Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | /// \file |
||
| 10 | /// This file provides the interface for the sampled PGO profile loader base |
||
| 11 | /// implementation. |
||
| 12 | // |
||
| 13 | //===----------------------------------------------------------------------===// |
||
| 14 | |||
| 15 | #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
||
| 16 | #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
||
| 17 | |||
| 18 | #include "llvm/ADT/ArrayRef.h" |
||
| 19 | #include "llvm/ADT/DenseMap.h" |
||
| 20 | #include "llvm/ADT/DenseSet.h" |
||
| 21 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 22 | #include "llvm/ADT/SmallSet.h" |
||
| 23 | #include "llvm/ADT/SmallVector.h" |
||
| 24 | #include "llvm/Analysis/LoopInfo.h" |
||
| 25 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
||
| 26 | #include "llvm/Analysis/PostDominators.h" |
||
| 27 | #include "llvm/IR/BasicBlock.h" |
||
| 28 | #include "llvm/IR/CFG.h" |
||
| 29 | #include "llvm/IR/DebugInfoMetadata.h" |
||
| 30 | #include "llvm/IR/DebugLoc.h" |
||
| 31 | #include "llvm/IR/Dominators.h" |
||
| 32 | #include "llvm/IR/Function.h" |
||
| 33 | #include "llvm/IR/Instruction.h" |
||
| 34 | #include "llvm/IR/Instructions.h" |
||
| 35 | #include "llvm/IR/Module.h" |
||
| 36 | #include "llvm/ProfileData/SampleProf.h" |
||
| 37 | #include "llvm/ProfileData/SampleProfReader.h" |
||
| 38 | #include "llvm/Support/CommandLine.h" |
||
| 39 | #include "llvm/Support/GenericDomTree.h" |
||
| 40 | #include "llvm/Support/raw_ostream.h" |
||
| 41 | #include "llvm/Transforms/Utils/SampleProfileInference.h" |
||
| 42 | #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" |
||
| 43 | |||
| 44 | namespace llvm { |
||
| 45 | using namespace sampleprof; |
||
| 46 | using namespace sampleprofutil; |
||
| 47 | using ProfileCount = Function::ProfileCount; |
||
| 48 | |||
| 49 | #define DEBUG_TYPE "sample-profile-impl" |
||
| 50 | |||
| 51 | namespace afdo_detail { |
||
| 52 | |||
| 53 | template <typename BlockT> struct IRTraits; |
||
| 54 | template <> struct IRTraits<BasicBlock> { |
||
| 55 | using InstructionT = Instruction; |
||
| 56 | using BasicBlockT = BasicBlock; |
||
| 57 | using FunctionT = Function; |
||
| 58 | using BlockFrequencyInfoT = BlockFrequencyInfo; |
||
| 59 | using LoopT = Loop; |
||
| 60 | using LoopInfoPtrT = std::unique_ptr<LoopInfo>; |
||
| 61 | using DominatorTreePtrT = std::unique_ptr<DominatorTree>; |
||
| 62 | using PostDominatorTreeT = PostDominatorTree; |
||
| 63 | using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>; |
||
| 64 | using OptRemarkEmitterT = OptimizationRemarkEmitter; |
||
| 65 | using OptRemarkAnalysisT = OptimizationRemarkAnalysis; |
||
| 66 | using PredRangeT = pred_range; |
||
| 67 | using SuccRangeT = succ_range; |
||
| 68 | static Function &getFunction(Function &F) { return F; } |
||
| 69 | static const BasicBlock *getEntryBB(const Function *F) { |
||
| 70 | return &F->getEntryBlock(); |
||
| 71 | } |
||
| 72 | static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); } |
||
| 73 | static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); } |
||
| 74 | }; |
||
| 75 | |||
| 76 | } // end namespace afdo_detail |
||
| 77 | |||
| 78 | extern cl::opt<bool> SampleProfileUseProfi; |
||
| 79 | |||
| 80 | template <typename BT> class SampleProfileLoaderBaseImpl { |
||
| 81 | public: |
||
| 82 | SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName) |
||
| 83 | : Filename(Name), RemappingFilename(RemapName) {} |
||
| 84 | void dump() { Reader->dump(); } |
||
| 85 | |||
| 86 | using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT; |
||
| 87 | using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT; |
||
| 88 | using BlockFrequencyInfoT = |
||
| 89 | typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT; |
||
| 90 | using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT; |
||
| 91 | using LoopT = typename afdo_detail::IRTraits<BT>::LoopT; |
||
| 92 | using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT; |
||
| 93 | using DominatorTreePtrT = |
||
| 94 | typename afdo_detail::IRTraits<BT>::DominatorTreePtrT; |
||
| 95 | using PostDominatorTreePtrT = |
||
| 96 | typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT; |
||
| 97 | using PostDominatorTreeT = |
||
| 98 | typename afdo_detail::IRTraits<BT>::PostDominatorTreeT; |
||
| 99 | using OptRemarkEmitterT = |
||
| 100 | typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT; |
||
| 101 | using OptRemarkAnalysisT = |
||
| 102 | typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT; |
||
| 103 | using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT; |
||
| 104 | using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT; |
||
| 105 | |||
| 106 | using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>; |
||
| 107 | using EquivalenceClassMap = |
||
| 108 | DenseMap<const BasicBlockT *, const BasicBlockT *>; |
||
| 109 | using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>; |
||
| 110 | using EdgeWeightMap = DenseMap<Edge, uint64_t>; |
||
| 111 | using BlockEdgeMap = |
||
| 112 | DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>; |
||
| 113 | |||
| 114 | protected: |
||
| 115 | ~SampleProfileLoaderBaseImpl() = default; |
||
| 116 | friend class SampleCoverageTracker; |
||
| 117 | |||
| 118 | Function &getFunction(FunctionT &F) { |
||
| 119 | return afdo_detail::IRTraits<BT>::getFunction(F); |
||
| 120 | } |
||
| 121 | const BasicBlockT *getEntryBB(const FunctionT *F) { |
||
| 122 | return afdo_detail::IRTraits<BT>::getEntryBB(F); |
||
| 123 | } |
||
| 124 | PredRangeT getPredecessors(BasicBlockT *BB) { |
||
| 125 | return afdo_detail::IRTraits<BT>::getPredecessors(BB); |
||
| 126 | } |
||
| 127 | SuccRangeT getSuccessors(BasicBlockT *BB) { |
||
| 128 | return afdo_detail::IRTraits<BT>::getSuccessors(BB); |
