Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- InstCombiner.h - InstCombine implementation --------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// |
||
10 | /// This file provides the interface for the instcombine pass implementation. |
||
11 | /// The interface is used for generic transformations in this folder and |
||
12 | /// target specific combinations in the targets. |
||
13 | /// The visitor implementation is in \c InstCombinerImpl in |
||
14 | /// \c InstCombineInternal.h. |
||
15 | /// |
||
16 | //===----------------------------------------------------------------------===// |
||
17 | |||
18 | #ifndef LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H |
||
19 | #define LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H |
||
20 | |||
21 | #include "llvm/Analysis/InstructionSimplify.h" |
||
22 | #include "llvm/Analysis/TargetFolder.h" |
||
23 | #include "llvm/Analysis/ValueTracking.h" |
||
24 | #include "llvm/IR/IRBuilder.h" |
||
25 | #include "llvm/IR/PatternMatch.h" |
||
26 | #include "llvm/Support/Debug.h" |
||
27 | #include "llvm/Support/KnownBits.h" |
||
28 | #include <cassert> |
||
29 | |||
30 | #define DEBUG_TYPE "instcombine" |
||
31 | #include "llvm/Transforms/Utils/InstructionWorklist.h" |
||
32 | |||
33 | namespace llvm { |
||
34 | |||
35 | class AAResults; |
||
36 | class AssumptionCache; |
||
37 | class ProfileSummaryInfo; |
||
38 | class TargetLibraryInfo; |
||
39 | class TargetTransformInfo; |
||
40 | |||
41 | /// The core instruction combiner logic. |
||
42 | /// |
||
43 | /// This class provides both the logic to recursively visit instructions and |
||
44 | /// combine them. |
||
45 | class LLVM_LIBRARY_VISIBILITY InstCombiner { |
||
46 | /// Only used to call target specific intrinsic combining. |
||
47 | /// It must **NOT** be used for any other purpose, as InstCombine is a |
||
48 | /// target-independent canonicalization transform. |
||
49 | TargetTransformInfo &TTI; |
||
50 | |||
51 | public: |
||
52 | /// Maximum size of array considered when transforming. |
||
53 | uint64_t MaxArraySizeForCombine = 0; |
||
54 | |||
55 | /// An IRBuilder that automatically inserts new instructions into the |
||
56 | /// worklist. |
||
57 | using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>; |
||
58 | BuilderTy &Builder; |
||
59 | |||
60 | protected: |
||
61 | /// A worklist of the instructions that need to be simplified. |
||
62 | InstructionWorklist &Worklist; |
||
63 | |||
64 | // Mode in which we are running the combiner. |
||
65 | const bool MinimizeSize; |
||
66 | |||
67 | AAResults *AA; |
||
68 | |||
69 | // Required analyses. |
||
70 | AssumptionCache &AC; |
||
71 | TargetLibraryInfo &TLI; |
||
72 | DominatorTree &DT; |
||
73 | const DataLayout &DL; |
||
74 | const SimplifyQuery SQ; |
||
75 | OptimizationRemarkEmitter &ORE; |
||
76 | BlockFrequencyInfo *BFI; |
||
77 | ProfileSummaryInfo *PSI; |
||
78 | |||
79 | // Optional analyses. When non-null, these can both be used to do better |
||
80 | // combining and will be updated to reflect any changes. |
||
81 | LoopInfo *LI; |
||
82 | |||
83 | bool MadeIRChange = false; |
||
84 | |||
85 | public: |
||
86 | InstCombiner(InstructionWorklist &Worklist, BuilderTy &Builder, |
||
87 | bool MinimizeSize, AAResults *AA, AssumptionCache &AC, |
||
88 | TargetLibraryInfo &TLI, TargetTransformInfo &TTI, |
||
89 | DominatorTree &DT, OptimizationRemarkEmitter &ORE, |
||
90 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, |
||
91 | const DataLayout &DL, LoopInfo *LI) |
||
92 | : TTI(TTI), Builder(Builder), Worklist(Worklist), |
||
93 | MinimizeSize(MinimizeSize), AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL), |
||
94 | SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {} |
||
95 | |||
96 | virtual ~InstCombiner() = default; |
||
97 | |||
98 | /// Return the source operand of a potentially bitcasted value while |
||
