Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Transforms/Vectorize/LoopVectorizationLegality.h ----*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | /// \file |
||
| 10 | /// This file defines the LoopVectorizationLegality class. Original code |
||
| 11 | /// in Loop Vectorizer has been moved out to its own file for modularity |
||
| 12 | /// and reusability. |
||
| 13 | /// |
||
| 14 | /// Currently, it works for innermost loop vectorization. Extending this to |
||
| 15 | /// outer loop vectorization is a TODO item. |
||
| 16 | /// |
||
| 17 | /// Also provides: |
||
| 18 | /// 1) LoopVectorizeHints class which keeps a number of loop annotations |
||
| 19 | /// locally for easy look up. It has the ability to write them back as |
||
| 20 | /// loop metadata, upon request. |
||
| 21 | /// 2) LoopVectorizationRequirements class for lazy bail out for the purpose |
||
| 22 | /// of reporting useful failure to vectorize message. |
||
| 23 | // |
||
| 24 | //===----------------------------------------------------------------------===// |
||
| 25 | |||
| 26 | #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H |
||
| 27 | #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H |
||
| 28 | |||
| 29 | #include "llvm/ADT/MapVector.h" |
||
| 30 | #include "llvm/Analysis/LoopAccessAnalysis.h" |
||
| 31 | #include "llvm/Support/TypeSize.h" |
||
| 32 | #include "llvm/Transforms/Utils/LoopUtils.h" |
||
| 33 | |||
| 34 | namespace llvm { |
||
| 35 | class AAResults; |
||
| 36 | class AssumptionCache; |
||
| 37 | class BasicBlock; |
||
| 38 | class BlockFrequencyInfo; |
||
| 39 | class DemandedBits; |
||
| 40 | class DominatorTree; |
||
| 41 | class Function; |
||
| 42 | class Loop; |
||
| 43 | class LoopInfo; |
||
| 44 | class Metadata; |
||
| 45 | class OptimizationRemarkEmitter; |
||
| 46 | class PredicatedScalarEvolution; |
||
| 47 | class ProfileSummaryInfo; |
||
| 48 | class TargetLibraryInfo; |
||
| 49 | class TargetTransformInfo; |
||
| 50 | class Type; |
||
| 51 | |||
| 52 | /// Utility class for getting and setting loop vectorizer hints in the form |
||
| 53 | /// of loop metadata. |
||
| 54 | /// This class keeps a number of loop annotations locally (as member variables) |
||
| 55 | /// and can, upon request, write them back as metadata on the loop. It will |
||
| 56 | /// initially scan the loop for existing metadata, and will update the local |
||
| 57 | /// values based on information in the loop. |
||
| 58 | /// We cannot write all values to metadata, as the mere presence of some info, |
||
| 59 | /// for example 'force', means a decision has been made. So, we need to be |
||
| 60 | /// careful NOT to add them if the user hasn't specifically asked so. |
||
| 61 | class LoopVectorizeHints { |
||
| 62 | enum HintKind { |
||
| 63 | HK_WIDTH, |
||
| 64 | HK_INTERLEAVE, |
||
| 65 | HK_FORCE, |
||
| 66 | HK_ISVECTORIZED, |
||
| 67 | HK_PREDICATE, |
||
| 68 | HK_SCALABLE |
||
| 69 | }; |
||
| 70 | |||
| 71 | /// Hint - associates name and validation with the hint value. |
||
| 72 | struct Hint { |
||
| 73 | const char *Name; |
||
| 74 | unsigned Value; // This may have to change for non-numeric values. |
||
| 75 | HintKind Kind; |
||
| 76 | |||
| 77 | Hint(const char *Name, unsigned Value, HintKind Kind) |
||
| 78 | : Name(Name), Value(Value), Kind(Kind) {} |
||
| 79 | |||
| 80 | bool validate(unsigned Val); |
||
| 81 | }; |
||
| 82 | |||
| 83 | /// Vectorization width. |
||
| 84 | Hint Width; |
||
| 85 | |||
| 86 | /// Vectorization interleave factor. |
||
| 87 | Hint Interleave; |
||
| 88 | |||
| 89 | /// Vectorization forced |
||
| 90 | Hint Force; |
||
| 91 | |||
| 92 | /// Already Vectorized |
||
| 93 | Hint IsVectorized; |
||
| 94 | |||
| 95 | /// Vector Predicate |
||
| 96 | Hint Predicate; |
||
| 97 | |||
| 98 | /// Says whether we should use fixed width or scalable vectorization. |
||
| 99 | Hint Scalable; |
||
| 100 | |||
| 101 | /// Return the loop metadata prefix. |