||
| 129 | } |
||
| 130 | |||
| 131 | unsigned getFunctionLoc(FunctionT &Func); |
||
| 132 | virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst); |
||
| 133 | ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst); |
||
| 134 | ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB); |
||
| 135 | mutable DenseMap<const DILocation *, const FunctionSamples *> |
||
| 136 | DILocation2SampleMap; |
||
| 137 | virtual const FunctionSamples * |
||
| 138 | findFunctionSamples(const InstructionT &I) const; |
||
| 139 | void printEdgeWeight(raw_ostream &OS, Edge E); |
||
| 140 | void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const; |
||
| 141 | void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB); |
||
| 142 | bool computeBlockWeights(FunctionT &F); |
||
| 143 | void findEquivalenceClasses(FunctionT &F); |
||
| 144 | void findEquivalencesFor(BasicBlockT *BB1, |
||
| 145 | ArrayRef<BasicBlockT *> Descendants, |
||
| 146 | PostDominatorTreeT *DomTree); |
||
| 147 | void propagateWeights(FunctionT &F); |
||
| 148 | void applyProfi(FunctionT &F, BlockEdgeMap &Successors, |
||
| 149 | BlockWeightMap &SampleBlockWeights, |
||
| 150 | BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights); |
||
| 151 | uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); |
||
| 152 | void buildEdges(FunctionT &F); |
||
| 153 | bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount); |
||
| 154 | void clearFunctionData(bool ResetDT = true); |
||
| 155 | void computeDominanceAndLoopInfo(FunctionT &F); |
||
| 156 | bool |
||
| 157 | computeAndPropagateWeights(FunctionT &F, |
||
| 158 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
||
| 159 | void initWeightPropagation(FunctionT &F, |
||
| 160 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
||
| 161 | void |
||
| 162 | finalizeWeightPropagation(FunctionT &F, |
||
| 163 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
||
| 164 | void emitCoverageRemarks(FunctionT &F); |
||
| 165 | |||
| 166 | /// Map basic blocks to their computed weights. |
||
| 167 | /// |
||
| 168 | /// The weight of a basic block is defined to be the maximum |
||
| 169 | /// of all the instruction weights in that block. |
||
| 170 | BlockWeightMap BlockWeights; |
||
| 171 | |||
| 172 | /// Map edges to their computed weights. |
||
| 173 | /// |
||
| 174 | /// Edge weights are computed by propagating basic block weights in |
||
| 175 | /// SampleProfile::propagateWeights. |
||
| 176 | EdgeWeightMap EdgeWeights; |
||
| 177 | |||
| 178 | /// Set of visited blocks during propagation. |
||
| 179 | SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks; |
||
| 180 | |||
| 181 | /// Set of visited edges during propagation. |
||
| 182 | SmallSet<Edge, 32> VisitedEdges; |
||
| 183 | |||
| 184 | /// Equivalence classes for block weights. |
||
| 185 | /// |
||
| 186 | /// Two blocks BB1 and BB2 are in the same equivalence class if they |
||
| 187 | /// dominate and post-dominate each other, and they are in the same loop |
||
| 188 | /// nest. When this happens, the two blocks are guaranteed to execute |
||
| 189 | /// the same number of times. |
||
| 190 | EquivalenceClassMap EquivalenceClass; |
||
| 191 | |||
| 192 | /// Dominance, post-dominance and loop information. |
||
| 193 | DominatorTreePtrT DT; |
||
| 194 | PostDominatorTreePtrT PDT; |
||
| 195 | LoopInfoPtrT LI; |
||
| 196 | |||
| 197 | /// Predecessors for each basic block in the CFG. |
||
| 198 | BlockEdgeMap Predecessors; |
||
| 199 | |||
| 200 | /// Successors for each basic block in the CFG. |
||
| 201 | BlockEdgeMap Successors; |
||
| 202 | |||
| 203 | /// Profile coverage tracker. |
||
| 204 | SampleCoverageTracker CoverageTracker; |
||
| 205 | |||
| 206 | /// Profile reader object. |
||
| 207 | std::unique_ptr<SampleProfileReader> Reader; |
||
| 208 | |||
| 209 | /// Samples collected for the body of this function. |
||
| 210 | FunctionSamples *Samples = nullptr; |
||
| 211 | |||
| 212 | /// Name of the profile file to load. |
||
| 213 | std::string Filename; |
||
| 214 | |||
| 215 | /// Name of the profile remapping file to load. |
||
| 216 | std::string RemappingFilename; |
||
| 217 | |||
| 218 | /// Profile Summary Info computed from sample profile. |
||
| 219 | ProfileSummaryInfo *PSI = nullptr; |
||
| 220 | |||
| 221 | /// Optimization Remark Emitter used to emit diagnostic remarks. |
||
| 222 | OptRemarkEmitterT *ORE = nullptr; |
||
| 223 | }; |
||
| 224 | |||
| 225 | /// Clear all the per-function data used to load samples and propagate weights. |
||
| 226 | template <typename BT> |
||
| 227 | void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) { |
||
| 228 | BlockWeights.clear(); |
||
| 229 | EdgeWeights.clear(); |
||
| 230 | VisitedBlocks.clear(); |
||
| 231 | VisitedEdges.clear(); |
||
| 232 | EquivalenceClass.clear(); |
||
| 233 | if (ResetDT) { |
||
| 234 | DT = nullptr; |
||
| 235 | PDT = nullptr; |
||
| 236 | LI = nullptr; |
||
| 237 | } |
||
| 238 | Predecessors.clear(); |
||
| 239 | Successors.clear(); |
||
| 240 | CoverageTracker.clear(); |
||
| 241 | } |
||
| 242 | |||
| 243 | #ifndef NDEBUG |
||
| 244 | /// Print the weight of edge \p E on stream \p OS. |
||
| 245 | /// |
||
| 246 | /// \param OS Stream to emit the output to. |
||
| 247 | /// \param E Edge to print. |
||
| 248 | template <typename BT> |
||
| 249 | void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) { |
||
| 250 | OS << "weight[" << E.first->getName() << "->" << E.second->getName() |
||
| 251 | << "]: " << EdgeWeights[E] << "\n"; |
||
| 252 | } |
||
| 253 | |||
| 254 | /// Print the equivalence class of block \p BB on stream \p OS. |
||
| 255 | /// |
||
| 256 | /// \param OS Stream to emit the output to. |
||
| 257 | /// \param BB Block to print. |
||
| 258 | template <typename BT> |
||