99 | /// optionally checking if it has one use. If there is no bitcast or the one |
||
100 | /// use check is not met, return the input value itself. |
||
101 | static Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) { |
||
102 | if (auto *BitCast = dyn_cast<BitCastInst>(V)) |
||
103 | if (!OneUseOnly || BitCast->hasOneUse()) |
||
104 | return BitCast->getOperand(0); |
||
105 | |||
106 | // V is not a bitcast or V has more than one use and OneUseOnly is true. |
||
107 | return V; |
||
108 | } |
||
109 | |||
110 | /// Assign a complexity or rank value to LLVM Values. This is used to reduce |
||
111 | /// the amount of pattern matching needed for compares and commutative |
||
112 | /// instructions. For example, if we have: |
||
113 | /// icmp ugt X, Constant |
||
114 | /// or |
||
115 | /// xor (add X, Constant), cast Z |
||
116 | /// |
||
117 | /// We do not have to consider the commuted variants of these patterns because |
||
118 | /// canonicalization based on complexity guarantees the above ordering. |
||
119 | /// |
||
120 | /// This routine maps IR values to various complexity ranks: |
||
121 | /// 0 -> undef |
||
122 | /// 1 -> Constants |
||
123 | /// 2 -> Other non-instructions |
||
124 | /// 3 -> Arguments |
||
125 | /// 4 -> Cast and (f)neg/not instructions |
||
126 | /// 5 -> Other instructions |
||
127 | static unsigned getComplexity(Value *V) { |
||
128 | if (isa<Instruction>(V)) { |
||
129 | if (isa<CastInst>(V) || match(V, m_Neg(PatternMatch::m_Value())) || |
||
130 | match(V, m_Not(PatternMatch::m_Value())) || |
||
131 | match(V, m_FNeg(PatternMatch::m_Value()))) |
||
132 | return 4; |
||
133 | return 5; |
||
134 | } |
||
135 | if (isa<Argument>(V)) |
||
136 | return 3; |
||
137 | return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; |
||
138 | } |
||
139 | |||
140 | /// Predicate canonicalization reduces the number of patterns that need to be |
||
141 | /// matched by other transforms. For example, we may swap the operands of a |
||
142 | /// conditional branch or select to create a compare with a canonical |
||
143 | /// (inverted) predicate which is then more likely to be matched with other |
||
144 | /// values. |
||
145 | static bool isCanonicalPredicate(CmpInst::Predicate Pred) { |
||
146 | switch (Pred) { |
||
147 | case CmpInst::ICMP_NE: |
||
148 | case CmpInst::ICMP_ULE: |
||
149 | case CmpInst::ICMP_SLE: |
||
150 | case CmpInst::ICMP_UGE: |
||
151 | case CmpInst::ICMP_SGE: |
||
152 | // TODO: There are 16 FCMP predicates. Should others be (not) canonical? |
||
153 | case CmpInst::FCMP_ONE: |
||
154 | case CmpInst::FCMP_OLE: |
||
155 | case CmpInst::FCMP_OGE: |
||
156 | return false; |
||
157 | default: |
||
158 | return true; |
||
159 | } |
||
160 | } |
||
161 | |||
162 | /// Given an exploded icmp instruction, return true if the comparison only |
||
163 | /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if |
||
164 | /// the result of the comparison is true when the input value is signed. |
||
165 | static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, |
||
166 | bool &TrueIfSigned) { |
||
167 | switch (Pred) { |
||
168 | case ICmpInst::ICMP_SLT: // True if LHS s< 0 |
||
169 | TrueIfSigned = true; |
||
170 | return RHS.isZero(); |
||
171 | case ICmpInst::ICMP_SLE: // True if LHS s<= -1 |
||
172 | TrueIfSigned = true; |
||
173 | return RHS.isAllOnes(); |
||
174 | case ICmpInst::ICMP_SGT: // True if LHS s> -1 |
||
175 | TrueIfSigned = false; |
||
176 | return RHS.isAllOnes(); |
||
177 | case ICmpInst::ICMP_SGE: // True if LHS s>= 0 |
||
178 | TrueIfSigned = false; |
||
179 | return RHS.isZero(); |
||
180 | case ICmpInst::ICMP_UGT: |
||
181 | // True if LHS u> RHS and RHS == sign-bit-mask - 1 |
||
182 | TrueIfSigned = true; |
||
183 | return RHS.isMaxSignedValue(); |
||
184 | case ICmpInst::ICMP_UGE: |
||
185 | // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc) |
||
186 | TrueIfSigned = true; |
