is this Scop marked as not to be transformed by an optimization heuristic? |
||
2674 | /// In this case, only user-directed transformations are allowed. |
||
2675 | bool hasDisableHeuristicsHint() const { return HasDisableHeuristicsHint; } |
||
2676 | |||
2677 | /// Mark this Scop to not apply an optimization heuristic. |
||
2678 | void markDisableHeuristics() { HasDisableHeuristicsHint = true; } |
||
2679 | }; |
||
2680 | |||
2681 | /// Print Scop scop to raw_ostream OS. |
||
2682 | raw_ostream &operator<<(raw_ostream &OS, const Scop &scop); |
||
2683 | |||
2684 | /// The legacy pass manager's analysis pass to compute scop information |
||
2685 | /// for a region. |
||
2686 | class ScopInfoRegionPass final : public RegionPass { |
||
2687 | /// The Scop pointer which is used to construct a Scop. |
||
2688 | std::unique_ptr<Scop> S; |
||
2689 | |||
2690 | public: |
||
2691 | static char ID; // Pass identification, replacement for typeid |
||
2692 | |||
2693 | ScopInfoRegionPass() : RegionPass(ID) {} |
||
2694 | ~ScopInfoRegionPass() override = default; |
||
2695 | |||
2696 | /// Build Scop object, the Polly IR of static control |
||
2697 | /// part for the current SESE-Region. |
||
2698 | /// |
||
2699 | /// @return If the current region is a valid for a static control part, |
||
2700 | /// return the Polly IR representing this static control part, |
||
2701 | /// return null otherwise. |
||
2702 | Scop *getScop() { return S.get(); } |
||
2703 | const Scop *getScop() const { return S.get(); } |
||
2704 | |||
2705 | /// Calculate the polyhedral scop information for a given Region. |
||
2706 | bool runOnRegion(Region *R, RGPassManager &RGM) override; |
||
2707 | |||
2708 | void releaseMemory() override { S.reset(); } |
||
2709 | |||
2710 | void print(raw_ostream &O, const Module *M = nullptr) const override; |
||
2711 | |||
2712 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
2713 | }; |
||
2714 | |||
2715 | llvm::Pass *createScopInfoPrinterLegacyRegionPass(raw_ostream &OS); |
||
2716 | |||
2717 | class ScopInfo { |
||
2718 | public: |
||
2719 | using RegionToScopMapTy = MapVector<Region *, std::unique_ptr<Scop>>; |
||
2720 | using reverse_iterator = RegionToScopMapTy::reverse_iterator; |
||
2721 | using const_reverse_iterator = RegionToScopMapTy::const_reverse_iterator; |
||
2722 | using iterator = RegionToScopMapTy::iterator; |
||
2723 | using const_iterator = RegionToScopMapTy::const_iterator; |
||
2724 | |||
2725 | private: |
||
2726 | /// A map of Region to its Scop object containing |
||
2727 | /// Polly IR of static control part. |
||
2728 | RegionToScopMapTy RegionToScopMap; |
||
2729 | const DataLayout &DL; |
||
2730 | ScopDetection &SD; |
||
2731 | ScalarEvolution &SE; |
||
2732 | LoopInfo &LI; |
||
2733 | AAResults &AA; |
||
2734 | DominatorTree &DT; |
||
2735 | AssumptionCache &AC; |
||
2736 | OptimizationRemarkEmitter &ORE; |
||
2737 | |||
2738 | public: |
||
2739 | ScopInfo(const DataLayout &DL, ScopDetection &SD, ScalarEvolution &SE, |
||
2740 | LoopInfo &LI, AAResults &AA, DominatorTree &DT, AssumptionCache &AC, |
||
2741 | OptimizationRemarkEmitter &ORE); |
||
2742 | |||
2743 | /// Get the Scop object for the given Region. |
||
2744 | /// |
||
2745 | /// @return If the given region is the maximal region within a scop, return |
||
2746 | /// the scop object. If the given region is a subregion, return a |
||
2747 | /// nullptr. Top level region containing the entry block of a function |
||
2748 | /// is not considered in the scop creation. |
||
2749 | Scop *getScop(Region *R) const { |
||
2750 | auto MapIt = RegionToScopMap.find(R); |
||
2751 | if (MapIt != RegionToScopMap.end()) |