| 259 | void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence( |
||
| 260 | raw_ostream &OS, const BasicBlockT *BB) { |
||
| 261 | const BasicBlockT *Equiv = EquivalenceClass[BB]; |
||
| 262 | OS << "equivalence[" << BB->getName() |
||
| 263 | << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; |
||
| 264 | } |
||
| 265 | |||
| 266 | /// Print the weight of block \p BB on stream \p OS. |
||
| 267 | /// |
||
| 268 | /// \param OS Stream to emit the output to. |
||
| 269 | /// \param BB Block to print. |
||
| 270 | template <typename BT> |
||
| 271 | void SampleProfileLoaderBaseImpl<BT>::printBlockWeight( |
||
| 272 | raw_ostream &OS, const BasicBlockT *BB) const { |
||
| 273 | const auto &I = BlockWeights.find(BB); |
||
| 274 | uint64_t W = (I == BlockWeights.end() ? 0 : I->second); |
||
| 275 | OS << "weight[" << BB->getName() << "]: " << W << "\n"; |
||
| 276 | } |
||
| 277 | #endif |
||
| 278 | |||
| 279 | /// Get the weight for an instruction. |
||
| 280 | /// |
||
| 281 | /// The "weight" of an instruction \p Inst is the number of samples |
||
| 282 | /// collected on that instruction at runtime. To retrieve it, we |
||
| 283 | /// need to compute the line number of \p Inst relative to the start of its |
||
| 284 | /// function. We use HeaderLineno to compute the offset. We then |
||
| 285 | /// look up the samples collected for \p Inst using BodySamples. |
||
| 286 | /// |
||
| 287 | /// \param Inst Instruction to query. |
||
| 288 | /// |
||
| 289 | /// \returns the weight of \p Inst. |
||
| 290 | template <typename BT> |
||
| 291 | ErrorOr<uint64_t> |
||
| 292 | SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) { |
||
| 293 | return getInstWeightImpl(Inst); |
||
| 294 | } |
||
| 295 | |||
| 296 | template <typename BT> |
||
| 297 | ErrorOr<uint64_t> |
||
| 298 | SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) { |
||
| 299 | const FunctionSamples *FS = findFunctionSamples(Inst); |
||
| 300 | if (!FS) |
||
| 301 | return std::error_code(); |
||
| 302 | |||
| 303 | const DebugLoc &DLoc = Inst.getDebugLoc(); |
||
| 304 | if (!DLoc) |
||
| 305 | return std::error_code(); |
||
| 306 | |||
| 307 | const DILocation *DIL = DLoc; |
||
| 308 | uint32_t LineOffset = FunctionSamples::getOffset(DIL); |
||
| 309 | uint32_t Discriminator; |
||
| 310 | if (EnableFSDiscriminator) |
||
| 311 | Discriminator = DIL->getDiscriminator(); |
||
| 312 | else |
||
| 313 | Discriminator = DIL->getBaseDiscriminator(); |
||
| 314 | |||
| 315 | ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); |
||
| 316 | if (R) { |
||
| 317 | bool FirstMark = |
||
| 318 | CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); |
||
| 319 | if (FirstMark) { |
||
| 320 | ORE->emit([&]() { |
||
| 321 | OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst); |
||
| 322 | Remark << "Applied " << ore::NV("NumSamples", *R); |
||
| 323 | Remark << " samples from profile (offset: "; |
||
| 324 | Remark << ore::NV("LineOffset", LineOffset); |
||
| 325 | if (Discriminator) { |
||
| 326 | Remark << "."; |
||
| 327 | Remark << ore::NV("Discriminator", Discriminator); |
||
| 328 | } |
||
| 329 | Remark << ")"; |
||
| 330 | return Remark; |
||
| 331 | }); |
||
| 332 | } |
||
| 333 | LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." << Discriminator << ":" |
||
| 334 | << Inst << " (line offset: " << LineOffset << "." |
||
| 335 | << Discriminator << " - weight: " << R.get() << ")\n"); |
||
| 336 | } |
||
| 337 | return R; |
||
| 338 | } |
||
| 339 | |||
| 340 | /// Compute the weight of a basic block. |
||
| 341 | /// |
||
| 342 | /// The weight of basic block \p BB is the maximum weight of all the |
||
| 343 | /// instructions in BB. |
||
| 344 | /// |
||
| 345 | /// \param BB The basic block to query. |
||
| 346 | /// |
||
| 347 | /// \returns the weight for \p BB. |
||
| 348 | template <typename BT> |
||
| 349 | ErrorOr<uint64_t> |
||
| 350 | SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) { |
||
| 351 | uint64_t Max = 0; |
||
| 352 | bool HasWeight = false; |
||
| 353 | for (auto &I : *BB) { |
||
| 354 | const ErrorOr<uint64_t> &R = getInstWeight(I); |
||
| 355 | if (R) { |
||
| 356 | Max = std::max(Max, R.get()); |
||
| 357 | HasWeight = true; |
||
| 358 | } |
||
| 359 | } |
||
| 360 | return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); |
||
| 361 | } |
||
| 362 | |||
| 363 | /// Compute and store the weights of every basic block. |
||
| 364 | /// |
||
| 365 | /// This populates the BlockWeights map by computing |
||
| 366 | /// the weights of every basic block in the CFG. |
||
| 367 | /// |
||
| 368 | /// \param F The function to query. |
||
| 369 | template <typename BT> |
||
| 370 | bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) { |
||
| 371 | bool Changed = false; |
||
| 372 | LLVM_DEBUG(dbgs() << "Block weights\n"); |
||
| 373 | for (const auto &BB : F) { |
||
| 374 | ErrorOr<uint64_t> Weight = getBlockWeight(&BB); |
||
| 375 | if (Weight) { |
||
| 376 | BlockWeights[&BB] = Weight.get(); |
||
| 377 | VisitedBlocks.insert(&BB); |
||
| 378 | Changed = true; |
||
| 379 | } |
||
| 380 | LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); |
||
| 381 | } |
||
| 382 | |||
| 383 | return Changed; |
||
| 384 | } |
||
| 385 | |||
| 386 | /// Get the FunctionSamples for an instruction. |
||
| 387 | /// |
||
| 388 | /// The FunctionSamples of an instruction \p Inst is the inlined instance |
||
| 389 | /// in which that instruction is coming from. We traverse the inline stack |
||
| 390 | /// of that instruction, and match it with the tree nodes in the profile. |
||
| 391 | /// |
||
| 392 | /// \param Inst Instruction to query. |
||
| 393 | /// |
||
| 394 | /// \returns the FunctionSamples pointer to the inlined instance. |
||
| 395 | template <typename BT> |
||
| 396 | const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples( |