||
187 | return RHS.isMinSignedValue(); |
||
188 | case ICmpInst::ICMP_ULT: |
||
189 | // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc) |
||
190 | TrueIfSigned = false; |
||
191 | return RHS.isMinSignedValue(); |
||
192 | case ICmpInst::ICMP_ULE: |
||
193 | // True if LHS u<= RHS and RHS == sign-bit-mask - 1 |
||
194 | TrueIfSigned = false; |
||
195 | return RHS.isMaxSignedValue(); |
||
196 | default: |
||
197 | return false; |
||
198 | } |
||
199 | } |
||
200 | |||
201 | /// Add one to a Constant |
||
202 | static Constant *AddOne(Constant *C) { |
||
203 | return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); |
||
204 | } |
||
205 | |||
206 | /// Subtract one from a Constant |
||
207 | static Constant *SubOne(Constant *C) { |
||
208 | return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); |
||
209 | } |
||
210 | |||
211 | std::optional<std::pair< |
||
212 | CmpInst::Predicate, |
||
213 | Constant *>> static getFlippedStrictnessPredicateAndConstant(CmpInst:: |
||
214 | Predicate |
||
215 | Pred, |
||
216 | Constant *C); |
||
217 | |||
218 | static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI) { |
||
219 | // a ? b : false and a ? true : b are the canonical form of logical and/or. |
||
220 | // This includes !a ? b : false and !a ? true : b. Absorbing the not into |
||
221 | // the select by swapping operands would break recognition of this pattern |
||
222 | // in other analyses, so don't do that. |
||
223 | return match(&SI, PatternMatch::m_LogicalAnd(PatternMatch::m_Value(), |
||
224 | PatternMatch::m_Value())) || |
||
225 | match(&SI, PatternMatch::m_LogicalOr(PatternMatch::m_Value(), |
||
226 | PatternMatch::m_Value())); |
||
227 | } |
||
228 | |||
229 | /// Return true if the specified value is free to invert (apply ~ to). |
||
230 | /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses |
||
231 | /// is true, work under the assumption that the caller intends to remove all |
||
232 | /// uses of V and only keep uses of ~V. |
||
233 | /// |
||
234 | /// See also: canFreelyInvertAllUsersOf() |
||
235 | static bool isFreeToInvert(Value *V, bool WillInvertAllUses) { |
||
236 | // ~(~(X)) -> X. |
||
237 | if (match(V, m_Not(PatternMatch::m_Value()))) |
||
238 | return true; |
||
239 | |||
240 | // Constants can be considered to be not'ed values. |
||
241 | if (match(V, PatternMatch::m_AnyIntegralConstant())) |
||
242 | return true; |
||
243 | |||
244 | // Compares can be inverted if all of their uses are being modified to use |
||
245 | // the ~V. |
||
246 | if (isa<CmpInst>(V)) |
||
247 | return WillInvertAllUses; |
||
248 | |||
249 | // If `V` is of the form `A + Constant` then `-1 - V` can be folded into |
||
250 | // `(-1 - Constant) - A` if we are willing to invert all of the uses. |
||
251 | if (match(V, m_Add(PatternMatch::m_Value(), PatternMatch::m_ImmConstant()))) |
||
252 | return WillInvertAllUses; |
||
253 | |||
254 | // If `V` is of the form `Constant - A` then `-1 - V` can be folded into |
||
255 | // `A + (-1 - Constant)` if we are willing to invert all of the uses. |
||
256 | if (match(V, m_Sub(PatternMatch::m_ImmConstant(), PatternMatch::m_Value()))) |
||
257 | return WillInvertAllUses; |
||
258 | |||
259 | // Selects with invertible operands are freely invertible |
||
260 | if (match(V, |
||
261 | m_Select(PatternMatch::m_Value(), m_Not(PatternMatch::m_Value()), |
||
262 | m_Not(PatternMatch::m_Value())))) |
||
263 | return WillInvertAllUses; |
||
264 | |||
265 | // Min/max may be in the form of intrinsics, so handle those identically |
||
266 | // to select patterns. |
||
267 | if (match(V, m_MaxOrMin(m_Not(PatternMatch::m_Value()), |
||
268 | m_Not(PatternMatch::m_Value())))) |
||
269 | return WillInvertAllUses; |
||
270 | |||
271 | return false; |
||
272 | } |
||
273 | |||
274 | /// Given i1 V, can every user of V be freely adapted if V is changed to !V ? |
||