||
2752 | return MapIt->second.get(); |
||
2753 | return nullptr; |
||
2754 | } |
||
2755 | |||
2756 | /// Recompute the Scop-Information for a function. |
||
2757 | /// |
||
2758 | /// This invalidates any iterators. |
||
2759 | void recompute(); |
||
2760 | |||
2761 | /// Handle invalidation explicitly |
||
2762 | bool invalidate(Function &F, const PreservedAnalyses &PA, |
||
2763 | FunctionAnalysisManager::Invalidator &Inv); |
||
2764 | |||
2765 | iterator begin() { return RegionToScopMap.begin(); } |
||
2766 | iterator end() { return RegionToScopMap.end(); } |
||
2767 | const_iterator begin() const { return RegionToScopMap.begin(); } |
||
2768 | const_iterator end() const { return RegionToScopMap.end(); } |
||
2769 | reverse_iterator rbegin() { return RegionToScopMap.rbegin(); } |
||
2770 | reverse_iterator rend() { return RegionToScopMap.rend(); } |
||
2771 | const_reverse_iterator rbegin() const { return RegionToScopMap.rbegin(); } |
||
2772 | const_reverse_iterator rend() const { return RegionToScopMap.rend(); } |
||
2773 | bool empty() const { return RegionToScopMap.empty(); } |
||
2774 | }; |
||
2775 | |||
2776 | struct ScopInfoAnalysis : AnalysisInfoMixin<ScopInfoAnalysis> { |
||
2777 | static AnalysisKey Key; |
||
2778 | |||
2779 | using Result = ScopInfo; |
||
2780 | |||
2781 | Result run(Function &, FunctionAnalysisManager &); |
||
2782 | }; |
||
2783 | |||
2784 | struct ScopInfoPrinterPass final : PassInfoMixin<ScopInfoPrinterPass> { |
||
2785 | ScopInfoPrinterPass(raw_ostream &OS) : Stream(OS) {} |
||
2786 | |||
2787 | PreservedAnalyses run(Function &, FunctionAnalysisManager &); |
||
2788 | |||
2789 | raw_ostream &Stream; |
||
2790 | }; |
||
2791 | |||
2792 | //===----------------------------------------------------------------------===// |
||
2793 | /// The legacy pass manager's analysis pass to compute scop information |
||
2794 | /// for the whole function. |
||
2795 | /// |
||
2796 | /// This pass will maintain a map of the maximal region within a scop to its |
||
2797 | /// scop object for all the feasible scops present in a function. |
||
2798 | /// This pass is an alternative to the ScopInfoRegionPass in order to avoid a |
||
2799 | /// region pass manager. |
||
2800 | class ScopInfoWrapperPass final : public FunctionPass { |
||
2801 | std::unique_ptr<ScopInfo> Result; |
||
2802 | |||
2803 | public: |
||
2804 | ScopInfoWrapperPass() : FunctionPass(ID) {} |
||
2805 | ~ScopInfoWrapperPass() override = default; |
||
2806 | |||
2807 | static char ID; // Pass identification, replacement for typeid |
||
2808 | |||
2809 | ScopInfo *getSI() { return Result.get(); } |
||
2810 | const ScopInfo *getSI() const { return Result.get(); } |
||
2811 | |||
2812 | /// Calculate all the polyhedral scops for a given function. |
||
2813 | bool runOnFunction(Function &F) override; |
||
2814 | |||
2815 | void releaseMemory() override { Result.reset(); } |
||
2816 | |||
2817 | void print(raw_ostream &O, const Module *M = nullptr) const override; |
||
2818 | |||
2819 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
||
2820 | }; |
||
2821 | |||
2822 | llvm::Pass *createScopInfoPrinterLegacyFunctionPass(llvm::raw_ostream &OS); |
||
2823 | } // end namespace polly |
||
2824 | |||
2825 | namespace llvm { |
||
2826 | void initializeScopInfoRegionPassPass(PassRegistry &); |
||
2827 | void initializeScopInfoPrinterLegacyRegionPassPass(PassRegistry &); |
||
2828 | void initializeScopInfoWrapperPassPass(PassRegistry &); |
||
2829 | void initializeScopInfoPrinterLegacyFunctionPassPass(PassRegistry &); |
||
2830 | } // end namespace llvm |
||
2831 | |||
2832 | #endif // POLLY_SCOPINFO_H |