||
| 397 | const InstructionT &Inst) const { |
||
| 398 | const DILocation *DIL = Inst.getDebugLoc(); |
||
| 399 | if (!DIL) |
||
| 400 | return Samples; |
||
| 401 | |||
| 402 | auto it = DILocation2SampleMap.try_emplace(DIL, nullptr); |
||
| 403 | if (it.second) { |
||
| 404 | it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper()); |
||
| 405 | } |
||
| 406 | return it.first->second; |
||
| 407 | } |
||
| 408 | |||
| 409 | /// Find equivalence classes for the given block. |
||
| 410 | /// |
||
| 411 | /// This finds all the blocks that are guaranteed to execute the same |
||
| 412 | /// number of times as \p BB1. To do this, it traverses all the |
||
| 413 | /// descendants of \p BB1 in the dominator or post-dominator tree. |
||
| 414 | /// |
||
| 415 | /// A block BB2 will be in the same equivalence class as \p BB1 if |
||
| 416 | /// the following holds: |
||
| 417 | /// |
||
| 418 | /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 |
||
| 419 | /// is a descendant of \p BB1 in the dominator tree, then BB2 should |
||
| 420 | /// dominate BB1 in the post-dominator tree. |
||
| 421 | /// |
||
| 422 | /// 2- Both BB2 and \p BB1 must be in the same loop. |
||
| 423 | /// |
||
| 424 | /// For every block BB2 that meets those two requirements, we set BB2's |
||
| 425 | /// equivalence class to \p BB1. |
||
| 426 | /// |
||
| 427 | /// \param BB1 Block to check. |
||
| 428 | /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. |
||
| 429 | /// \param DomTree Opposite dominator tree. If \p Descendants is filled |
||
| 430 | /// with blocks from \p BB1's dominator tree, then |
||
| 431 | /// this is the post-dominator tree, and vice versa. |
||
| 432 | template <typename BT> |
||
| 433 | void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor( |
||
| 434 | BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants, |
||
| 435 | PostDominatorTreeT *DomTree) { |
||
| 436 | const BasicBlockT *EC = EquivalenceClass[BB1]; |
||
| 437 | uint64_t Weight = BlockWeights[EC]; |
||
| 438 | for (const auto *BB2 : Descendants) { |
||
| 439 | bool IsDomParent = DomTree->dominates(BB2, BB1); |
||
| 440 | bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); |
||
| 441 | if (BB1 != BB2 && IsDomParent && IsInSameLoop) { |
||
| 442 | EquivalenceClass[BB2] = EC; |
||
| 443 | // If BB2 is visited, then the entire EC should be marked as visited. |
||
| 444 | if (VisitedBlocks.count(BB2)) { |
||
| 445 | VisitedBlocks.insert(EC); |
||
| 446 | } |
||
| 447 | |||
| 448 | // If BB2 is heavier than BB1, make BB2 have the same weight |
||
| 449 | // as BB1. |
||
| 450 | // |
||
| 451 | // Note that we don't worry about the opposite situation here |
||
| 452 | // (when BB2 is lighter than BB1). We will deal with this |
||
| 453 | // during the propagation phase. Right now, we just want to |
||
| 454 | // make sure that BB1 has the largest weight of all the |
||
| 455 | // members of its equivalence set. |
||
| 456 | Weight = std::max(Weight, BlockWeights[BB2]); |
||
| 457 | } |
||
| 458 | } |
||
| 459 | const BasicBlockT *EntryBB = getEntryBB(EC->getParent()); |
||
| 460 | if (EC == EntryBB) { |
||
| 461 | BlockWeights[EC] = Samples->getHeadSamples() + 1; |
||
| 462 | } else { |
||
| 463 | BlockWeights[EC] = Weight; |
||
| 464 | } |
||
| 465 | } |
||
| 466 | |||
| 467 | /// Find equivalence classes. |
||
| 468 | /// |
||
| 469 | /// Since samples may be missing from blocks, we can fill in the gaps by setting |
||
| 470 | /// the weights of all the blocks in the same equivalence class to the same |
||
| 471 | /// weight. To compute the concept of equivalence, we use dominance and loop |
||
| 472 | /// information. Two blocks B1 and B2 are in the same equivalence class if B1 |
||
| 473 | /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
||
| 474 | /// |
||
| 475 | /// \param F The function to query. |
||
| 476 | template <typename BT> |
||
| 477 | void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) { |
||
| 478 | SmallVector<BasicBlockT *, 8> DominatedBBs; |
||
| 479 | LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); |
||
| 480 | // Find equivalence sets based on dominance and post-dominance information. |
||
| 481 | for (auto &BB : F) { |
||
| 482 | BasicBlockT *BB1 = &BB; |
||
| 483 | |||
| 484 | // Compute BB1's equivalence class once. |
||
| 485 | if (EquivalenceClass.count(BB1)) { |
||
| 486 | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
||
| 487 | continue; |
||
| 488 | } |
||
| 489 | |||
| 490 | // By default, blocks are in their own equivalence class. |
||
| 491 | EquivalenceClass[BB1] = BB1; |
||
| 492 | |||
| 493 | // Traverse all the blocks dominated by BB1. We are looking for |
||
| 494 | // every basic block BB2 such that: |
||
| 495 | // |
||
| 496 | // 1- BB1 dominates BB2. |
||
| 497 | // 2- BB2 post-dominates BB1. |
||
| 498 | // 3- BB1 and BB2 are in the same loop nest. |
||
| 499 | // |
||
| 500 | // If all those conditions hold, it means that BB2 is executed |
||
| 501 | // as many times as BB1, so they are placed in the same equivalence |
||
| 502 | // class by making BB2's equivalence class be BB1. |
||
| 503 | DominatedBBs.clear(); |
||
| 504 | DT->getDescendants(BB1, DominatedBBs); |
||
| 505 | findEquivalencesFor(BB1, DominatedBBs, &*PDT); |
||
| 506 | |||
| 507 | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
||
| 508 | } |
||
| 509 | |||
| 510 | // Assign weights to equivalence classes. |
||
| 511 | // |
||
| 512 | // All the basic blocks in the same equivalence class will execute |
||
| 513 | // the same number of times. Since we know that the head block in |
||
| 514 | // each equivalence class has the largest weight, assign that weight |
||
| 515 | // to all the blocks in that equivalence class. |
||
| 516 | LLVM_DEBUG( |
||