275 | /// InstCombine's freelyInvertAllUsersOf() must be kept in sync with this fn. |
||
276 | /// NOTE: for Instructions only! |
||
277 | /// |
||
278 | /// See also: isFreeToInvert() |
||
279 | static bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser) { |
||
280 | // Look at every user of V. |
||
281 | for (Use &U : V->uses()) { |
||
282 | if (U.getUser() == IgnoredUser) |
||
283 | continue; // Don't consider this user. |
||
284 | |||
285 | auto *I = cast<Instruction>(U.getUser()); |
||
286 | switch (I->getOpcode()) { |
||
287 | case Instruction::Select: |
||
288 | if (U.getOperandNo() != 0) // Only if the value is used as select cond. |
||
289 | return false; |
||
290 | if (shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(I))) |
||
291 | return false; |
||
292 | break; |
||
293 | case Instruction::Br: |
||
294 | assert(U.getOperandNo() == 0 && "Must be branching on that value."); |
||
295 | break; // Free to invert by swapping true/false values/destinations. |
||
296 | case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring |
||
297 | // it. |
||
298 | if (!match(I, m_Not(PatternMatch::m_Value()))) |
||
299 | return false; // Not a 'not'. |
||
300 | break; |
||
301 | default: |
||
302 | return false; // Don't know, likely not freely invertible. |
||
303 | } |
||
304 | // So far all users were free to invert... |
||
305 | } |
||
306 | return true; // Can freely invert all users! |
||
307 | } |
||
308 | |||
309 | /// Some binary operators require special handling to avoid poison and |
||
310 | /// undefined behavior. If a constant vector has undef elements, replace those |
||
311 | /// undefs with identity constants if possible because those are always safe |
||
312 | /// to execute. If no identity constant exists, replace undef with some other |
||
313 | /// safe constant. |
||
314 | static Constant * |
||
315 | getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, |
||
316 | bool IsRHSConstant) { |
||
317 | auto *InVTy = cast<FixedVectorType>(In->getType()); |
||
318 | |||
319 | Type *EltTy = InVTy->getElementType(); |
||
320 | auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant); |
||
321 | if (!SafeC) { |
||
322 | // TODO: Should this be available as a constant utility function? It is |
||
323 | // similar to getBinOpAbsorber(). |
||
324 | if (IsRHSConstant) { |
||
325 | switch (Opcode) { |
||
326 | case Instruction::SRem: // X % 1 = 0 |
||
327 | case Instruction::URem: // X %u 1 = 0 |
||
328 | SafeC = ConstantInt::get(EltTy, 1); |
||
329 | break; |
||
330 | case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe) |
||
331 | SafeC = ConstantFP::get(EltTy, 1.0); |
||
332 | break; |
||
333 | default: |
||
334 | llvm_unreachable( |
||
335 | "Only rem opcodes have no identity constant for RHS"); |
||
336 | } |
||
337 | } else { |
||
338 | switch (Opcode) { |
||
339 | case Instruction::Shl: // 0 << X = 0 |
||
340 | case Instruction::LShr: // 0 >>u X = 0 |
||
341 | case Instruction::AShr: // 0 >> X = 0 |
||
342 | case Instruction::SDiv: // 0 / X = 0 |
||
343 | case Instruction::UDiv: // 0 /u X = 0 |
||
344 | case Instruction::SRem: // 0 % X = 0 |
||
345 | case Instruction::URem: // 0 %u X = 0 |
||
346 | case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe) |
||
347 | case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe) |
||
348 | case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe) |
||
349 | case Instruction::FRem: // 0.0 % X = 0 |
||
350 | SafeC = Constant::getNullValue(EltTy); |
||
351 | break; |
||
352 | default: |
||
353 | llvm_unreachable("Expected to find identity constant for opcode"); |
||
354 | } |
||
355 | } |
||
356 | } |
||
357 | assert(SafeC && "Must have safe constant for binop"); |
||
358 | unsigned NumElts = InVTy->getNumElements(); |
||
359 | SmallVector<Constant *, 16> Out(NumElts); |
||
360 | for (unsigned i = 0; i != NumElts; ++i) { |
||
361 | Constant *C = In->getAggregateElement(i); |
