Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the classes used to generate code from scalar expressions.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H
14
#define LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H
15
 
16
#include "llvm/ADT/DenseMap.h"
17
#include "llvm/ADT/DenseSet.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/Analysis/InstSimplifyFolder.h"
20
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
22
#include "llvm/Analysis/TargetTransformInfo.h"
23
#include "llvm/IR/IRBuilder.h"
24
#include "llvm/IR/ValueHandle.h"
25
#include "llvm/Support/CommandLine.h"
26
#include "llvm/Support/InstructionCost.h"
27
 
28
namespace llvm {
29
extern cl::opt<unsigned> SCEVCheapExpansionBudget;
30
 
31
/// struct for holding enough information to help calculate the cost of the
32
/// given SCEV when expanded into IR.
33
struct SCEVOperand {
34
  explicit SCEVOperand(unsigned Opc, int Idx, const SCEV *S) :
35
    ParentOpcode(Opc), OperandIdx(Idx), S(S) { }
36
  /// LLVM instruction opcode that uses the operand.
37
  unsigned ParentOpcode;
38
  /// The use index of an expanded instruction.
39
  int OperandIdx;
40
  /// The SCEV operand to be costed.
41
  const SCEV* S;
42
};
43
 
44
/// This class uses information about analyze scalars to rewrite expressions
45
/// in canonical form.
46
///
47
/// Clients should create an instance of this class when rewriting is needed,
48
/// and destroy it when finished to allow the release of the associated
49
/// memory.
50
class SCEVExpander : public SCEVVisitor<SCEVExpander, Value *> {
51
  ScalarEvolution &SE;
52
  const DataLayout &DL;
53
 
54
  // New instructions receive a name to identify them with the current pass.
55
  const char *IVName;
56
 
57
  /// Indicates whether LCSSA phis should be created for inserted values.
58
  bool PreserveLCSSA;
59
 
60
  // InsertedExpressions caches Values for reuse, so must track RAUW.
61
  DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
62
      InsertedExpressions;
63
 
64
  // InsertedValues only flags inserted instructions so needs no RAUW.
65
  DenseSet<AssertingVH<Value>> InsertedValues;
66
  DenseSet<AssertingVH<Value>> InsertedPostIncValues;
67
 
68
  /// Keep track of the existing IR values re-used during expansion.
69
  /// FIXME: Ideally re-used instructions would not be added to
70
  /// InsertedValues/InsertedPostIncValues.
71
  SmallPtrSet<Value *, 16> ReusedValues;
72
 
73
  // The induction variables generated.
74
  SmallVector<WeakVH, 2> InsertedIVs;
75
 
76
  /// A memoization of the "relevant" loop for a given SCEV.
77
  DenseMap<const SCEV *, const Loop *> RelevantLoops;
78
 
79
  /// Addrecs referring to any of the given loops are expanded in post-inc
80
  /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
81
  /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
82
  /// phi starting at 1. This is only supported in non-canonical mode.
83
  PostIncLoopSet PostIncLoops;
84
 
85
  /// When this is non-null, addrecs expanded in the loop it indicates should
86
  /// be inserted with increments at IVIncInsertPos.
87
  const Loop *IVIncInsertLoop;
88
 
89
  /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
90
  /// increment at this position.
91
  Instruction *IVIncInsertPos;
92
 
93
  /// Phis that complete an IV chain. Reuse
94
  DenseSet<AssertingVH<PHINode>> ChainedPhis;
95
 
96
  /// When true, SCEVExpander tries to expand expressions in "canonical" form.
97
  /// When false, expressions are expanded in a more literal form.
98
  ///
99
  /// In "canonical" form addrecs are expanded as arithmetic based on a
100
  /// canonical induction variable. Note that CanonicalMode doesn't guarantee
101
  /// that all expressions are expanded in "canonical" form. For some
102
  /// expressions literal mode can be preferred.
103
  bool CanonicalMode;
104
 
105
  /// When invoked from LSR, the expander is in "strength reduction" mode. The
106
  /// only difference is that phi's are only reused if they are already in
107
  /// "expanded" form.
108
  bool LSRMode;
109
 
110
  typedef IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> BuilderType;
111
  BuilderType Builder;
112
 