| 517 | dbgs() << "\nAssign the same weight to all blocks in the same class\n"); |
||
| 518 | for (auto &BI : F) { |
||
| 519 | const BasicBlockT *BB = &BI; |
||
| 520 | const BasicBlockT *EquivBB = EquivalenceClass[BB]; |
||
| 521 | if (BB != EquivBB) |
||
| 522 | BlockWeights[BB] = BlockWeights[EquivBB]; |
||
| 523 | LLVM_DEBUG(printBlockWeight(dbgs(), BB)); |
||
| 524 | } |
||
| 525 | } |
||
| 526 | |||
| 527 | /// Visit the given edge to decide if it has a valid weight. |
||
| 528 | /// |
||
| 529 | /// If \p E has not been visited before, we copy to \p UnknownEdge |
||
| 530 | /// and increment the count of unknown edges. |
||
| 531 | /// |
||
| 532 | /// \param E Edge to visit. |
||
| 533 | /// \param NumUnknownEdges Current number of unknown edges. |
||
| 534 | /// \param UnknownEdge Set if E has not been visited before. |
||
| 535 | /// |
||
| 536 | /// \returns E's weight, if known. Otherwise, return 0. |
||
| 537 | template <typename BT> |
||
| 538 | uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E, |
||
| 539 | unsigned *NumUnknownEdges, |
||
| 540 | Edge *UnknownEdge) { |
||
| 541 | if (!VisitedEdges.count(E)) { |
||
| 542 | (*NumUnknownEdges)++; |
||
| 543 | *UnknownEdge = E; |
||
| 544 | return 0; |
||
| 545 | } |
||
| 546 | |||
| 547 | return EdgeWeights[E]; |
||
| 548 | } |
||
| 549 | |||
| 550 | /// Propagate weights through incoming/outgoing edges. |
||
| 551 | /// |
||
| 552 | /// If the weight of a basic block is known, and there is only one edge |
||
| 553 | /// with an unknown weight, we can calculate the weight of that edge. |
||
| 554 | /// |
||
| 555 | /// Similarly, if all the edges have a known count, we can calculate the |
||
| 556 | /// count of the basic block, if needed. |
||
| 557 | /// |
||
| 558 | /// \param F Function to process. |
||
| 559 | /// \param UpdateBlockCount Whether we should update basic block counts that |
||
| 560 | /// has already been annotated. |
||
| 561 | /// |
||
| 562 | /// \returns True if new weights were assigned to edges or blocks. |
||
| 563 | template <typename BT> |
||
| 564 | bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges( |
||
| 565 | FunctionT &F, bool UpdateBlockCount) { |
||
| 566 | bool Changed = false; |
||
| 567 | LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); |
||
| 568 | for (const auto &BI : F) { |
||
| 569 | const BasicBlockT *BB = &BI; |
||
| 570 | const BasicBlockT *EC = EquivalenceClass[BB]; |
||
| 571 | |||
| 572 | // Visit all the predecessor and successor edges to determine |
||
| 573 | // which ones have a weight assigned already. Note that it doesn't |
||
| 574 | // matter that we only keep track of a single unknown edge. The |
||
| 575 | // only case we are interested in handling is when only a single |
||
| 576 | // edge is unknown (see setEdgeOrBlockWeight). |
||
| 577 | for (unsigned i = 0; i < 2; i++) { |
||
| 578 | uint64_t TotalWeight = 0; |
||
| 579 | unsigned NumUnknownEdges = 0, NumTotalEdges = 0; |
||
| 580 | Edge UnknownEdge, SelfReferentialEdge, SingleEdge; |
||
| 581 | |||
| 582 | if (i == 0) { |
||
| 583 | // First, visit all predecessor edges. |
||
| 584 | NumTotalEdges = Predecessors[BB].size(); |
||
| 585 | for (auto *Pred : Predecessors[BB]) { |
||
| 586 | Edge E = std::make_pair(Pred, BB); |
||
| 587 | TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); |
||
| 588 | if (E.first == E.second) |
||
| 589 | SelfReferentialEdge = E; |
||
| 590 | } |
||
| 591 | if (NumTotalEdges == 1) { |
||
| 592 | SingleEdge = std::make_pair(Predecessors[BB][0], BB); |
||
| 593 | } |
||
| 594 | } else { |
||
| 595 | // On the second round, visit all successor edges. |
||
| 596 | NumTotalEdges = Successors[BB].size(); |
||
| 597 | for (auto *Succ : Successors[BB]) { |
||
| 598 | Edge E = std::make_pair(BB, Succ); |
||
| 599 | TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); |
||
| 600 | } |
||
| 601 | if (NumTotalEdges == 1) { |
||
| 602 | SingleEdge = std::make_pair(BB, Successors[BB][0]); |
||
| 603 | } |
||
| 604 | } |
||
| 605 | |||
| 606 | // After visiting all the edges, there are three cases that we |
||
| 607 | // can handle immediately: |
||
| 608 | // |
||
| 609 | // - All the edge weights are known (i.e., NumUnknownEdges == 0). |
||
| 610 | // In this case, we simply check that the sum of all the edges |
||
| 611 | // is the same as BB's weight. If not, we change BB's weight |
||
| 612 | // to match. Additionally, if BB had not been visited before, |
||
| 613 | // we mark it visited. |
||
| 614 | // |
||
| 615 | // - Only one edge is unknown and BB has already been visited. |
||
| 616 | // In this case, we can compute the weight of the edge by |
||
| 617 | // subtracting the total block weight from all the known |
||
| 618 | // edge weights. If the edges weight more than BB, then the |
||
| 619 | // edge of the last remaining edge is set to zero. |
||
| 620 | // |
||
| 621 | // - There exists a self-referential edge and the weight of BB is |
||
| 622 | // known. In this case, this edge can be based on BB's weight. |
||
| 623 | // We add up all the other known edges and set the weight on |
||
| 624 | // the self-referential edge as we did in the previous case. |
||
| 625 | // |
||
| 626 | // In any other case, we must continue iterating. Eventually, |
||
| 627 | // all edges will get a weight, or iteration will stop when |
||
| 628 | // it reaches SampleProfileMaxPropagateIterations. |
||
| 629 | if (NumUnknownEdges <= 1) { |
||
| 630 | uint64_t &BBWeight = BlockWeights[EC]; |
||
| 631 | if (NumUnknownEdges == 0) { |
||
| 632 | if (!VisitedBlocks.count(EC)) { |
||
| 633 | // If we already know the weight of all edges, the weight of the |
||
| 634 | // basic block can be computed. It should be no larger than the sum |
||
| 635 | // of all edge weights. |
||
| 636 | if (TotalWeight > BBWeight) { |
||