||
362 | Out[i] = isa<UndefValue>(C) ? SafeC : C; |
||
363 | } |
||
364 | return ConstantVector::get(Out); |
||
365 | } |
||
366 | |||
367 | void addToWorklist(Instruction *I) { Worklist.push(I); } |
||
368 | |||
369 | AssumptionCache &getAssumptionCache() const { return AC; } |
||
370 | TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; } |
||
371 | DominatorTree &getDominatorTree() const { return DT; } |
||
372 | const DataLayout &getDataLayout() const { return DL; } |
||
373 | const SimplifyQuery &getSimplifyQuery() const { return SQ; } |
||
374 | OptimizationRemarkEmitter &getOptimizationRemarkEmitter() const { |
||
375 | return ORE; |
||
376 | } |
||
377 | BlockFrequencyInfo *getBlockFrequencyInfo() const { return BFI; } |
||
378 | ProfileSummaryInfo *getProfileSummaryInfo() const { return PSI; } |
||
379 | LoopInfo *getLoopInfo() const { return LI; } |
||
380 | |||
381 | // Call target specific combiners |
||
382 | std::optional<Instruction *> targetInstCombineIntrinsic(IntrinsicInst &II); |
||
383 | std::optional<Value *> |
||
384 | targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, |
||
385 | KnownBits &Known, |
||
386 | bool &KnownBitsComputed); |
||
387 | std::optional<Value *> targetSimplifyDemandedVectorEltsIntrinsic( |
||
388 | IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, |
||
389 | APInt &UndefElts2, APInt &UndefElts3, |
||
390 | std::function<void(Instruction *, unsigned, APInt, APInt &)> |
||
391 | SimplifyAndSetOp); |
||
392 | |||
393 | /// Inserts an instruction \p New before instruction \p Old |
||
394 | /// |
||
395 | /// Also adds the new instruction to the worklist and returns \p New so that |
||
396 | /// it is suitable for use as the return from the visitation patterns. |
||
397 | Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { |
||
398 | assert(New && !New->getParent() && |
||
399 | "New instruction already inserted into a basic block!"); |
||
400 | BasicBlock *BB = Old.getParent(); |
||
401 | New->insertInto(BB, Old.getIterator()); // Insert inst |
||
402 | Worklist.add(New); |
||
403 | return New; |
||
404 | } |
||
405 | |||
406 | /// Same as InsertNewInstBefore, but also sets the debug loc. |
||
407 | Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { |
||
408 | New->setDebugLoc(Old.getDebugLoc()); |
||
409 | return InsertNewInstBefore(New, Old); |
||
410 | } |
||
411 | |||
412 | /// A combiner-aware RAUW-like routine. |
||
413 | /// |
||
414 | /// This method is to be used when an instruction is found to be dead, |
||
415 | /// replaceable with another preexisting expression. Here we add all uses of |
||
416 | /// I to the worklist, replace all uses of I with the new value, then return |
||
417 | /// I, so that the inst combiner will know that I was modified. |
||
418 | Instruction *replaceInstUsesWith(Instruction &I, Value *V) { |
||
419 | // If there are no uses to replace, then we return nullptr to indicate that |
||
420 | // no changes were made to the program. |
||
421 | if (I.use_empty()) return nullptr; |
||
422 | |||
423 | Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist. |
||
424 | |||
425 | // If we are replacing the instruction with itself, this must be in a |
||
426 | // segment of unreachable code, so just clobber the instruction. |
||
427 | if (&I == V) |
||
428 | V = PoisonValue::get(I.getType()); |
||
429 | |||
430 | LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n" |
||
431 | << " with " << *V << '\n'); |
||
432 | |||
433 | // If V is a new unnamed instruction, take the name from the old one. |
||
434 | if (V->use_empty() && isa<Instruction>(V) && !V->hasName() && I.hasName()) |
||
435 | V->takeName(&I); |
||
436 | |||
437 | I.replaceAllUsesWith(V); |
||
438 | return &I; |
||
439 | } |
||
440 | |||
441 | /// Replace operand of instruction and add old operand to the worklist. |
||
442 | Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) { |