||
| 102 | static StringRef Prefix() { return "llvm.loop."; } |
||
| 103 | |||
| 104 | /// True if there is any unsafe math in the loop. |
||
| 105 | bool PotentiallyUnsafe = false; |
||
| 106 | |||
| 107 | public: |
||
| 108 | enum ForceKind { |
||
| 109 | FK_Undefined = -1, ///< Not selected. |
||
| 110 | FK_Disabled = 0, ///< Forcing disabled. |
||
| 111 | FK_Enabled = 1, ///< Forcing enabled. |
||
| 112 | }; |
||
| 113 | |||
| 114 | enum ScalableForceKind { |
||
| 115 | /// Not selected. |
||
| 116 | SK_Unspecified = -1, |
||
| 117 | /// Disables vectorization with scalable vectors. |
||
| 118 | SK_FixedWidthOnly = 0, |
||
| 119 | /// Vectorize loops using scalable vectors or fixed-width vectors, but favor |
||
| 120 | /// scalable vectors when the cost-model is inconclusive. This is the |
||
| 121 | /// default when the scalable.enable hint is enabled through a pragma. |
||
| 122 | SK_PreferScalable = 1 |
||
| 123 | }; |
||
| 124 | |||
| 125 | LoopVectorizeHints(const Loop *L, bool InterleaveOnlyWhenForced, |
||
| 126 | OptimizationRemarkEmitter &ORE, |
||
| 127 | const TargetTransformInfo *TTI = nullptr); |
||
| 128 | |||
| 129 | /// Mark the loop L as already vectorized by setting the width to 1. |
||
| 130 | void setAlreadyVectorized(); |
||
| 131 | |||
| 132 | bool allowVectorization(Function *F, Loop *L, |
||
| 133 | bool VectorizeOnlyWhenForced) const; |
||
| 134 | |||
| 135 | /// Dumps all the hint information. |
||
| 136 | void emitRemarkWithHints() const; |
||
| 137 | |||
| 138 | ElementCount getWidth() const { |
||
| 139 | return ElementCount::get(Width.Value, (ScalableForceKind)Scalable.Value == |
||
| 140 | SK_PreferScalable); |
||
| 141 | } |
||
| 142 | |||
| 143 | unsigned getInterleave() const { |
||
| 144 | if (Interleave.Value) |
||
| 145 | return Interleave.Value; |
||
| 146 | // If interleaving is not explicitly set, assume that if we do not want |
||
| 147 | // unrolling, we also don't want any interleaving. |
||
| 148 | if (llvm::hasUnrollTransformation(TheLoop) & TM_Disable) |
||
| 149 | return 1; |
||
| 150 | return 0; |
||
| 151 | } |
||
| 152 | unsigned getIsVectorized() const { return IsVectorized.Value; } |
||
| 153 | unsigned getPredicate() const { return Predicate.Value; } |
||
| 154 | enum ForceKind getForce() const { |
||
| 155 | if ((ForceKind)Force.Value == FK_Undefined && |
||
| 156 | hasDisableAllTransformsHint(TheLoop)) |
||
| 157 | return FK_Disabled; |
||
| 158 | return (ForceKind)Force.Value; |
||
| 159 | } |
||
| 160 | |||
| 161 | /// \return true if scalable vectorization has been explicitly disabled. |
||
| 162 | bool isScalableVectorizationDisabled() const { |
||
| 163 | return (ScalableForceKind)Scalable.Value == SK_FixedWidthOnly; |
||
| 164 | } |
||
| 165 | |||
| 166 | /// If hints are provided that force vectorization, use the AlwaysPrint |
||
| 167 | /// pass name to force the frontend to print the diagnostic. |
||
| 168 | const char *vectorizeAnalysisPassName() const; |
||
| 169 | |||
| 170 | /// When enabling loop hints are provided we allow the vectorizer to change |
||
| 171 | /// the order of operations that is given by the scalar loop. This is not |
||
| 172 | /// enabled by default because can be unsafe or inefficient. For example, |
||
| 173 | /// reordering floating-point operations will change the way round-off |
||
| 174 | /// error accumulates in the loop. |
||
| 175 | bool allowReordering() const; |
||
| 176 | |||
| 177 | bool isPotentiallyUnsafe() const { |
||
| 178 | // Avoid FP vectorization if the target is unsure about proper support. |
||
| 179 | // This may be related to the SIMD unit in the target not handling |
||
| 180 | // IEEE 754 FP ops properly, or bad single-to-double promotions. |
||
| 181 | // Otherwise, a sequence of vectorized loops, even without reduction, |
||
| 182 | // could lead to different end results on the destination vectors. |
||
| 183 | return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; |
||
| 184 | } |
||
| 185 | |||
| 186 | void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } |
||
| 187 | |||
| 188 | private: |
||
| 189 | /// Find hints specified in the loop metadata and update local values. |
||
| 190 | void getHintsFromMetadata(); |
||
| 191 | |||
| 192 | /// Checks string hint with one operand and set value if valid. |
||
| 193 | void setHint(StringRef Name, Metadata *Arg); |
||
| 194 | |||
| 195 | /// The loop these hints belong to. |
||
| 196 | const Loop *TheLoop; |
||
| 197 | |||
| 198 | /// Interface to emit optimization remarks. |
||
| 199 | OptimizationRemarkEmitter &ORE; |
||
| 200 | }; |
||
| 201 | |||
| 202 | /// This holds vectorization requirements that must be verified late in |
||
| 203 | /// the process. The requirements are set by legalize and costmodel. Once |
||
| 204 | /// vectorization has been determined to be possible and profitable the |
||
| 205 | /// requirements can be verified by looking for metadata or compiler options. |
||
| 206 | /// For example, some loops require FP commutativity which is only allowed if |
||
| 207 | /// vectorization is explicitly specified or if the fast-math compiler option |
||
| 208 | /// has been provided. |
||
| 209 | /// Late evaluation of these requirements allows helpful diagnostics to be |
||
| 210 | /// composed that tells the user what need to be done to vectorize the loop. For |
||
| 211 | /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late |
||
| 212 | /// evaluation should be used only when diagnostics can generated that can be |
||
| 213 | /// followed by a non-expert user. |
||
| 214 | class LoopVectorizationRequirements { |
||
| 215 | public: |
||
| 216 | /// Track the 1st floating-point instruction that can not be reassociated. |
||
| 217 | void addExactFPMathInst(Instruction *I) { |
||
| 218 | if (I && !ExactFPMathInst) |
||
| 219 | ExactFPMathInst = I; |
||
| 220 | } |
||
| 221 | |||
| 222 | Instruction *getExactFPInst() { return ExactFPMathInst; } |
||
| 223 | |||
| 224 | private: |
||
| 225 | Instruction *ExactFPMathInst = nullptr; |
||
| 226 | }; |
||
| 227 | |||
| 228 | /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and |
||
| 229 | /// to what vectorization factor. |
||
| 230 | /// This class does not look at the profitability of vectorization, only the |
||
| 231 | /// legality. This class has two main kinds of checks: |
||
| 232 | /// * Memory checks - The code in canVectorizeMemory checks if vectorization |
||
| 233 | /// will change the order of memory accesses in a way that will change the |
||
| 234 | /// correctness of the program. |
||
| 235 | /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory |
||
| 236 | /// checks for a number of different conditions, such as the availability of a |
||
| 237 | /// single induction variable, that all types are supported and vectorize-able, |
||
| 238 | /// etc. This code reflects the capabilities of InnerLoopVectorizer. |
||
| 239 | /// This class is also used by InnerLoopVectorizer for identifying |
||
| 240 | /// induction variable and the different reduction variables. |
||
| 241 | class LoopVectorizationLegality { |
||
| 242 | public: |
||
| 243 | LoopVectorizationLegality( |
||
| 244 | Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, |
||
| 245 | TargetTransformInfo *TTI, TargetLibraryInfo *TLI, Function *F, |
||
| 246 | LoopAccessInfoManager &LAIs, LoopInfo *LI, OptimizationRemarkEmitter *ORE, |
||
| 247 | LoopVectorizationRequirements *R, LoopVectorizeHints *H, DemandedBits *DB, |
||
| 248 | AssumptionCache *AC, BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) |
||
| 249 | : TheLoop(L), LI(LI), PSE(PSE), TTI(TTI), TLI(TLI), DT(DT), LAIs(LAIs), |
||
| 250 | ORE(ORE), Requirements(R), Hints(H), DB(DB), AC(AC), BFI(BFI), |
||
| 251 | PSI(PSI) {} |
||
| 252 | |||
| 253 | /// ReductionList contains the reduction descriptors for all |
||
| 254 | /// of the reductions that were found in the loop. |
||
| 255 | using ReductionList = MapVector<PHINode *, RecurrenceDescriptor>; |
||
| 256 | |||
| 257 | /// InductionList saves induction variables and maps them to the |
||
| 258 | /// induction descriptor. |
||
| 259 | using InductionList = MapVector<PHINode *, InductionDescriptor>; |
||
| 260 | |||
| 261 | /// RecurrenceSet contains the phi nodes that are recurrences other than |
||
| 262 | /// inductions and reductions. |
||
| 263 | using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; |
||
| 264 | |||
| 265 | /// Returns true if it is legal to vectorize this loop. |
||
| 266 | /// This does not mean that it is profitable to vectorize this |
||
| 267 | /// loop, only that it is legal to do so. |
||
| 268 | /// Temporarily taking UseVPlanNativePath parameter. If true, take |
||
| 269 | /// the new code path being implemented for outer loop vectorization |
||
| 270 | /// (should be functional for inner loop vectorization) based on VPlan. |
||
| 271 | /// If false, good old LV code. |
||
| 272 | bool canVectorize(bool UseVPlanNativePath); |
||
| 273 | |||
| 274 | /// Returns true if it is legal to vectorize the FP math operations in this |
||
| 275 | /// loop. Vectorizing is legal if we allow reordering of FP operations, or if |
||
| 276 | /// we can use in-order reductions. |
||
| 277 | bool canVectorizeFPMath(bool EnableStrictReductions); |
||
| 278 | |||
| 279 | /// Return true if we can vectorize this loop while folding its tail by |
||
| 280 | /// masking, and mark all respective loads/stores for masking. |
||
| 281 | /// This object's state is only modified iff this function returns true. |
||
| 282 | bool prepareToFoldTailByMasking(); |
||
| 283 | |||
| 284 | /// Returns the primary induction variable. |
||
| 285 | PHINode *getPrimaryInduction() { return PrimaryInduction; } |
||
| 286 | |||
| 287 | /// Returns the reduction variables found in the loop. |
||
| 288 | const ReductionList &getReductionVars() const { return Reductions; } |
||
| 289 | |||
| 290 | /// Returns the induction variables found in the loop. |
||
| 291 | const InductionList &getInductionVars() const { return Inductions; } |
||
| 292 | |||
| 293 | /// Return the fixed-order recurrences found in the loop. |
||
| 294 | RecurrenceSet &getFixedOrderRecurrences() { return FixedOrderRecurrences; } |
||
| 295 | |||
| 296 | /// Return the set of instructions to sink to handle fixed-order recurrences. |
||
| 297 | MapVector<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } |
||
| 298 | |||
| 299 | /// Returns the widest induction type. |
||
| 300 | Type *getWidestInductionType() { return WidestIndTy; } |
||
| 301 | |||
| 302 | /// Returns True if given store is a final invariant store of one of the |
||
| 303 | /// reductions found in the loop. |
||
| 304 | bool isInvariantStoreOfReduction(StoreInst *SI); |
||
| 305 | |||
| 306 | /// Returns True if given address is invariant and is used to store recurrent |
||
| 307 | /// expression |
||
| 308 | bool isInvariantAddressOfReduction(Value *V); |
||
| 309 | |||
| 310 | /// Returns True if V is a Phi node of an induction variable in this loop. |
||
| 311 | bool isInductionPhi(const Value *V) const; |
||
| 312 | |||
| 313 | /// Returns a pointer to the induction descriptor, if \p Phi is an integer or |
||
| 314 | /// floating point induction. |
||
| 315 | const InductionDescriptor *getIntOrFpInductionDescriptor(PHINode *Phi) const; |
||
| 316 | |||
| 317 | /// Returns a pointer to the induction descriptor, if \p Phi is pointer |
||
| 318 | /// induction. |
||
| 319 | const InductionDescriptor *getPointerInductionDescriptor(PHINode *Phi) const; |
||
| 320 | |||
| 321 | /// Returns True if V is a cast that is part of an induction def-use chain, |
||
| 322 | /// and had been proven to be redundant under a runtime guard (in other |
||
| 323 | /// words, the cast has the same SCEV expression as the induction phi). |
||
| 324 | bool isCastedInductionVariable(const Value *V) const; |
||
| 325 | |||
| 326 | /// Returns True if V can be considered as an induction variable in this |
||
| 327 | /// loop. V can be the induction phi, or some redundant cast in the def-use |
||
| 328 | /// chain of the inducion phi. |
||
| 329 | bool isInductionVariable(const Value *V) const; |
||
| 330 | |||
| 331 | /// Returns True if PN is a reduction variable in this loop. |
||
| 332 | bool isReductionVariable(PHINode *PN) const { return Reductions.count(PN); } |
||
| 333 | |||
| 334 | /// Returns True if Phi is a fixed-order recurrence in this loop. |
||
| 335 | bool isFixedOrderRecurrence(const PHINode *Phi) const; |
||
| 336 | |||
| 337 | /// Return true if the block BB needs to be predicated in order for the loop |
||
| 338 | /// to be vectorized. |
||
| 339 | bool blockNeedsPredication(BasicBlock *BB) const; |
||
| 340 | |||
| 341 | /// Check if this pointer is consecutive when vectorizing. This happens |
||
| 342 | /// when the last index of the GEP is the induction variable, or that the |
||
| 343 | /// pointer itself is an induction variable. |
||
| 344 | /// This check allows us to vectorize A[idx] into a wide load/store. |
||
| 345 | /// Returns: |
||
| 346 | /// 0 - Stride is unknown or non-consecutive. |
||
| 347 | /// 1 - Address is consecutive. |
||
| 348 | /// -1 - Address is consecutive, and decreasing. |
||
| 349 | /// NOTE: This method must only be used before modifying the original scalar |
||
| 350 | /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). |
||
| 351 | int isConsecutivePtr(Type *AccessTy, Value *Ptr) const; |
||
| 352 | |||
| 353 | /// Returns true if the value V is uniform within the loop. |
||
| 354 | bool isUniform(Value *V) const; |
||
| 355 | |||
| 356 | /// A uniform memory op is a load or store which accesses the same memory |
||
| 357 | /// location on all lanes. |
||
| 358 | bool isUniformMemOp(Instruction &I) const; |
||
| 359 | |||
| 360 | /// Returns the information that we collected about runtime memory check. |
||
| 361 | const RuntimePointerChecking *getRuntimePointerChecking() const { |
||
| 362 | return LAI->getRuntimePointerChecking(); |
||
| 363 | } |
||
| 364 | |||
| 365 | const LoopAccessInfo *getLAI() const { return LAI; } |
||
| 366 | |||
| 367 | bool isSafeForAnyVectorWidth() const { |
||
| 368 | return LAI->getDepChecker().isSafeForAnyVectorWidth(); |
||
| 369 | } |
||
| 370 | |||
| 371 | unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } |
||
| 372 | |||
| 373 | uint64_t getMaxSafeVectorWidthInBits() const { |
||
| 374 | return LAI->getDepChecker().getMaxSafeVectorWidthInBits(); |
||
| 375 | } |
||
| 376 | |||
| 377 | bool hasStride(Value *V) { return LAI->hasStride(V); } |
||
| 378 | |||
| 379 | /// Returns true if vector representation of the instruction \p I |
||
| 380 | /// requires mask. |
||
| 381 | bool isMaskRequired(const Instruction *I) const { |
||
| 382 | return MaskedOp.contains(I); |
||
| 383 | } |
||
| 384 | |||
| 385 | unsigned getNumStores() const { return LAI->getNumStores(); } |
||
| 386 | unsigned getNumLoads() const { return LAI->getNumLoads(); } |
||
| 387 | |||
| 388 | /// Returns all assume calls in predicated blocks. They need to be dropped |
||
| 389 | /// when flattening the CFG. |
||
| 390 | const SmallPtrSetImpl<Instruction *> &getConditionalAssumes() const { |
||
| 391 | return ConditionalAssumes; |
||
| 392 | } |
||
| 393 | |||
| 394 | private: |
||
| 395 | /// Return true if the pre-header, exiting and latch blocks of \p Lp and all |
||
| 396 | /// its nested loops are considered legal for vectorization. These legal |
||
| 397 | /// checks are common for inner and outer loop vectorization. |
||
| 398 | /// Temporarily taking UseVPlanNativePath parameter. If true, take |
||
| 399 | /// the new code path being implemented for outer loop vectorization |
||
| 400 | /// (should be functional for inner loop vectorization) based on VPlan. |
||
| 401 | /// If false, good old LV code. |
||
| 402 | bool canVectorizeLoopNestCFG(Loop *Lp, bool UseVPlanNativePath); |
||
| 403 | |||
| 404 | /// Set up outer loop inductions by checking Phis in outer loop header for |
||
| 405 | /// supported inductions (int inductions). Return false if any of these Phis |
||
| 406 | /// is not a supported induction or if we fail to find an induction. |
||
| 407 | bool setupOuterLoopInductions(); |
||
| 408 | |||
| 409 | /// Return true if the pre-header, exiting and latch blocks of \p Lp |
||
| 410 | /// (non-recursive) are considered legal for vectorization. |
||
| 411 | /// Temporarily taking UseVPlanNativePath parameter. If true, take |
||
| 412 | /// the new code path being implemented for outer loop vectorization |
||
| 413 | /// (should be functional for inner loop vectorization) based on VPlan. |
||
| 414 | /// If false, good old LV code. |
||
| 415 | bool canVectorizeLoopCFG(Loop *Lp, bool UseVPlanNativePath); |
||
| 416 | |||
| 417 | /// Check if a single basic block loop is vectorizable. |
||
| 418 | /// At this point we know that this is a loop with a constant trip count |
||
| 419 | /// and we only need to check individual instructions. |
||
| 420 | bool canVectorizeInstrs(); |
||
| 421 | |||
| 422 | /// When we vectorize loops we may change the order in which |
||
| 423 | /// we read and write from memory. This method checks if it is |
||
| 424 | /// legal to vectorize the code, considering only memory constrains. |
||
| 425 | /// Returns true if the loop is vectorizable |
||
| 426 | bool canVectorizeMemory(); |
||
| 427 | |||
| 428 | /// Return true if we can vectorize this loop using the IF-conversion |
||
| 429 | /// transformation. |
||
| 430 | bool canVectorizeWithIfConvert(); |
||
| 431 | |||
| 432 | /// Return true if we can vectorize this outer loop. The method performs |
||
| 433 | /// specific checks for outer loop vectorization. |
||
| 434 | bool canVectorizeOuterLoop(); |
||
| 435 | |||
| 436 | /// Return true if all of the instructions in the block can be speculatively |
||
| 437 | /// executed, and record the loads/stores that require masking. |
||
| 438 | /// \p SafePtrs is a list of addresses that are known to be legal and we know |
||
| 439 | /// that we can read from them without segfault. |
||
| 440 | /// \p MaskedOp is a list of instructions that have to be transformed into |
||
| 441 | /// calls to the appropriate masked intrinsic when the loop is vectorized. |
||
| 442 | /// \p ConditionalAssumes is a list of assume instructions in predicated |
||
| 443 | /// blocks that must be dropped if the CFG gets flattened. |
||
| 444 | bool blockCanBePredicated( |
||
| 445 | BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, |
||
| 446 | SmallPtrSetImpl<const Instruction *> &MaskedOp, |
||
| 447 | SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const; |
||
| 448 | |||
| 449 | /// Updates the vectorization state by adding \p Phi to the inductions list. |
||
| 450 | /// This can set \p Phi as the main induction of the loop if \p Phi is a |
||
| 451 | /// better choice for the main induction than the existing one. |
||
| 452 | void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, |
||
| 453 | SmallPtrSetImpl<Value *> &AllowedExit); |
||
| 454 | |||
| 455 | /// If an access has a symbolic strides, this maps the pointer value to |
||
| 456 | /// the stride symbol. |
||
| 457 | const ValueToValueMap *getSymbolicStrides() const { |
||
| 458 | // FIXME: Currently, the set of symbolic strides is sometimes queried before |
||
| 459 | // it's collected. This happens from canVectorizeWithIfConvert, when the |
||
| 460 | // pointer is checked to reference consecutive elements suitable for a |
||
| 461 | // masked access. |
||
| 462 | return LAI ? &LAI->getSymbolicStrides() : nullptr; |
||
| 463 | } |
||
| 464 | |||
| 465 | /// The loop that we evaluate. |
||
| 466 | Loop *TheLoop; |
||
| 467 | |||
| 468 | /// Loop Info analysis. |
||
| 469 | LoopInfo *LI; |
||
| 470 | |||
| 471 | /// A wrapper around ScalarEvolution used to add runtime SCEV checks. |
||
| 472 | /// Applies dynamic knowledge to simplify SCEV expressions in the context |
||
| 473 | /// of existing SCEV assumptions. The analysis will also add a minimal set |
||
| 474 | /// of new predicates if this is required to enable vectorization and |
||
| 475 | /// unrolling. |
||
| 476 | PredicatedScalarEvolution &PSE; |
||
| 477 | |||
| 478 | /// Target Transform Info. |
||
| 479 | TargetTransformInfo *TTI; |
||
| 480 | |||
| 481 | /// Target Library Info. |
||
| 482 | TargetLibraryInfo *TLI; |
||
| 483 | |||
| 484 | /// Dominator Tree. |
||
| 485 | DominatorTree *DT; |
||
| 486 | |||
| 487 | // LoopAccess analysis. |
||
| 488 | LoopAccessInfoManager &LAIs; |
||
| 489 | |||
| 490 | const LoopAccessInfo *LAI = nullptr; |
||
| 491 | |||
| 492 | /// Interface to emit optimization remarks. |
||
| 493 | OptimizationRemarkEmitter *ORE; |
||
| 494 | |||
| 495 | // --- vectorization state --- // |
||
| 496 | |||
| 497 | /// Holds the primary induction variable. This is the counter of the |
||
| 498 | /// loop. |
||
| 499 | PHINode *PrimaryInduction = nullptr; |
||
| 500 | |||
| 501 | /// Holds the reduction variables. |
||
| 502 | ReductionList Reductions; |
||
| 503 | |||
| 504 | /// Holds all of the induction variables that we found in the loop. |
||
| 505 | /// Notice that inductions don't need to start at zero and that induction |
||
| 506 | /// variables can be pointers. |
||
| 507 | InductionList Inductions; |
||
| 508 | |||
| 509 | /// Holds all the casts that participate in the update chain of the induction |
||
| 510 | /// variables, and that have been proven to be redundant (possibly under a |
||
| 511 | /// runtime guard). These casts can be ignored when creating the vectorized |
||
| 512 | /// loop body. |
||
| 513 | SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; |
||
| 514 | |||
| 515 | /// Holds the phi nodes that are fixed-order recurrences. |
||
| 516 | RecurrenceSet FixedOrderRecurrences; |
||
| 517 | |||
| 518 | /// Holds instructions that need to sink past other instructions to handle |
||
| 519 | /// fixed-order recurrences. |
||
| 520 | MapVector<Instruction *, Instruction *> SinkAfter; |
||
| 521 | |||
| 522 | /// Holds the widest induction type encountered. |
||
| 523 | Type *WidestIndTy = nullptr; |
||
| 524 | |||
| 525 | /// Allowed outside users. This holds the variables that can be accessed from |
||
| 526 | /// outside the loop. |
||
| 527 | SmallPtrSet<Value *, 4> AllowedExit; |
||
| 528 | |||
| 529 | /// Vectorization requirements that will go through late-evaluation. |
||
| 530 | LoopVectorizationRequirements *Requirements; |
||
| 531 | |||
| 532 | /// Used to emit an analysis of any legality issues. |
||
| 533 | LoopVectorizeHints *Hints; |
||
| 534 | |||
| 535 | /// The demanded bits analysis is used to compute the minimum type size in |
||
| 536 | /// which a reduction can be computed. |
||
| 537 | DemandedBits *DB; |
||
| 538 | |||
| 539 | /// The assumption cache analysis is used to compute the minimum type size in |
||
| 540 | /// which a reduction can be computed. |
||
| 541 | AssumptionCache *AC; |
||
| 542 | |||
| 543 | /// While vectorizing these instructions we have to generate a |
||
| 544 | /// call to the appropriate masked intrinsic |
||
| 545 | SmallPtrSet<const Instruction *, 8> MaskedOp; |
||
| 546 | |||
| 547 | /// Assume instructions in predicated blocks must be dropped if the CFG gets |
||
| 548 | /// flattened. |
||
| 549 | SmallPtrSet<Instruction *, 8> ConditionalAssumes; |
||
| 550 | |||
| 551 | /// BFI and PSI are used to check for profile guided size optimizations. |
||
| 552 | BlockFrequencyInfo *BFI; |
||
| 553 | ProfileSummaryInfo *PSI; |
||
| 554 | }; |
||
| 555 | |||
| 556 | } // namespace llvm |
||
| 557 | |||
| 558 | #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONLEGALITY_H |