| 637 | BBWeight = TotalWeight; |
||
| 638 | Changed = true; |
||
| 639 | LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() |
||
| 640 | << " known. Set weight for block: "; |
||
| 641 | printBlockWeight(dbgs(), BB);); |
||
| 642 | } |
||
| 643 | } else if (NumTotalEdges == 1 && |
||
| 644 | EdgeWeights[SingleEdge] < BlockWeights[EC]) { |
||
| 645 | // If there is only one edge for the visited basic block, use the |
||
| 646 | // block weight to adjust edge weight if edge weight is smaller. |
||
| 647 | EdgeWeights[SingleEdge] = BlockWeights[EC]; |
||
| 648 | Changed = true; |
||
| 649 | } |
||
| 650 | } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { |
||
| 651 | // If there is a single unknown edge and the block has been |
||
| 652 | // visited, then we can compute E's weight. |
||
| 653 | if (BBWeight >= TotalWeight) |
||
| 654 | EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; |
||
| 655 | else |
||
| 656 | EdgeWeights[UnknownEdge] = 0; |
||
| 657 | const BasicBlockT *OtherEC; |
||
| 658 | if (i == 0) |
||
| 659 | OtherEC = EquivalenceClass[UnknownEdge.first]; |
||
| 660 | else |
||
| 661 | OtherEC = EquivalenceClass[UnknownEdge.second]; |
||
| 662 | // Edge weights should never exceed the BB weights it connects. |
||
| 663 | if (VisitedBlocks.count(OtherEC) && |
||
| 664 | EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) |
||
| 665 | EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; |
||
| 666 | VisitedEdges.insert(UnknownEdge); |
||
| 667 | Changed = true; |
||
| 668 | LLVM_DEBUG(dbgs() << "Set weight for edge: "; |
||
| 669 | printEdgeWeight(dbgs(), UnknownEdge)); |
||
| 670 | } |
||
| 671 | } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { |
||
| 672 | // If a block Weights 0, all its in/out edges should weight 0. |
||
| 673 | if (i == 0) { |
||
| 674 | for (auto *Pred : Predecessors[BB]) { |
||
| 675 | Edge E = std::make_pair(Pred, BB); |
||
| 676 | EdgeWeights[E] = 0; |
||
| 677 | VisitedEdges.insert(E); |
||
| 678 | } |
||
| 679 | } else { |
||
| 680 | for (auto *Succ : Successors[BB]) { |
||
| 681 | Edge E = std::make_pair(BB, Succ); |
||
| 682 | EdgeWeights[E] = 0; |
||
| 683 | VisitedEdges.insert(E); |
||
| 684 | } |
||
| 685 | } |
||
| 686 | } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { |
||
| 687 | uint64_t &BBWeight = BlockWeights[BB]; |
||
| 688 | // We have a self-referential edge and the weight of BB is known. |
||
| 689 | if (BBWeight >= TotalWeight) |
||
| 690 | EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; |
||
| 691 | else |
||
| 692 | EdgeWeights[SelfReferentialEdge] = 0; |
||
| 693 | VisitedEdges.insert(SelfReferentialEdge); |
||
| 694 | Changed = true; |
||
| 695 | LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; |
||
| 696 | printEdgeWeight(dbgs(), SelfReferentialEdge)); |
||
| 697 | } |
||
| 698 | if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { |
||
| 699 | BlockWeights[EC] = TotalWeight; |
||
| 700 | VisitedBlocks.insert(EC); |
||
| 701 | Changed = true; |
||
| 702 | } |
||
| 703 | } |
||
| 704 | } |
||
| 705 | |||
| 706 | return Changed; |
||
| 707 | } |
||
| 708 | |||
| 709 | /// Build in/out edge lists for each basic block in the CFG. |
||
| 710 | /// |
||
| 711 | /// We are interested in unique edges. If a block B1 has multiple |
||
| 712 | /// edges to another block B2, we only add a single B1->B2 edge. |
||
| 713 | template <typename BT> |
||
| 714 | void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) { |
||
| 715 | for (auto &BI : F) { |
||
| 716 | BasicBlockT *B1 = &BI; |
||
| 717 | |||
| 718 | // Add predecessors for B1. |
||
| 719 | SmallPtrSet<BasicBlockT *, 16> Visited; |
||
| 720 | if (!Predecessors[B1].empty()) |
||
| 721 | llvm_unreachable("Found a stale predecessors list in a basic block."); |
||
| 722 | for (auto *B2 : getPredecessors(B1)) |
||
| 723 | if (Visited.insert(B2).second) |
||
| 724 | Predecessors[B1].push_back(B2); |
||
| 725 | |||
| 726 | // Add successors for B1. |
||
| 727 | Visited.clear(); |
||
| 728 | if (!Successors[B1].empty()) |
||
| 729 | llvm_unreachable("Found a stale successors list in a basic block."); |
||
| 730 | for (auto *B2 : getSuccessors(B1)) |
||
| 731 | if (Visited.insert(B2).second) |
||
| 732 | Successors[B1].push_back(B2); |
||
| 733 | } |
||
| 734 | } |
||
| 735 | |||
| 736 | /// Propagate weights into edges |
||
| 737 | /// |
||
| 738 | /// The following rules are applied to every block BB in the CFG: |
||
| 739 | /// |
||
| 740 | /// - If BB has a single predecessor/successor, then the weight |
||
| 741 | /// of that edge is the weight of the block. |
||
| 742 | /// |
||
| 743 | /// - If all incoming or outgoing edges are known except one, and the |
||
| 744 | /// weight of the block is already known, the weight of the unknown |
||
| 745 | /// edge will be the weight of the block minus the sum of all the known |
||
| 746 | /// edges. If the sum of all the known edges is larger than BB's weight, |
||
| 747 | /// we set the unknown edge weight to zero. |
||
| 748 | /// |
||
| 749 | /// - If there is a self-referential edge, and the weight of the block is |
||
| 750 | /// known, the weight for that edge is set to the weight of the block |
||
| 751 | /// minus the weight of the other incoming edges to that block (if |
||
| 752 | /// known). |
||
| 753 | template <typename BT> |
||
| 754 | void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) { |
||
| 755 | // Flow-based profile inference is only usable with BasicBlock instantiation |
||
| 756 | // of SampleProfileLoaderBaseImpl. |
||
| 757 | if (SampleProfileUseProfi) { |
||
| 758 | // Prepare block sample counts for inference. |
||
| 759 | BlockWeightMap SampleBlockWeights; |
||
| 760 | for (const auto &BI : F) { |
||
| 761 | ErrorOr<uint64_t> Weight = getBlockWeight(&BI); |
||
| 762 | if (Weight) |