||
443 | Worklist.addValue(I.getOperand(OpNum)); |
||
444 | I.setOperand(OpNum, V); |
||
445 | return &I; |
||
446 | } |
||
447 | |||
448 | /// Replace use and add the previously used value to the worklist. |
||
449 | void replaceUse(Use &U, Value *NewValue) { |
||
450 | Worklist.addValue(U); |
||
451 | U = NewValue; |
||
452 | } |
||
453 | |||
454 | /// Combiner aware instruction erasure. |
||
455 | /// |
||
456 | /// When dealing with an instruction that has side effects or produces a void |
||
457 | /// value, we can't rely on DCE to delete the instruction. Instead, visit |
||
458 | /// methods should return the value returned by this function. |
||
459 | virtual Instruction *eraseInstFromFunction(Instruction &I) = 0; |
||
460 | |||
461 | void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, |
||
462 | const Instruction *CxtI) const { |
||
463 | llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT); |
||
464 | } |
||
465 | |||
466 | KnownBits computeKnownBits(const Value *V, unsigned Depth, |
||
467 | const Instruction *CxtI) const { |
||
468 | return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT); |
||
469 | } |
||
470 | |||
471 | bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false, |
||
472 | unsigned Depth = 0, |
||
473 | const Instruction *CxtI = nullptr) { |
||
474 | return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT); |
||
475 | } |
||
476 | |||
477 | bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0, |
||
478 | const Instruction *CxtI = nullptr) const { |
||
479 | return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT); |
||
480 | } |
||
481 | |||
482 | unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0, |
||
483 | const Instruction *CxtI = nullptr) const { |
||
484 | return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT); |
||
485 | } |
||
486 | |||
487 | unsigned ComputeMaxSignificantBits(const Value *Op, unsigned Depth = 0, |
||
488 | const Instruction *CxtI = nullptr) const { |
||
489 | return llvm::ComputeMaxSignificantBits(Op, DL, Depth, &AC, CxtI, &DT); |
||
490 | } |
||
491 | |||
492 | OverflowResult computeOverflowForUnsignedMul(const Value *LHS, |
||
493 | const Value *RHS, |
||
494 | const Instruction *CxtI) const { |
||
495 | return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT); |
||
496 | } |
||
497 | |||
498 | OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, |
||
499 | const Instruction *CxtI) const { |
||
500 | return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT); |
||
501 | } |
||
502 | |||
503 | OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, |
||
504 | const Value *RHS, |
||
505 | const Instruction *CxtI) const { |
||
506 | return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); |
||
507 | } |
||
508 | |||
509 | OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, |
||
510 | const Instruction *CxtI) const { |
||
511 | return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); |
||
512 | } |
||
513 | |||
514 | OverflowResult computeOverflowForUnsignedSub(const Value *LHS, |
||
515 | const Value *RHS, |
||
516 | const Instruction *CxtI) const { |
||
517 | return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT); |
||
518 | } |
||
519 | |||
520 | OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, |
||
521 | const Instruction *CxtI) const { |
||
522 | return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT); |
||
523 | } |
||
524 | |||
525 | virtual bool SimplifyDemandedBits(Instruction *I, unsigned OpNo, |
||
526 | const APInt &DemandedMask, KnownBits &Known, |
||
527 | unsigned Depth = 0) = 0; |
||
528 | virtual Value * |
||
529 | SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts, |
||
530 | unsigned Depth = 0, |
||
531 | bool AllowMultipleUsers = false) = 0; |
||
532 | }; |
||
533 | |||
534 | } // namespace llvm |
||
535 | |||
536 | #undef DEBUG_TYPE |
||
537 | |||
538 | #endif |