113
  // RAII object that stores the current insertion point and restores it when
114
  // the object is destroyed. This includes the debug location.  Duplicated
115
  // from InsertPointGuard to add SetInsertPoint() which is used to updated
116
  // InsertPointGuards stack when insert points are moved during SCEV
117
  // expansion.
118
  class SCEVInsertPointGuard {
119
    IRBuilderBase &Builder;
120
    AssertingVH<BasicBlock> Block;
121
    BasicBlock::iterator Point;
122
    DebugLoc DbgLoc;
123
    SCEVExpander *SE;
124
 
125
    SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
126
    SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
127
 
128
  public:
129
    SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
130
        : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
131
          DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
132
      SE->InsertPointGuards.push_back(this);
133
    }
134
 
135
    ~SCEVInsertPointGuard() {
136
      // These guards should always created/destroyed in FIFO order since they
137
      // are used to guard lexically scoped blocks of code in
138
      // ScalarEvolutionExpander.
139
      assert(SE->InsertPointGuards.back() == this);
140
      SE->InsertPointGuards.pop_back();
141
      Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
142
      Builder.SetCurrentDebugLocation(DbgLoc);
143
    }
144
 
145
    BasicBlock::iterator GetInsertPoint() const { return Point; }
146
    void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
147
  };
148
 
149
  /// Stack of pointers to saved insert points, used to keep insert points
150
  /// consistent when instructions are moved.
151
  SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
152
 
153
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
154
  const char *DebugType;
155
#endif
156
 
157
  friend struct SCEVVisitor<SCEVExpander, Value *>;
158
 
159
public:
160
  /// Construct a SCEVExpander in "canonical" mode.
161
  explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
162
                        const char *name, bool PreserveLCSSA = true)
163
      : SE(se), DL(DL), IVName(name), PreserveLCSSA(PreserveLCSSA),
164
        IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true),
165
        LSRMode(false),
166
        Builder(se.getContext(), InstSimplifyFolder(DL),
167
                IRBuilderCallbackInserter(
168
                    [this](Instruction *I) { rememberInstruction(I); })) {
169
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
170
    DebugType = "";
171
#endif
172
  }
173
 
174
  ~SCEVExpander() {
175
    // Make sure the insert point guard stack is consistent.
176
    assert(InsertPointGuards.empty());
177
  }
178
 
179
#ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
180
  void setDebugType(const char *s) { DebugType = s; }
181
#endif
182
 
183
  /// Erase the contents of the InsertedExpressions map so that users trying
184
  /// to expand the same expression into multiple BasicBlocks or different
185
  /// places within the same BasicBlock can do so.
186
  void clear() {
187
    InsertedExpressions.clear();
188
    InsertedValues.clear();
189
    InsertedPostIncValues.clear();
190
    ReusedValues.clear();
191
    ChainedPhis.clear();
192
    InsertedIVs.clear();
193
  }
194
 
195
  ScalarEvolution *getSE() { return &SE; }
196
  const SmallVectorImpl<WeakVH> &getInsertedIVs() const { return InsertedIVs; }
197
 
198
  /// Return a vector containing all instructions inserted during expansion.
199
  SmallVector<Instruction *, 32> getAllInsertedInstructions() const {
200
    SmallVector<Instruction *, 32> Result;
201
    for (const auto &VH : InsertedValues) {
202
      Value *V = VH;
203
      if (ReusedValues.contains(V))
204
        continue;
205
      if (auto *Inst = dyn_cast<Instruction>(V))
206
        Result.push_back(Inst);
207
    }
208
    for (const auto &VH : InsertedPostIncValues) {
209
      Value *V = VH;
210
      if (ReusedValues.contains(V))
211
        continue;
212
      if (auto *Inst = dyn_cast<Instruction>(V))
213
        Result.push_back(Inst);
214
    }
215
 
216
    return Result;
217
  }
218
 
219
  /// Return true for expressions that can't be evaluated at runtime
220
  /// within given \b Budget.
221
  ///
222
  /// \p At is a parameter which specifies point in code where user is going to
223
  /// expand these expressions. Sometimes this knowledge can lead to
224
  /// a less pessimistic cost estimation.
225
  bool isHighCostExpansion(ArrayRef<const SCEV *> Exprs, Loop *L,
226
                           unsigned Budget, const TargetTransformInfo *TTI,
227
                           const Instruction *At) {
228
    assert(TTI && "This function requires TTI to be provided.");
229
    assert(At && "This function requires At instruction to be provided.");
230
    if (!TTI)      // In assert-less builds, avoid crashing
231
      return true; // by always claiming to be high-cost.
232
    SmallVector<SCEVOperand, 8> Worklist;
233
    SmallPtrSet<const SCEV *, 8> Processed;
234
    InstructionCost Cost = 0;
235
    unsigned ScaledBudget = Budget * TargetTransformInfo::TCC_Basic;
236
    for (auto *Expr : Exprs)
237
      Worklist.emplace_back(-1, -1, Expr);
238
    while (!Worklist.empty()) {
239
      const SCEVOperand WorkItem = Worklist.pop_back_val();
240
      if (isHighCostExpansionHelper(WorkItem, L, *At, Cost, ScaledBudget, *TTI,
241
                                    Processed, Worklist))
242
        return true;
243
    }
244
    assert(Cost <= ScaledBudget && "Should have returned from inner loop.");
245
    return false;
246
  }
247
 
248
  /// Return the induction variable increment's IV operand.
249
  Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
250
                               bool allowScale);
251
 
252
  /// Utility for hoisting \p IncV (with all subexpressions requried for its
253
  /// computation) before \p InsertPos. If \p RecomputePoisonFlags is set, drops
254
  /// all poison-generating flags from instructions being hoisted and tries to
255
  /// re-infer them in the new location. It should be used when we are going to
256
  /// introduce a new use in the new position that didn't exist before, and may
257
  /// trigger new UB in case of poison.
258
  bool hoistIVInc(Instruction *IncV, Instruction *InsertPos,
259
                  bool RecomputePoisonFlags = false);
260
 
261
  /// replace congruent phis with their most canonical representative. Return
262
  /// the number of phis eliminated.
263
  unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
264
                               SmallVectorImpl<WeakTrackingVH> &DeadInsts,
265
                               const TargetTransformInfo *TTI = nullptr);
266
 
267
  /// Return true if the given expression is safe to expand in the sense that
268
  /// all materialized values are safe to speculate anywhere their operands are
269
  /// defined, and the expander is capable of expanding the expression.
270
  bool isSafeToExpand(const SCEV *S) const;
271
 
272
  /// Return true if the given expression is safe to expand in the sense that
273
  /// all materialized values are defined and safe to speculate at the specified
274
  /// location and their operands are defined at this location.
275
  bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint) const;
276
 
277
  /// Insert code to directly compute the specified SCEV expression into the
278
  /// program.  The code is inserted into the specified block.
279
  Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I) {
280
    return expandCodeForImpl(SH, Ty, I);
281
  }
282
 
283
  /// Insert code to directly compute the specified SCEV expression into the
284
  /// program.  The code is inserted into the SCEVExpander's current
285
  /// insertion point. If a type is specified, the result will be expanded to
286
  /// have that type, with a cast if necessary.
287
  Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr) {
288
    return expandCodeForImpl(SH, Ty);
289
  }
290
 
291
  /// Generates a code sequence that evaluates this predicate.  The inserted
292
  /// instructions will be at position \p Loc.  The result will be of type i1
293
  /// and will have a value of 0 when the predicate is false and 1 otherwise.
294
  Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
295
 
296
  /// A specialized variant of expandCodeForPredicate, handling the case when
297
  /// we are expanding code for a SCEVComparePredicate.
298
  Value *expandComparePredicate(const SCEVComparePredicate *Pred,
299
                                Instruction *Loc);
300
 
301
  /// Generates code that evaluates if the \p AR expression will overflow.
302
  Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
303
                               bool Signed);
304
 
305
  /// A specialized variant of expandCodeForPredicate, handling the case when
306
  /// we are expanding code for a SCEVWrapPredicate.
307
  Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
308
 
309
  /// A specialized variant of expandCodeForPredicate, handling the case when
310
  /// we are expanding code for a SCEVUnionPredicate.
311
  Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc);
312
 
313
  /// Set the current IV increment loop and position.
314
  void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
315
    assert(!CanonicalMode &&
316
           "IV increment positions are not supported in CanonicalMode");
317
    IVIncInsertLoop = L;
318
    IVIncInsertPos = Pos;
319
  }
320
 
321
  /// Enable post-inc expansion for addrecs referring to the given
322
  /// loops. Post-inc expansion is only supported in non-canonical mode.
323
  void setPostInc(const PostIncLoopSet &L) {
324
    assert(!CanonicalMode &&
325
           "Post-inc expansion is not supported in CanonicalMode");
326
    PostIncLoops = L;
327
  }
328
 
329
  /// Disable all post-inc expansion.
330
  void clearPostInc() {
331
    PostIncLoops.clear();
332
 
333
    // When we change the post-inc loop set, cached expansions may no
334
    // longer be valid.
335
    InsertedPostIncValues.clear();
336
  }
337
 
338
  /// Disable the behavior of expanding expressions in canonical form rather
339
  /// than in a more literal form. Non-canonical mode is useful for late
340
  /// optimization passes.
341
  void disableCanonicalMode() { CanonicalMode = false; }
342
 
343
  void enableLSRMode() { LSRMode = true; }
344
 
345
  /// Set the current insertion point. This is useful if multiple calls to
346
  /// expandCodeFor() are going to be made with the same insert point and the
347
  /// insert point may be moved during one of the expansions (e.g. if the
348
  /// insert point is not a block terminator).
349
  void setInsertPoint(Instruction *IP) {
350
    assert(IP);
351
    Builder.SetInsertPoint(IP);
352
  }
353
 
354
  /// Clear the current insertion point. This is useful if the instruction
355
  /// that had been serving as the insertion point may have been deleted.
356
  void clearInsertPoint() { Builder.ClearInsertionPoint(); }
357
 
358
  /// Set location information used by debugging information.
359
  void SetCurrentDebugLocation(DebugLoc L) {
360
    Builder.SetCurrentDebugLocation(std::move(L));
361
  }
362
 
363
  /// Get location information used by debugging information.
364
  DebugLoc getCurrentDebugLocation() const {
365
    return Builder.getCurrentDebugLocation();
366
  }
367
 
368
  /// Return true if the specified instruction was inserted by the code
369
  /// rewriter.  If so, the client should not modify the instruction. Note that
370
  /// this also includes instructions re-used during expansion.
371
  bool isInsertedInstruction(Instruction *I) const {
372
    return InsertedValues.count(I) || InsertedPostIncValues.count(I);
373
  }
374
 
375
  void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
376
 
377
  /// Try to find the ValueOffsetPair for S. The function is mainly used to
378
  /// check whether S can be expanded cheaply.  If this returns a non-None
379
  /// value, we know we can codegen the `ValueOffsetPair` into a suitable
380
  /// expansion identical with S so that S can be expanded cheaply.
381
  ///
382
  /// L is a hint which tells in which loop to look for the suitable value.
383
  /// On success return value which is equivalent to the expanded S at point
384
  /// At. Return nullptr if value was not found.
385
  ///
386
  /// Note that this function does not perform an exhaustive search. I.e if it
387
  /// didn't find any value it does not mean that there is no such value.
388
  ///
389
  Value *getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
390
                                     Loop *L);
391
 
392
  /// Returns a suitable insert point after \p I, that dominates \p
393
  /// MustDominate. Skips instructions inserted by the expander.
394
  BasicBlock::iterator findInsertPointAfter(Instruction *I,
395
                                            Instruction *MustDominate) const;
396
 
397
private:
398
  LLVMContext &getContext() const { return SE.getContext(); }
399
 
400
  /// Insert code to directly compute the specified SCEV expression into the
401
  /// program. The code is inserted into the SCEVExpander's current
402
  /// insertion point. If a type is specified, the result will be expanded to
403
  /// have that type, with a cast if necessary. If \p Root is true, this
404
  /// indicates that \p SH is the top-level expression to expand passed from
405
  /// an external client call.
406
  Value *expandCodeForImpl(const SCEV *SH, Type *Ty);
407
 
408
  /// Insert code to directly compute the specified SCEV expression into the
409
  /// program. The code is inserted into the specified block. If \p
410
  /// Root is true, this indicates that \p SH is the top-level expression to
411
  /// expand passed from an external client call.
412
  Value *expandCodeForImpl(const SCEV *SH, Type *Ty, Instruction *I);
413
 
414
  /// Recursive helper function for isHighCostExpansion.
415
  bool isHighCostExpansionHelper(const SCEVOperand &WorkItem, Loop *L,
416
                                 const Instruction &At, InstructionCost &Cost,
417
                                 unsigned Budget,
418
                                 const TargetTransformInfo &TTI,
419
                                 SmallPtrSetImpl<const SCEV *> &Processed,
420
                                 SmallVectorImpl<SCEVOperand> &Worklist);
421
 
422
  /// Insert the specified binary operator, doing a small amount of work to
423
  /// avoid inserting an obviously redundant operation, and hoisting to an
424
  /// outer loop when the opportunity is there and it is safe.
425
  Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
426
                     SCEV::NoWrapFlags Flags, bool IsSafeToHoist);
427
 
428
  /// We want to cast \p V. What would be the best place for such a cast?
429
  BasicBlock::iterator GetOptimalInsertionPointForCastOf(Value *V) const;
430
 
431
  /// Arrange for there to be a cast of V to Ty at IP, reusing an existing
432
  /// cast if a suitable one exists, moving an existing cast if a suitable one
433
  /// exists but isn't in the right place, or creating a new one.
434
  Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op,
435
                           BasicBlock::iterator IP);
436
 
437
  /// Insert a cast of V to the specified type, which must be possible with a
438
  /// noop cast, doing what we can to share the casts.
439
  Value *InsertNoopCastOfTo(Value *V, Type *Ty);
440
 
441
  /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
442
  /// ptrtoint+arithmetic+inttoptr.
443
  Value *expandAddToGEP(const SCEV *const *op_begin, const SCEV *const *op_end,
444
                        PointerType *PTy, Type *Ty, Value *V);
445
  Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V);
446
 
447
  /// Find a previous Value in ExprValueMap for expand.
448
  Value *FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
449
 
450
  Value *expand(const SCEV *S);
451
 
452
  /// Determine the most "relevant" loop for the given SCEV.
453
  const Loop *getRelevantLoop(const SCEV *);
454
 
455
  Value *expandMinMaxExpr(const SCEVNAryExpr *S, Intrinsic::ID IntrinID,
456
                          Twine Name, bool IsSequential = false);
457
 
458
  Value *visitConstant(const SCEVConstant *S) { return S->getValue(); }
459
 
460
  Value *visitPtrToIntExpr(const SCEVPtrToIntExpr *S);
461
 
462
  Value *visitTruncateExpr(const SCEVTruncateExpr *S);
463
 
464
  Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
465
 
466
  Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
467
 
468
  Value *visitAddExpr(const SCEVAddExpr *S);
469
 
470
  Value *visitMulExpr(const SCEVMulExpr *S);
471
 
472
  Value *visitUDivExpr(const SCEVUDivExpr *S);
473
 
474
  Value *visitAddRecExpr(const SCEVAddRecExpr *S);
475
 
476
  Value *visitSMaxExpr(const SCEVSMaxExpr *S);
477
 
478
  Value *visitUMaxExpr(const SCEVUMaxExpr *S);
479
 
480
  Value *visitSMinExpr(const SCEVSMinExpr *S);
481
 
482
  Value *visitUMinExpr(const SCEVUMinExpr *S);
483
 
484
  Value *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S);
485
 
486
  Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); }
487
 
488
  void rememberInstruction(Value *I);
489
 
490
  bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
491
 
492
  bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
493
 
494
  Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
495
  PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
496
                                     const Loop *L, Type *ExpandTy, Type *IntTy,
497
                                     Type *&TruncTy, bool &InvertStep);
498
  Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy,
499
                     Type *IntTy, bool useSubtract);
500
 
501
  void fixupInsertPoints(Instruction *I);
502
 
503
  /// Create LCSSA PHIs for \p V, if it is required for uses at the Builder's
504
  /// current insertion point.
505
  Value *fixupLCSSAFormFor(Value *V);
506
};
507
 
508
/// Helper to remove instructions inserted during SCEV expansion, unless they
509
/// are marked as used.
510
class SCEVExpanderCleaner {
511
  SCEVExpander &Expander;
512
 
513
  /// Indicates whether the result of the expansion is used. If false, the
514
  /// instructions added during expansion are removed.
515
  bool ResultUsed;
516
 
517
public:
518
  SCEVExpanderCleaner(SCEVExpander &Expander)
519
      : Expander(Expander), ResultUsed(false) {}
520
 
521
  ~SCEVExpanderCleaner() { cleanup(); }
522
 
523
  /// Indicate that the result of the expansion is used.
524
  void markResultUsed() { ResultUsed = true; }
525
 
526
  void cleanup();
527
};
528
} // namespace llvm
529
 
530
#endif