||
| 763 | SampleBlockWeights[&BI] = Weight.get(); |
||
| 764 | } |
||
| 765 | // Fill in BlockWeights and EdgeWeights using an inference algorithm. |
||
| 766 | applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights); |
||
| 767 | } else { |
||
| 768 | bool Changed = true; |
||
| 769 | unsigned I = 0; |
||
| 770 | |||
| 771 | // If BB weight is larger than its corresponding loop's header BB weight, |
||
| 772 | // use the BB weight to replace the loop header BB weight. |
||
| 773 | for (auto &BI : F) { |
||
| 774 | BasicBlockT *BB = &BI; |
||
| 775 | LoopT *L = LI->getLoopFor(BB); |
||
| 776 | if (!L) { |
||
| 777 | continue; |
||
| 778 | } |
||
| 779 | BasicBlockT *Header = L->getHeader(); |
||
| 780 | if (Header && BlockWeights[BB] > BlockWeights[Header]) { |
||
| 781 | BlockWeights[Header] = BlockWeights[BB]; |
||
| 782 | } |
||
| 783 | } |
||
| 784 | |||
| 785 | // Propagate until we converge or we go past the iteration limit. |
||
| 786 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
||
| 787 | Changed = propagateThroughEdges(F, false); |
||
| 788 | } |
||
| 789 | |||
| 790 | // The first propagation propagates BB counts from annotated BBs to unknown |
||
| 791 | // BBs. The 2nd propagation pass resets edges weights, and use all BB |
||
| 792 | // weights to propagate edge weights. |
||
| 793 | VisitedEdges.clear(); |
||
| 794 | Changed = true; |
||
| 795 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
||
| 796 | Changed = propagateThroughEdges(F, false); |
||
| 797 | } |
||
| 798 | |||
| 799 | // The 3rd propagation pass allows adjust annotated BB weights that are |
||
| 800 | // obviously wrong. |
||
| 801 | Changed = true; |
||
| 802 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
||
| 803 | Changed = propagateThroughEdges(F, true); |
||
| 804 | } |
||
| 805 | } |
||
| 806 | } |
||
| 807 | |||
| 808 | template <typename BT> |
||
| 809 | void SampleProfileLoaderBaseImpl<BT>::applyProfi( |
||
| 810 | FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights, |
||
| 811 | BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) { |
||
| 812 | auto Infer = SampleProfileInference<BT>(F, Successors, SampleBlockWeights); |
||
| 813 | Infer.apply(BlockWeights, EdgeWeights); |
||
| 814 | } |
||
| 815 | |||
| 816 | /// Generate branch weight metadata for all branches in \p F. |
||
| 817 | /// |
||
| 818 | /// Branch weights are computed out of instruction samples using a |
||
| 819 | /// propagation heuristic. Propagation proceeds in 3 phases: |
||
| 820 | /// |
||
| 821 | /// 1- Assignment of block weights. All the basic blocks in the function |
||
| 822 | /// are initial assigned the same weight as their most frequently |
||
| 823 | /// executed instruction. |
||
| 824 | /// |
||
| 825 | /// 2- Creation of equivalence classes. Since samples may be missing from |
||
| 826 | /// blocks, we can fill in the gaps by setting the weights of all the |
||
| 827 | /// blocks in the same equivalence class to the same weight. To compute |
||
| 828 | /// the concept of equivalence, we use dominance and loop information. |
||
| 829 | /// Two blocks B1 and B2 are in the same equivalence class if B1 |
||
| 830 | /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
||
| 831 | /// |
||
| 832 | /// 3- Propagation of block weights into edges. This uses a simple |
||
| 833 | /// propagation heuristic. The following rules are applied to every |
||
| 834 | /// block BB in the CFG: |
||
| 835 | /// |
||
| 836 | /// - If BB has a single predecessor/successor, then the weight |
||
| 837 | /// of that edge is the weight of the block. |
||
| 838 | /// |
||
| 839 | /// - If all the edges are known except one, and the weight of the |
||
| 840 | /// block is already known, the weight of the unknown edge will |
||
| 841 | /// be the weight of the block minus the sum of all the known |
||
| 842 | /// edges. If the sum of all the known edges is larger than BB's weight, |
||
| 843 | /// we set the unknown edge weight to zero. |
||
| 844 | /// |
||
| 845 | /// - If there is a self-referential edge, and the weight of the block is |
||
| 846 | /// known, the weight for that edge is set to the weight of the block |
||
| 847 | /// minus the weight of the other incoming edges to that block (if |
||
| 848 | /// known). |
||
| 849 | /// |
||
| 850 | /// Since this propagation is not guaranteed to finalize for every CFG, we |
||
| 851 | /// only allow it to proceed for a limited number of iterations (controlled |
||
| 852 | /// by -sample-profile-max-propagate-iterations). |
||
| 853 | /// |
||
| 854 | /// FIXME: Try to replace this propagation heuristic with a scheme |
||
| 855 | /// that is guaranteed to finalize. A work-list approach similar to |
||
| 856 | /// the standard value propagation algorithm used by SSA-CCP might |
||
| 857 | /// work here. |
||
| 858 | /// |
||
| 859 | /// \param F The function to query. |
||
| 860 | /// |
||
| 861 | /// \returns true if \p F was modified. Returns false, otherwise. |
||
| 862 | template <typename BT> |
||
| 863 | bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights( |
||
| 864 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
||
| 865 | bool Changed = (InlinedGUIDs.size() != 0); |
||
| 866 | |||
| 867 | // Compute basic block weights. |
||
| 868 | Changed |= computeBlockWeights(F); |
||
| 869 | |||
| 870 | if (Changed) { |
||
| 871 | // Initialize propagation. |
||
| 872 | initWeightPropagation(F, InlinedGUIDs); |
||
| 873 | |||
| 874 | // Propagate weights to all edges. |
||
| 875 | propagateWeights(F); |
||
| 876 | |||
| 877 | // Post-process propagated weights. |
||
| 878 | finalizeWeightPropagation(F, InlinedGUIDs); |
||
| 879 | } |
||
| 880 | |||
| 881 | return Changed; |
||
| 882 | } |
||
| 883 | |||
| 884 | template <typename BT> |
||
| 885 | void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation( |
||
| 886 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
||
| 887 | // Add an entry count to the function using the samples gathered at the |
||
| 888 | // function entry. |
||
| 889 | // Sets the GUIDs that are inlined in the profiled binary. This is used |
||
| 890 | // for ThinLink to make correct liveness analysis, and also make the IR |
||
| 891 | // match the profiled binary before annotation. |
||
| 892 | getFunction(F).setEntryCount( |
||
| 893 | ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), |
||
| 894 | &InlinedGUIDs); |
||
| 895 | |||
| 896 | if (!SampleProfileUseProfi) { |
||
| 897 | // Compute dominance and loop info needed for propagation. |
||
| 898 | computeDominanceAndLoopInfo(F); |
||
| 899 | |||
| 900 | // Find equivalence classes. |
||
| 901 | findEquivalenceClasses(F); |
||
| 902 | } |
||
| 903 | |||
| 904 | // Before propagation starts, build, for each block, a list of |
||
| 905 | // unique predecessors and successors. This is necessary to handle |
||
| 906 | // identical edges in multiway branches. Since we visit all blocks and all |
||
| 907 | // edges of the CFG, it is cleaner to build these lists once at the start |
||
| 908 | // of the pass. |
||
| 909 | buildEdges(F); |
||
| 910 | } |
||
| 911 | |||
| 912 | template <typename BT> |
||
| 913 | void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation( |
||
| 914 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
||
| 915 | // If we utilize a flow-based count inference, then we trust the computed |
||
| 916 | // counts and set the entry count as computed by the algorithm. This is |
||
| 917 | // primarily done to sync the counts produced by profi and BFI inference, |
||
| 918 | // which uses the entry count for mass propagation. |
||
| 919 | // If profi produces a zero-value for the entry count, we fallback to |
||
| 920 | // Samples->getHeadSamples() + 1 to avoid functions with zero count. |
||
| 921 | if (SampleProfileUseProfi) { |
||
| 922 | const BasicBlockT *EntryBB = getEntryBB(&F); |
||
| 923 | ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB); |
||
| 924 | if (BlockWeights[EntryBB] > 0) { |
||
| 925 | getFunction(F).setEntryCount( |
||
| 926 | ProfileCount(BlockWeights[EntryBB], Function::PCT_Real), |
||
| 927 | &InlinedGUIDs); |
||
| 928 | } |
||
| 929 | } |
||
| 930 | } |
||
| 931 | |||
| 932 | template <typename BT> |
||
| 933 | void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) { |
||
| 934 | // If coverage checking was requested, compute it now. |
||
| 935 | const Function &Func = getFunction(F); |
||
| 936 | if (SampleProfileRecordCoverage) { |
||
| 937 | unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); |
||
| 938 | unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); |
||
| 939 | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
||
| 940 | if (Coverage < SampleProfileRecordCoverage) { |
||
| 941 | Func.getContext().diagnose(DiagnosticInfoSampleProfile( |
||
| 942 | Func.getSubprogram()->getFilename(), getFunctionLoc(F), |
||
| 943 | Twine(Used) + " of " + Twine(Total) + " available profile records (" + |
||
| 944 | Twine(Coverage) + "%) were applied", |
||
| 945 | DS_Warning)); |
||
| 946 | } |
||
| 947 | } |
||
| 948 | |||
| 949 | if (SampleProfileSampleCoverage) { |
||
| 950 | uint64_t Used = CoverageTracker.getTotalUsedSamples(); |
||
| 951 | uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); |
||
| 952 | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
||
| 953 | if (Coverage < SampleProfileSampleCoverage) { |
||
| 954 | Func.getContext().diagnose(DiagnosticInfoSampleProfile( |
||
| 955 | Func.getSubprogram()->getFilename(), getFunctionLoc(F), |
||
| 956 | Twine(Used) + " of " + Twine(Total) + " available profile samples (" + |
||
| 957 | Twine(Coverage) + "%) were applied", |
||
| 958 | DS_Warning)); |
||
| 959 | } |
||
| 960 | } |
||
| 961 | } |
||
| 962 | |||
| 963 | /// Get the line number for the function header. |
||
| 964 | /// |
||
| 965 | /// This looks up function \p F in the current compilation unit and |
||
| 966 | /// retrieves the line number where the function is defined. This is |
||
| 967 | /// line 0 for all the samples read from the profile file. Every line |
||
| 968 | /// number is relative to this line. |
||
| 969 | /// |
||
| 970 | /// \param F Function object to query. |
||
| 971 | /// |
||
| 972 | /// \returns the line number where \p F is defined. If it returns 0, |
||
| 973 | /// it means that there is no debug information available for \p F. |
||
| 974 | template <typename BT> |
||
| 975 | unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) { |
||
| 976 | const Function &Func = getFunction(F); |
||
| 977 | if (DISubprogram *S = Func.getSubprogram()) |
||
| 978 | return S->getLine(); |
||
| 979 | |||
| 980 | if (NoWarnSampleUnused) |
||
| 981 | return 0; |
||
| 982 | |||
| 983 | // If the start of \p F is missing, emit a diagnostic to inform the user |
||
| 984 | // about the missed opportunity. |
||
| 985 | Func.getContext().diagnose(DiagnosticInfoSampleProfile( |
||
| 986 | "No debug information found in function " + Func.getName() + |
||
| 987 | ": Function profile not used", |
||
| 988 | DS_Warning)); |
||
| 989 | return 0; |
||
| 990 | } |
||
| 991 | |||
| 992 | template <typename BT> |
||
| 993 | void SampleProfileLoaderBaseImpl<BT>::computeDominanceAndLoopInfo( |
||
| 994 | FunctionT &F) { |
||
| 995 | DT.reset(new DominatorTree); |
||
| 996 | DT->recalculate(F); |
||
| 997 | |||
| 998 | PDT.reset(new PostDominatorTree(F)); |
||
| 999 | |||
| 1000 | LI.reset(new LoopInfo); |
||
| 1001 | LI->analyze(*DT); |
||
| 1002 | } |
||
| 1003 | |||
| 1004 | #undef DEBUG_TYPE |
||
| 1005 | |||
| 1006 | } // namespace llvm |
||
| 1007 | #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |