Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- Attributor.h --- Module-wide attribute deduction ---------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // Attributor: An inter procedural (abstract) "attribute" deduction framework. |
||
| 10 | // |
||
| 11 | // The Attributor framework is an inter procedural abstract analysis (fixpoint |
||
| 12 | // iteration analysis). The goal is to allow easy deduction of new attributes as |
||
| 13 | // well as information exchange between abstract attributes in-flight. |
||
| 14 | // |
||
| 15 | // The Attributor class is the driver and the link between the various abstract |
||
| 16 | // attributes. The Attributor will iterate until a fixpoint state is reached by |
||
| 17 | // all abstract attributes in-flight, or until it will enforce a pessimistic fix |
||
| 18 | // point because an iteration limit is reached. |
||
| 19 | // |
||
| 20 | // Abstract attributes, derived from the AbstractAttribute class, actually |
||
| 21 | // describe properties of the code. They can correspond to actual LLVM-IR |
||
| 22 | // attributes, or they can be more general, ultimately unrelated to LLVM-IR |
||
| 23 | // attributes. The latter is useful when an abstract attributes provides |
||
| 24 | // information to other abstract attributes in-flight but we might not want to |
||
| 25 | // manifest the information. The Attributor allows to query in-flight abstract |
||
| 26 | // attributes through the `Attributor::getAAFor` method (see the method |
||
| 27 | // description for an example). If the method is used by an abstract attribute |
||
| 28 | // P, and it results in an abstract attribute Q, the Attributor will |
||
| 29 | // automatically capture a potential dependence from Q to P. This dependence |
||
| 30 | // will cause P to be reevaluated whenever Q changes in the future. |
||
| 31 | // |
||
| 32 | // The Attributor will only reevaluate abstract attributes that might have |
||
| 33 | // changed since the last iteration. That means that the Attribute will not |
||
| 34 | // revisit all instructions/blocks/functions in the module but only query |
||
| 35 | // an update from a subset of the abstract attributes. |
||
| 36 | // |
||
| 37 | // The update method `AbstractAttribute::updateImpl` is implemented by the |
||
| 38 | // specific "abstract attribute" subclasses. The method is invoked whenever the |
||
| 39 | // currently assumed state (see the AbstractState class) might not be valid |
||
| 40 | // anymore. This can, for example, happen if the state was dependent on another |
||
| 41 | // abstract attribute that changed. In every invocation, the update method has |
||
| 42 | // to adjust the internal state of an abstract attribute to a point that is |
||
| 43 | // justifiable by the underlying IR and the current state of abstract attributes |
||
| 44 | // in-flight. Since the IR is given and assumed to be valid, the information |
||
| 45 | // derived from it can be assumed to hold. However, information derived from |
||
| 46 | // other abstract attributes is conditional on various things. If the justifying |
||
| 47 | // state changed, the `updateImpl` has to revisit the situation and potentially |
||
| 48 | // find another justification or limit the optimistic assumes made. |
||
| 49 | // |
||
| 50 | // Change is the key in this framework. Until a state of no-change, thus a |
||
| 51 | // fixpoint, is reached, the Attributor will query the abstract attributes |
||
| 52 | // in-flight to re-evaluate their state. If the (current) state is too |
||
| 53 | // optimistic, hence it cannot be justified anymore through other abstract |
||
| 54 | // attributes or the state of the IR, the state of the abstract attribute will |
||
| 55 | // have to change. Generally, we assume abstract attribute state to be a finite |
||
| 56 | // height lattice and the update function to be monotone. However, these |
||
| 57 | // conditions are not enforced because the iteration limit will guarantee |
||
| 58 | // termination. If an optimistic fixpoint is reached, or a pessimistic fix |
||
| 59 | // point is enforced after a timeout, the abstract attributes are tasked to |
||
| 60 | // manifest their result in the IR for passes to come. |
||
| 61 | // |
||
| 62 | // Attribute manifestation is not mandatory. If desired, there is support to |
||
| 63 | // generate a single or multiple LLVM-IR attributes already in the helper struct |
||
| 64 | // IRAttribute. In the simplest case, a subclass inherits from IRAttribute with |
||
| 65 | // a proper Attribute::AttrKind as template parameter. The Attributor |
||
| 66 | // manifestation framework will then create and place a new attribute if it is |
||
| 67 | // allowed to do so (based on the abstract state). Other use cases can be |
||
| 68 | // achieved by overloading AbstractAttribute or IRAttribute methods. |
||
| 69 | // |
||
| 70 | // |
||
| 71 | // The "mechanics" of adding a new "abstract attribute": |
||
| 72 | // - Define a class (transitively) inheriting from AbstractAttribute and one |
||
| 73 | // (which could be the same) that (transitively) inherits from AbstractState. |
||
| 74 | // For the latter, consider the already available BooleanState and |
||
| 75 | // {Inc,Dec,Bit}IntegerState if they fit your needs, e.g., you require only a |
||
| 76 | // number tracking or bit-encoding. |
||
| 77 | // - Implement all pure methods. Also use overloading if the attribute is not |
||
| 78 | // conforming with the "default" behavior: A (set of) LLVM-IR attribute(s) for |
||
| 79 | // an argument, call site argument, function return value, or function. See |
||
| 80 | // the class and method descriptions for more information on the two |
||
| 81 | // "Abstract" classes and their respective methods. |
||
| 82 | // - Register opportunities for the new abstract attribute in the |
||
| 83 | // `Attributor::identifyDefaultAbstractAttributes` method if it should be |
||
| 84 | // counted as a 'default' attribute. |
||
| 85 | // - Add sufficient tests. |
||
| 86 | // - Add a Statistics object for bookkeeping. If it is a simple (set of) |
||
| 87 | // attribute(s) manifested through the Attributor manifestation framework, see |
||
| 88 | // the bookkeeping function in Attributor.cpp. |
||
| 89 | // - If instructions with a certain opcode are interesting to the attribute, add |
||
| 90 | // that opcode to the switch in `Attributor::identifyAbstractAttributes`. This |
||
| 91 | // will make it possible to query all those instructions through the |
||
| 92 | // `InformationCache::getOpcodeInstMapForFunction` interface and eliminate the |
||
| 93 | // need to traverse the IR repeatedly. |
||
| 94 | // |
||
| 95 | //===----------------------------------------------------------------------===// |
||
| 96 | |||
| 97 | #ifndef LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H |
||
| 98 | #define LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H |
||
| 99 | |||
| 100 | #include "llvm/ADT/DenseSet.h" |
||
| 101 | #include "llvm/ADT/GraphTraits.h" |
||
| 102 | #include "llvm/ADT/MapVector.h" |
||
| 103 | #include "llvm/ADT/STLExtras.h" |
||
| 104 | #include "llvm/ADT/SetOperations.h" |
||
| 105 | #include "llvm/ADT/SetVector.h" |
||
| 106 | #include "llvm/ADT/Triple.h" |
||
| 107 | #include "llvm/ADT/iterator.h" |
||
| 108 | #include "llvm/Analysis/AssumeBundleQueries.h" |
||
| 109 | #include "llvm/Analysis/CFG.h" |
||
| 110 | #include "llvm/Analysis/CGSCCPassManager.h" |
||
| 111 | #include "llvm/Analysis/LazyCallGraph.h" |
||
| 112 | #include "llvm/Analysis/LoopInfo.h" |
||
| 113 | #include "llvm/Analysis/MemoryLocation.h" |
||
| 114 | #include "llvm/Analysis/MustExecute.h" |
||
| 115 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
||
| 116 | #include "llvm/Analysis/PostDominators.h" |
||
| 117 | #include "llvm/Analysis/TargetLibraryInfo.h" |
||
| 118 | #include "llvm/IR/AbstractCallSite.h" |
||
| 119 | #include "llvm/IR/ConstantRange.h" |
||
| 120 | #include "llvm/IR/Constants.h" |
||
| 121 | #include "llvm/IR/InstIterator.h" |
||
| 122 | #include "llvm/IR/Instruction.h" |
||
| 123 | #include "llvm/IR/PassManager.h" |
||
| 124 | #include "llvm/IR/Value.h" |
||
| 125 | #include "llvm/Support/Alignment.h" |
||
| 126 | #include "llvm/Support/Allocator.h" |
||
| 127 | #include "llvm/Support/Casting.h" |
||
| 128 | #include "llvm/Support/DOTGraphTraits.h" |
||
| 129 | #include "llvm/Support/TimeProfiler.h" |
||
| 130 | #include "llvm/Transforms/Utils/CallGraphUpdater.h" |
||
| 131 | |||
| 132 | #include <limits> |
||
| 133 | #include <map> |
||
| 134 | #include <optional> |
||
| 135 | |||
| 136 | namespace llvm { |
||
| 137 | |||
| 138 | class DataLayout; |
||
| 139 | class LLVMContext; |
||
| 140 | class Pass; |
||
| 141 | template <typename Fn> class function_ref; |
||
| 142 | struct AADepGraphNode; |
||
| 143 | struct AADepGraph; |
||
| 144 | struct Attributor; |
||
| 145 | struct AbstractAttribute; |
||
| 146 | struct InformationCache; |
||
| 147 | struct AAIsDead; |
||
| 148 | struct AttributorCallGraph; |
||
| 149 | struct IRPosition; |
||
| 150 | |||
| 151 | class AAResults; |
||
| 152 | class Function; |
||
| 153 | |||
| 154 | /// Abstract Attribute helper functions. |
||
| 155 | namespace AA { |
||
| 156 | using InstExclusionSetTy = SmallPtrSet<Instruction *, 4>; |
||
| 157 | |||
| 158 | enum class GPUAddressSpace : unsigned { |
||
| 159 | Generic = 0, |
||
| 160 | Global = 1, |
||
| 161 | Shared = 3, |
||
| 162 | Constant = 4, |
||
| 163 | Local = 5, |
||
| 164 | }; |
||
| 165 | |||
| 166 | /// Flags to distinguish intra-procedural queries from *potentially* |
||
| 167 | /// inter-procedural queries. Not that information can be valid for both and |
||
| 168 | /// therefore both bits might be set. |
||
| 169 | enum ValueScope : uint8_t { |
||
| 170 | Intraprocedural = 1, |
||
| 171 | Interprocedural = 2, |
||
| 172 | AnyScope = Intraprocedural | Interprocedural, |
||
| 173 | }; |
||
| 174 | |||
| 175 | struct ValueAndContext : public std::pair<Value *, const Instruction *> { |
||
| 176 | using Base = std::pair<Value *, const Instruction *>; |
||
| 177 | ValueAndContext(const Base &B) : Base(B) {} |
||
| 178 | ValueAndContext(Value &V, const Instruction *CtxI) : Base(&V, CtxI) {} |
||
| 179 | ValueAndContext(Value &V, const Instruction &CtxI) : Base(&V, &CtxI) {} |
||
| 180 | |||
| 181 | Value *getValue() const { return this->first; } |
||
| 182 | const Instruction *getCtxI() const { return this->second; } |
||
| 183 | }; |
||
| 184 | |||
| 185 | /// Return true if \p I is a `nosync` instruction. Use generic reasoning and |
||
| 186 | /// potentially the corresponding AANoSync. |
||
| 187 | bool isNoSyncInst(Attributor &A, const Instruction &I, |
||
| 188 | const AbstractAttribute &QueryingAA); |
||
| 189 | |||
| 190 | /// Return true if \p V is dynamically unique, that is, there are no two |
||
| 191 | /// "instances" of \p V at runtime with different values. |
||
| 192 | /// Note: If \p ForAnalysisOnly is set we only check that the Attributor will |
||
| 193 | /// never use \p V to represent two "instances" not that \p V could not |
||
| 194 | /// technically represent them. |
||
| 195 | bool isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA, |
||
| 196 | const Value &V, bool ForAnalysisOnly = true); |
||
| 197 | |||
| 198 | /// Return true if \p V is a valid value in \p Scope, that is a constant or an |
||
| 199 | /// instruction/argument of \p Scope. |
||
| 200 | bool isValidInScope(const Value &V, const Function *Scope); |
||
| 201 | |||
| 202 | /// Return true if the value of \p VAC is a valid at the position of \p VAC, |
||
| 203 | /// that is a constant, an argument of the same function, or an instruction in |
||
| 204 | /// that function that dominates the position. |
||
| 205 | bool isValidAtPosition(const ValueAndContext &VAC, InformationCache &InfoCache); |
||
| 206 | |||
| 207 | /// Try to convert \p V to type \p Ty without introducing new instructions. If |
||
| 208 | /// this is not possible return `nullptr`. Note: this function basically knows |
||
| 209 | /// how to cast various constants. |
||
| 210 | Value *getWithType(Value &V, Type &Ty); |
||
| 211 | |||
| 212 | /// Return the combination of \p A and \p B such that the result is a possible |
||
| 213 | /// value of both. \p B is potentially casted to match the type \p Ty or the |
||
| 214 | /// type of \p A if \p Ty is null. |
||
| 215 | /// |
||
| 216 | /// Examples: |
||
| 217 | /// X + none => X |
||
| 218 | /// not_none + undef => not_none |
||
| 219 | /// V1 + V2 => nullptr |
||
| 220 | std::optional<Value *> |
||
| 221 | combineOptionalValuesInAAValueLatice(const std::optional<Value *> &A, |
||
| 222 | const std::optional<Value *> &B, Type *Ty); |
||
| 223 | |||
| 224 | /// Helper to represent an access offset and size, with logic to deal with |
||
| 225 | /// uncertainty and check for overlapping accesses. |
||
| 226 | struct RangeTy { |
||
| 227 | int64_t Offset = Unassigned; |
||
| 228 | int64_t Size = Unassigned; |
||
| 229 | |||
| 230 | RangeTy(int64_t Offset, int64_t Size) : Offset(Offset), Size(Size) {} |
||
| 231 | RangeTy() = default; |
||
| 232 | static RangeTy getUnknown() { return RangeTy{Unknown, Unknown}; } |
||
| 233 | |||
| 234 | /// Return true if offset or size are unknown. |
||
| 235 | bool offsetOrSizeAreUnknown() const { |
||
| 236 | return Offset == RangeTy::Unknown || Size == RangeTy::Unknown; |
||
| 237 | } |
||
| 238 | |||
| 239 | /// Return true if offset and size are unknown, thus this is the default |
||
| 240 | /// unknown object. |
||
| 241 | bool offsetAndSizeAreUnknown() const { |
||
| 242 | return Offset == RangeTy::Unknown && Size == RangeTy::Unknown; |
||
| 243 | } |
||
| 244 | |||
| 245 | /// Return true if the offset and size are unassigned. |
||
| 246 | bool isUnassigned() const { |
||
| 247 | assert((Offset == RangeTy::Unassigned) == (Size == RangeTy::Unassigned) && |
||
| 248 | "Inconsistent state!"); |
||
| 249 | return Offset == RangeTy::Unassigned; |
||
| 250 | } |
||
| 251 | |||
| 252 | /// Return true if this offset and size pair might describe an address that |
||
| 253 | /// overlaps with \p Range. |
||
| 254 | bool mayOverlap(const RangeTy &Range) const { |
||
| 255 | // Any unknown value and we are giving up -> overlap. |
||
| 256 | if (offsetOrSizeAreUnknown() || Range.offsetOrSizeAreUnknown()) |
||
| 257 | return true; |
||
| 258 | |||
| 259 | // Check if one offset point is in the other interval [offset, |
||
| 260 | // offset+size]. |
||
| 261 | return Range.Offset + Range.Size > Offset && Range.Offset < Offset + Size; |
||
| 262 | } |
||
| 263 | |||
| 264 | RangeTy &operator&=(const RangeTy &R) { |
||
| 265 | if (Offset == Unassigned) |
||
| 266 | Offset = R.Offset; |
||
| 267 | else if (R.Offset != Unassigned && R.Offset != Offset) |
||
| 268 | Offset = Unknown; |
||
| 269 | |||
| 270 | if (Size == Unassigned) |
||
| 271 | Size = R.Size; |
||
| 272 | else if (Size == Unknown || R.Size == Unknown) |
||
| 273 | Size = Unknown; |
||
| 274 | else if (R.Size != Unassigned) |
||
| 275 | Size = std::max(Size, R.Size); |
||
| 276 | |||
| 277 | return *this; |
||
| 278 | } |
||
| 279 | |||
| 280 | /// Comparison for sorting ranges by offset. |
||
| 281 | /// |
||
| 282 | /// Returns true if the offset \p L is less than that of \p R. |
||
| 283 | inline static bool OffsetLessThan(const RangeTy &L, const RangeTy &R) { |
||
| 284 | return L.Offset < R.Offset; |
||
| 285 | } |
||
| 286 | |||
| 287 | /// Constants used to represent special offsets or sizes. |
||
| 288 | /// - We cannot assume that Offsets and Size are non-negative. |
||
| 289 | /// - The constants should not clash with DenseMapInfo, such as EmptyKey |
||
| 290 | /// (INT64_MAX) and TombstoneKey (INT64_MIN). |
||
| 291 | /// We use values "in the middle" of the 64 bit range to represent these |
||
| 292 | /// special cases. |
||
| 293 | static constexpr int64_t Unassigned = std::numeric_limits<int32_t>::min(); |
||
| 294 | static constexpr int64_t Unknown = std::numeric_limits<int32_t>::max(); |
||
| 295 | }; |
||
| 296 | |||
| 297 | inline raw_ostream &operator<<(raw_ostream &OS, const RangeTy &R) { |
||
| 298 | OS << "[" << R.Offset << ", " << R.Size << "]"; |
||
| 299 | return OS; |
||
| 300 | } |
||
| 301 | |||
| 302 | inline bool operator==(const RangeTy &A, const RangeTy &B) { |
||
| 303 | return A.Offset == B.Offset && A.Size == B.Size; |
||
| 304 | } |
||
| 305 | |||
| 306 | inline bool operator!=(const RangeTy &A, const RangeTy &B) { return !(A == B); } |
||
| 307 | |||
| 308 | /// Return the initial value of \p Obj with type \p Ty if that is a constant. |
||
| 309 | Constant *getInitialValueForObj(Value &Obj, Type &Ty, |
||
| 310 | const TargetLibraryInfo *TLI, |
||
| 311 | const DataLayout &DL, |
||
| 312 | RangeTy *RangePtr = nullptr); |
||
| 313 | |||
| 314 | /// Collect all potential values \p LI could read into \p PotentialValues. That |
||
| 315 | /// is, the only values read by \p LI are assumed to be known and all are in |
||
| 316 | /// \p PotentialValues. \p PotentialValueOrigins will contain all the |
||
| 317 | /// instructions that might have put a potential value into \p PotentialValues. |
||
| 318 | /// Dependences onto \p QueryingAA are properly tracked, \p |
||
| 319 | /// UsedAssumedInformation will inform the caller if assumed information was |
||
| 320 | /// used. |
||
| 321 | /// |
||
| 322 | /// \returns True if the assumed potential copies are all in \p PotentialValues, |
||
| 323 | /// false if something went wrong and the copies could not be |
||
| 324 | /// determined. |
||
| 325 | bool getPotentiallyLoadedValues( |
||
| 326 | Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues, |
||
| 327 | SmallSetVector<Instruction *, 4> &PotentialValueOrigins, |
||
| 328 | const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation, |
||
| 329 | bool OnlyExact = false); |
||
| 330 | |||
| 331 | /// Collect all potential values of the one stored by \p SI into |
||
| 332 | /// \p PotentialCopies. That is, the only copies that were made via the |
||
| 333 | /// store are assumed to be known and all are in \p PotentialCopies. Dependences |
||
| 334 | /// onto \p QueryingAA are properly tracked, \p UsedAssumedInformation will |
||
| 335 | /// inform the caller if assumed information was used. |
||
| 336 | /// |
||
| 337 | /// \returns True if the assumed potential copies are all in \p PotentialCopies, |
||
| 338 | /// false if something went wrong and the copies could not be |
||
| 339 | /// determined. |
||
| 340 | bool getPotentialCopiesOfStoredValue( |
||
| 341 | Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies, |
||
| 342 | const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation, |
||
| 343 | bool OnlyExact = false); |
||
| 344 | |||
| 345 | /// Return true if \p IRP is readonly. This will query respective AAs that |
||
| 346 | /// deduce the information and introduce dependences for \p QueryingAA. |
||
| 347 | bool isAssumedReadOnly(Attributor &A, const IRPosition &IRP, |
||
| 348 | const AbstractAttribute &QueryingAA, bool &IsKnown); |
||
| 349 | |||
| 350 | /// Return true if \p IRP is readnone. This will query respective AAs that |
||
| 351 | /// deduce the information and introduce dependences for \p QueryingAA. |
||
| 352 | bool isAssumedReadNone(Attributor &A, const IRPosition &IRP, |
||
| 353 | const AbstractAttribute &QueryingAA, bool &IsKnown); |
||
| 354 | |||
| 355 | /// Return true if \p ToI is potentially reachable from \p FromI without running |
||
| 356 | /// into any instruction in \p ExclusionSet The two instructions do not need to |
||
| 357 | /// be in the same function. \p GoBackwardsCB can be provided to convey domain |
||
| 358 | /// knowledge about the "lifespan" the user is interested in. By default, the |
||
| 359 | /// callers of \p FromI are checked as well to determine if \p ToI can be |
||
| 360 | /// reached. If the query is not interested in callers beyond a certain point, |
||
| 361 | /// e.g., a GPU kernel entry or the function containing an alloca, the |
||
| 362 | /// \p GoBackwardsCB should return false. |
||
| 363 | bool isPotentiallyReachable( |
||
| 364 | Attributor &A, const Instruction &FromI, const Instruction &ToI, |
||
| 365 | const AbstractAttribute &QueryingAA, |
||
| 366 | const AA::InstExclusionSetTy *ExclusionSet = nullptr, |
||
| 367 | std::function<bool(const Function &F)> GoBackwardsCB = nullptr); |
||
| 368 | |||
| 369 | /// Same as above but it is sufficient to reach any instruction in \p ToFn. |
||
| 370 | bool isPotentiallyReachable( |
||
| 371 | Attributor &A, const Instruction &FromI, const Function &ToFn, |
||
| 372 | const AbstractAttribute &QueryingAA, |
||
| 373 | const AA::InstExclusionSetTy *ExclusionSet = nullptr, |
||
| 374 | std::function<bool(const Function &F)> GoBackwardsCB = nullptr); |
||
| 375 | |||
| 376 | /// Return true if \p Obj is assumed to be a thread local object. |
||
| 377 | bool isAssumedThreadLocalObject(Attributor &A, Value &Obj, |
||
| 378 | const AbstractAttribute &QueryingAA); |
||
| 379 | |||
| 380 | /// Return true if \p I is potentially affected by a barrier. |
||
| 381 | bool isPotentiallyAffectedByBarrier(Attributor &A, const Instruction &I, |
||
| 382 | const AbstractAttribute &QueryingAA); |
||
| 383 | bool isPotentiallyAffectedByBarrier(Attributor &A, ArrayRef<const Value *> Ptrs, |
||
| 384 | const AbstractAttribute &QueryingAA, |
||
| 385 | const Instruction *CtxI); |
||
| 386 | } // namespace AA |
||
| 387 | |||
| 388 | template <> |
||
| 389 | struct DenseMapInfo<AA::ValueAndContext> |
||
| 390 | : public DenseMapInfo<AA::ValueAndContext::Base> { |
||
| 391 | using Base = DenseMapInfo<AA::ValueAndContext::Base>; |
||
| 392 | static inline AA::ValueAndContext getEmptyKey() { |
||
| 393 | return Base::getEmptyKey(); |
||
| 394 | } |
||
| 395 | static inline AA::ValueAndContext getTombstoneKey() { |
||
| 396 | return Base::getTombstoneKey(); |
||
| 397 | } |
||
| 398 | static unsigned getHashValue(const AA::ValueAndContext &VAC) { |
||
| 399 | return Base::getHashValue(VAC); |
||
| 400 | } |
||
| 401 | |||
| 402 | static bool isEqual(const AA::ValueAndContext &LHS, |
||
| 403 | const AA::ValueAndContext &RHS) { |
||
| 404 | return Base::isEqual(LHS, RHS); |
||
| 405 | } |
||
| 406 | }; |
||
| 407 | |||
| 408 | template <> |
||
| 409 | struct DenseMapInfo<AA::ValueScope> : public DenseMapInfo<unsigned char> { |
||
| 410 | using Base = DenseMapInfo<unsigned char>; |
||
| 411 | static inline AA::ValueScope getEmptyKey() { |
||
| 412 | return AA::ValueScope(Base::getEmptyKey()); |
||
| 413 | } |
||
| 414 | static inline AA::ValueScope getTombstoneKey() { |
||
| 415 | return AA::ValueScope(Base::getTombstoneKey()); |
||
| 416 | } |
||
| 417 | static unsigned getHashValue(const AA::ValueScope &S) { |
||
| 418 | return Base::getHashValue(S); |
||
| 419 | } |
||
| 420 | |||
| 421 | static bool isEqual(const AA::ValueScope &LHS, const AA::ValueScope &RHS) { |
||
| 422 | return Base::isEqual(LHS, RHS); |
||
| 423 | } |
||
| 424 | }; |
||
| 425 | |||
| 426 | template <> |
||
| 427 | struct DenseMapInfo<const AA::InstExclusionSetTy *> |
||
| 428 | : public DenseMapInfo<void *> { |
||
| 429 | using super = DenseMapInfo<void *>; |
||
| 430 | static inline const AA::InstExclusionSetTy *getEmptyKey() { |
||
| 431 | return static_cast<const AA::InstExclusionSetTy *>(super::getEmptyKey()); |
||
| 432 | } |
||
| 433 | static inline const AA::InstExclusionSetTy *getTombstoneKey() { |
||
| 434 | return static_cast<const AA::InstExclusionSetTy *>( |
||
| 435 | super::getTombstoneKey()); |
||
| 436 | } |
||
| 437 | static unsigned getHashValue(const AA::InstExclusionSetTy *BES) { |
||
| 438 | unsigned H = 0; |
||
| 439 | if (BES) |
||
| 440 | for (const auto *II : *BES) |
||
| 441 | H += DenseMapInfo<const Instruction *>::getHashValue(II); |
||
| 442 | return H; |
||
| 443 | } |
||
| 444 | static bool isEqual(const AA::InstExclusionSetTy *LHS, |
||
| 445 | const AA::InstExclusionSetTy *RHS) { |
||
| 446 | if (LHS == RHS) |
||
| 447 | return true; |
||
| 448 | if (LHS == getEmptyKey() || RHS == getEmptyKey() || |
||
| 449 | LHS == getTombstoneKey() || RHS == getTombstoneKey()) |
||
| 450 | return false; |
||
| 451 | if (!LHS || !RHS) |
||
| 452 | return ((LHS && LHS->empty()) || (RHS && RHS->empty())); |
||
| 453 | if (LHS->size() != RHS->size()) |
||
| 454 | return false; |
||
| 455 | return llvm::set_is_subset(*LHS, *RHS); |
||
| 456 | } |
||
| 457 | }; |
||
| 458 | |||
| 459 | /// The value passed to the line option that defines the maximal initialization |
||
| 460 | /// chain length. |
||
| 461 | extern unsigned MaxInitializationChainLength; |
||
| 462 | |||
| 463 | ///{ |
||
| 464 | enum class ChangeStatus { |
||
| 465 | CHANGED, |
||
| 466 | UNCHANGED, |
||
| 467 | }; |
||
| 468 | |||
| 469 | ChangeStatus operator|(ChangeStatus l, ChangeStatus r); |
||
| 470 | ChangeStatus &operator|=(ChangeStatus &l, ChangeStatus r); |
||
| 471 | ChangeStatus operator&(ChangeStatus l, ChangeStatus r); |
||
| 472 | ChangeStatus &operator&=(ChangeStatus &l, ChangeStatus r); |
||
| 473 | |||
| 474 | enum class DepClassTy { |
||
| 475 | REQUIRED, ///< The target cannot be valid if the source is not. |
||
| 476 | OPTIONAL, ///< The target may be valid if the source is not. |
||
| 477 | NONE, ///< Do not track a dependence between source and target. |
||
| 478 | }; |
||
| 479 | ///} |
||
| 480 | |||
| 481 | /// The data structure for the nodes of a dependency graph |
||
| 482 | struct AADepGraphNode { |
||
| 483 | public: |
||
| 484 | virtual ~AADepGraphNode() = default; |
||
| 485 | using DepTy = PointerIntPair<AADepGraphNode *, 1>; |
||
| 486 | |||
| 487 | protected: |
||
| 488 | /// Set of dependency graph nodes which should be updated if this one |
||
| 489 | /// is updated. The bit encodes if it is optional. |
||
| 490 | TinyPtrVector<DepTy> Deps; |
||
| 491 | |||
| 492 | static AADepGraphNode *DepGetVal(DepTy &DT) { return DT.getPointer(); } |
||
| 493 | static AbstractAttribute *DepGetValAA(DepTy &DT) { |
||
| 494 | return cast<AbstractAttribute>(DT.getPointer()); |
||
| 495 | } |
||
| 496 | |||
| 497 | operator AbstractAttribute *() { return cast<AbstractAttribute>(this); } |
||
| 498 | |||
| 499 | public: |
||
| 500 | using iterator = |
||
| 501 | mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>; |
||
| 502 | using aaiterator = |
||
| 503 | mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetValAA)>; |
||
| 504 | |||
| 505 | aaiterator begin() { return aaiterator(Deps.begin(), &DepGetValAA); } |
||
| 506 | aaiterator end() { return aaiterator(Deps.end(), &DepGetValAA); } |
||
| 507 | iterator child_begin() { return iterator(Deps.begin(), &DepGetVal); } |
||
| 508 | iterator child_end() { return iterator(Deps.end(), &DepGetVal); } |
||
| 509 | |||
| 510 | virtual void print(raw_ostream &OS) const { OS << "AADepNode Impl\n"; } |
||
| 511 | TinyPtrVector<DepTy> &getDeps() { return Deps; } |
||
| 512 | |||
| 513 | friend struct Attributor; |
||
| 514 | friend struct AADepGraph; |
||
| 515 | }; |
||
| 516 | |||
| 517 | /// The data structure for the dependency graph |
||
| 518 | /// |
||
| 519 | /// Note that in this graph if there is an edge from A to B (A -> B), |
||
| 520 | /// then it means that B depends on A, and when the state of A is |
||
| 521 | /// updated, node B should also be updated |
||
| 522 | struct AADepGraph { |
||
| 523 | AADepGraph() = default; |
||
| 524 | ~AADepGraph() = default; |
||
| 525 | |||
| 526 | using DepTy = AADepGraphNode::DepTy; |
||
| 527 | static AADepGraphNode *DepGetVal(DepTy &DT) { return DT.getPointer(); } |
||
| 528 | using iterator = |
||
| 529 | mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>; |
||
| 530 | |||
| 531 | /// There is no root node for the dependency graph. But the SCCIterator |
||
| 532 | /// requires a single entry point, so we maintain a fake("synthetic") root |
||
| 533 | /// node that depends on every node. |
||
| 534 | AADepGraphNode SyntheticRoot; |
||
| 535 | AADepGraphNode *GetEntryNode() { return &SyntheticRoot; } |
||
| 536 | |||
| 537 | iterator begin() { return SyntheticRoot.child_begin(); } |
||
| 538 | iterator end() { return SyntheticRoot.child_end(); } |
||
| 539 | |||
| 540 | void viewGraph(); |
||
| 541 | |||
| 542 | /// Dump graph to file |
||
| 543 | void dumpGraph(); |
||
| 544 | |||
| 545 | /// Print dependency graph |
||
| 546 | void print(); |
||
| 547 | }; |
||
| 548 | |||
| 549 | /// Helper to describe and deal with positions in the LLVM-IR. |
||
| 550 | /// |
||
| 551 | /// A position in the IR is described by an anchor value and an "offset" that |
||
| 552 | /// could be the argument number, for call sites and arguments, or an indicator |
||
| 553 | /// of the "position kind". The kinds, specified in the Kind enum below, include |
||
| 554 | /// the locations in the attribute list, i.a., function scope and return value, |
||
| 555 | /// as well as a distinction between call sites and functions. Finally, there |
||
| 556 | /// are floating values that do not have a corresponding attribute list |
||
| 557 | /// position. |
||
| 558 | struct IRPosition { |
||
| 559 | // NOTE: In the future this definition can be changed to support recursive |
||
| 560 | // functions. |
||
| 561 | using CallBaseContext = CallBase; |
||
| 562 | |||
| 563 | /// The positions we distinguish in the IR. |
||
| 564 | enum Kind : char { |
||
| 565 | IRP_INVALID, ///< An invalid position. |
||
| 566 | IRP_FLOAT, ///< A position that is not associated with a spot suitable |
||
| 567 | ///< for attributes. This could be any value or instruction. |
||
| 568 | IRP_RETURNED, ///< An attribute for the function return value. |
||
| 569 | IRP_CALL_SITE_RETURNED, ///< An attribute for a call site return value. |
||
| 570 | IRP_FUNCTION, ///< An attribute for a function (scope). |
||
| 571 | IRP_CALL_SITE, ///< An attribute for a call site (function scope). |
||
| 572 | IRP_ARGUMENT, ///< An attribute for a function argument. |
||
| 573 | IRP_CALL_SITE_ARGUMENT, ///< An attribute for a call site argument. |
||
| 574 | }; |
||
| 575 | |||
| 576 | /// Default constructor available to create invalid positions implicitly. All |
||
| 577 | /// other positions need to be created explicitly through the appropriate |
||
| 578 | /// static member function. |
||
| 579 | IRPosition() : Enc(nullptr, ENC_VALUE) { verify(); } |
||
| 580 | |||
| 581 | /// Create a position describing the value of \p V. |
||
| 582 | static const IRPosition value(const Value &V, |
||
| 583 | const CallBaseContext *CBContext = nullptr) { |
||
| 584 | if (auto *Arg = dyn_cast<Argument>(&V)) |
||
| 585 | return IRPosition::argument(*Arg, CBContext); |
||
| 586 | if (auto *CB = dyn_cast<CallBase>(&V)) |
||
| 587 | return IRPosition::callsite_returned(*CB); |
||
| 588 | return IRPosition(const_cast<Value &>(V), IRP_FLOAT, CBContext); |
||
| 589 | } |
||
| 590 | |||
| 591 | /// Create a position describing the instruction \p I. This is different from |
||
| 592 | /// the value version because call sites are treated as intrusctions rather |
||
| 593 | /// than their return value in this function. |
||
| 594 | static const IRPosition inst(const Instruction &I, |
||
| 595 | const CallBaseContext *CBContext = nullptr) { |
||
| 596 | return IRPosition(const_cast<Instruction &>(I), IRP_FLOAT, CBContext); |
||
| 597 | } |
||
| 598 | |||
| 599 | /// Create a position describing the function scope of \p F. |
||
| 600 | /// \p CBContext is used for call base specific analysis. |
||
| 601 | static const IRPosition function(const Function &F, |
||
| 602 | const CallBaseContext *CBContext = nullptr) { |
||
| 603 | return IRPosition(const_cast<Function &>(F), IRP_FUNCTION, CBContext); |
||
| 604 | } |
||
| 605 | |||
| 606 | /// Create a position describing the returned value of \p F. |
||
| 607 | /// \p CBContext is used for call base specific analysis. |
||
| 608 | static const IRPosition returned(const Function &F, |
||
| 609 | const CallBaseContext *CBContext = nullptr) { |
||
| 610 | return IRPosition(const_cast<Function &>(F), IRP_RETURNED, CBContext); |
||
| 611 | } |
||
| 612 | |||
| 613 | /// Create a position describing the argument \p Arg. |
||
| 614 | /// \p CBContext is used for call base specific analysis. |
||
| 615 | static const IRPosition argument(const Argument &Arg, |
||
| 616 | const CallBaseContext *CBContext = nullptr) { |
||
| 617 | return IRPosition(const_cast<Argument &>(Arg), IRP_ARGUMENT, CBContext); |
||
| 618 | } |
||
| 619 | |||
| 620 | /// Create a position describing the function scope of \p CB. |
||
| 621 | static const IRPosition callsite_function(const CallBase &CB) { |
||
| 622 | return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE); |
||
| 623 | } |
||
| 624 | |||
| 625 | /// Create a position describing the returned value of \p CB. |
||
| 626 | static const IRPosition callsite_returned(const CallBase &CB) { |
||
| 627 | return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE_RETURNED); |
||
| 628 | } |
||
| 629 | |||
| 630 | /// Create a position describing the argument of \p CB at position \p ArgNo. |
||
| 631 | static const IRPosition callsite_argument(const CallBase &CB, |
||
| 632 | unsigned ArgNo) { |
||
| 633 | return IRPosition(const_cast<Use &>(CB.getArgOperandUse(ArgNo)), |
||
| 634 | IRP_CALL_SITE_ARGUMENT); |
||
| 635 | } |
||
| 636 | |||
| 637 | /// Create a position describing the argument of \p ACS at position \p ArgNo. |
||
| 638 | static const IRPosition callsite_argument(AbstractCallSite ACS, |
||
| 639 | unsigned ArgNo) { |
||
| 640 | if (ACS.getNumArgOperands() <= ArgNo) |
||
| 641 | return IRPosition(); |
||
| 642 | int CSArgNo = ACS.getCallArgOperandNo(ArgNo); |
||
| 643 | if (CSArgNo >= 0) |
||
| 644 | return IRPosition::callsite_argument( |
||
| 645 | cast<CallBase>(*ACS.getInstruction()), CSArgNo); |
||
| 646 | return IRPosition(); |
||
| 647 | } |
||
| 648 | |||
| 649 | /// Create a position with function scope matching the "context" of \p IRP. |
||
| 650 | /// If \p IRP is a call site (see isAnyCallSitePosition()) then the result |
||
| 651 | /// will be a call site position, otherwise the function position of the |
||
| 652 | /// associated function. |
||
| 653 | static const IRPosition |
||
| 654 | function_scope(const IRPosition &IRP, |
||
| 655 | const CallBaseContext *CBContext = nullptr) { |
||
| 656 | if (IRP.isAnyCallSitePosition()) { |
||
| 657 | return IRPosition::callsite_function( |
||
| 658 | cast<CallBase>(IRP.getAnchorValue())); |
||
| 659 | } |
||
| 660 | assert(IRP.getAssociatedFunction()); |
||
| 661 | return IRPosition::function(*IRP.getAssociatedFunction(), CBContext); |
||
| 662 | } |
||
| 663 | |||
| 664 | bool operator==(const IRPosition &RHS) const { |
||
| 665 | return Enc == RHS.Enc && RHS.CBContext == CBContext; |
||
| 666 | } |
||
| 667 | bool operator!=(const IRPosition &RHS) const { return !(*this == RHS); } |
||
| 668 | |||
| 669 | /// Return the value this abstract attribute is anchored with. |
||
| 670 | /// |
||
| 671 | /// The anchor value might not be the associated value if the latter is not |
||
| 672 | /// sufficient to determine where arguments will be manifested. This is, so |
||
| 673 | /// far, only the case for call site arguments as the value is not sufficient |
||
| 674 | /// to pinpoint them. Instead, we can use the call site as an anchor. |
||
| 675 | Value &getAnchorValue() const { |
||
| 676 | switch (getEncodingBits()) { |
||
| 677 | case ENC_VALUE: |
||
| 678 | case ENC_RETURNED_VALUE: |
||
| 679 | case ENC_FLOATING_FUNCTION: |
||
| 680 | return *getAsValuePtr(); |
||
| 681 | case ENC_CALL_SITE_ARGUMENT_USE: |
||
| 682 | return *(getAsUsePtr()->getUser()); |
||
| 683 | default: |
||
| 684 | llvm_unreachable("Unkown encoding!"); |
||
| 685 | }; |
||
| 686 | } |
||
| 687 | |||
| 688 | /// Return the associated function, if any. |
||
| 689 | Function *getAssociatedFunction() const { |
||
| 690 | if (auto *CB = dyn_cast<CallBase>(&getAnchorValue())) { |
||
| 691 | // We reuse the logic that associates callback calles to arguments of a |
||
| 692 | // call site here to identify the callback callee as the associated |
||
| 693 | // function. |
||
| 694 | if (Argument *Arg = getAssociatedArgument()) |
||
| 695 | return Arg->getParent(); |
||
| 696 | return CB->getCalledFunction(); |
||
| 697 | } |
||
| 698 | return getAnchorScope(); |
||
| 699 | } |
||
| 700 | |||
| 701 | /// Return the associated argument, if any. |
||
| 702 | Argument *getAssociatedArgument() const; |
||
| 703 | |||
| 704 | /// Return true if the position refers to a function interface, that is the |
||
| 705 | /// function scope, the function return, or an argument. |
||
| 706 | bool isFnInterfaceKind() const { |
||
| 707 | switch (getPositionKind()) { |
||
| 708 | case IRPosition::IRP_FUNCTION: |
||
| 709 | case IRPosition::IRP_RETURNED: |
||
| 710 | case IRPosition::IRP_ARGUMENT: |
||
| 711 | return true; |
||
| 712 | default: |
||
| 713 | return false; |
||
| 714 | } |
||
| 715 | } |
||
| 716 | |||
| 717 | /// Return the Function surrounding the anchor value. |
||
| 718 | Function *getAnchorScope() const { |
||
| 719 | Value &V = getAnchorValue(); |
||
| 720 | if (isa<Function>(V)) |
||
| 721 | return &cast<Function>(V); |
||
| 722 | if (isa<Argument>(V)) |
||
| 723 | return cast<Argument>(V).getParent(); |
||
| 724 | if (isa<Instruction>(V)) |
||
| 725 | return cast<Instruction>(V).getFunction(); |
||
| 726 | return nullptr; |
||
| 727 | } |
||
| 728 | |||
| 729 | /// Return the context instruction, if any. |
||
| 730 | Instruction *getCtxI() const { |
||
| 731 | Value &V = getAnchorValue(); |
||
| 732 | if (auto *I = dyn_cast<Instruction>(&V)) |
||
| 733 | return I; |
||
| 734 | if (auto *Arg = dyn_cast<Argument>(&V)) |
||
| 735 | if (!Arg->getParent()->isDeclaration()) |
||
| 736 | return &Arg->getParent()->getEntryBlock().front(); |
||
| 737 | if (auto *F = dyn_cast<Function>(&V)) |
||
| 738 | if (!F->isDeclaration()) |
||
| 739 | return &(F->getEntryBlock().front()); |
||
| 740 | return nullptr; |
||
| 741 | } |
||
| 742 | |||
| 743 | /// Return the value this abstract attribute is associated with. |
||
| 744 | Value &getAssociatedValue() const { |
||
| 745 | if (getCallSiteArgNo() < 0 || isa<Argument>(&getAnchorValue())) |
||
| 746 | return getAnchorValue(); |
||
| 747 | assert(isa<CallBase>(&getAnchorValue()) && "Expected a call base!"); |
||
| 748 | return *cast<CallBase>(&getAnchorValue()) |
||
| 749 | ->getArgOperand(getCallSiteArgNo()); |
||
| 750 | } |
||
| 751 | |||
| 752 | /// Return the type this abstract attribute is associated with. |
||
| 753 | Type *getAssociatedType() const { |
||
| 754 | if (getPositionKind() == IRPosition::IRP_RETURNED) |
||
| 755 | return getAssociatedFunction()->getReturnType(); |
||
| 756 | return getAssociatedValue().getType(); |
||
| 757 | } |
||
| 758 | |||
| 759 | /// Return the callee argument number of the associated value if it is an |
||
| 760 | /// argument or call site argument, otherwise a negative value. In contrast to |
||
| 761 | /// `getCallSiteArgNo` this method will always return the "argument number" |
||
| 762 | /// from the perspective of the callee. This may not the same as the call site |
||
| 763 | /// if this is a callback call. |
||
| 764 | int getCalleeArgNo() const { |
||
| 765 | return getArgNo(/* CallbackCalleeArgIfApplicable */ true); |
||
| 766 | } |
||
| 767 | |||
| 768 | /// Return the call site argument number of the associated value if it is an |
||
| 769 | /// argument or call site argument, otherwise a negative value. In contrast to |
||
| 770 | /// `getCalleArgNo` this method will always return the "operand number" from |
||
| 771 | /// the perspective of the call site. This may not the same as the callee |
||
| 772 | /// perspective if this is a callback call. |
||
| 773 | int getCallSiteArgNo() const { |
||
| 774 | return getArgNo(/* CallbackCalleeArgIfApplicable */ false); |
||
| 775 | } |
||
| 776 | |||
| 777 | /// Return the index in the attribute list for this position. |
||
| 778 | unsigned getAttrIdx() const { |
||
| 779 | switch (getPositionKind()) { |
||
| 780 | case IRPosition::IRP_INVALID: |
||
| 781 | case IRPosition::IRP_FLOAT: |
||
| 782 | break; |
||
| 783 | case IRPosition::IRP_FUNCTION: |
||
| 784 | case IRPosition::IRP_CALL_SITE: |
||
| 785 | return AttributeList::FunctionIndex; |
||
| 786 | case IRPosition::IRP_RETURNED: |
||
| 787 | case IRPosition::IRP_CALL_SITE_RETURNED: |
||
| 788 | return AttributeList::ReturnIndex; |
||
| 789 | case IRPosition::IRP_ARGUMENT: |
||
| 790 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
||
| 791 | return getCallSiteArgNo() + AttributeList::FirstArgIndex; |
||
| 792 | } |
||
| 793 | llvm_unreachable( |
||
| 794 | "There is no attribute index for a floating or invalid position!"); |
||
| 795 | } |
||
| 796 | |||
| 797 | /// Return the associated position kind. |
||
| 798 | Kind getPositionKind() const { |
||
| 799 | char EncodingBits = getEncodingBits(); |
||
| 800 | if (EncodingBits == ENC_CALL_SITE_ARGUMENT_USE) |
||
| 801 | return IRP_CALL_SITE_ARGUMENT; |
||
| 802 | if (EncodingBits == ENC_FLOATING_FUNCTION) |
||
| 803 | return IRP_FLOAT; |
||
| 804 | |||
| 805 | Value *V = getAsValuePtr(); |
||
| 806 | if (!V) |
||
| 807 | return IRP_INVALID; |
||
| 808 | if (isa<Argument>(V)) |
||
| 809 | return IRP_ARGUMENT; |
||
| 810 | if (isa<Function>(V)) |
||
| 811 | return isReturnPosition(EncodingBits) ? IRP_RETURNED : IRP_FUNCTION; |
||
| 812 | if (isa<CallBase>(V)) |
||
| 813 | return isReturnPosition(EncodingBits) ? IRP_CALL_SITE_RETURNED |
||
| 814 | : IRP_CALL_SITE; |
||
| 815 | return IRP_FLOAT; |
||
| 816 | } |
||
| 817 | |||
| 818 | /// TODO: Figure out if the attribute related helper functions should live |
||
| 819 | /// here or somewhere else. |
||
| 820 | |||
| 821 | /// Return true if any kind in \p AKs existing in the IR at a position that |
||
| 822 | /// will affect this one. See also getAttrs(...). |
||
| 823 | /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions, |
||
| 824 | /// e.g., the function position if this is an |
||
| 825 | /// argument position, should be ignored. |
||
| 826 | bool hasAttr(ArrayRef<Attribute::AttrKind> AKs, |
||
| 827 | bool IgnoreSubsumingPositions = false, |
||
| 828 | Attributor *A = nullptr) const; |
||
| 829 | |||
| 830 | /// Return the attributes of any kind in \p AKs existing in the IR at a |
||
| 831 | /// position that will affect this one. While each position can only have a |
||
| 832 | /// single attribute of any kind in \p AKs, there are "subsuming" positions |
||
| 833 | /// that could have an attribute as well. This method returns all attributes |
||
| 834 | /// found in \p Attrs. |
||
| 835 | /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions, |
||
| 836 | /// e.g., the function position if this is an |
||
| 837 | /// argument position, should be ignored. |
||
| 838 | void getAttrs(ArrayRef<Attribute::AttrKind> AKs, |
||
| 839 | SmallVectorImpl<Attribute> &Attrs, |
||
| 840 | bool IgnoreSubsumingPositions = false, |
||
| 841 | Attributor *A = nullptr) const; |
||
| 842 | |||
| 843 | /// Remove the attribute of kind \p AKs existing in the IR at this position. |
||
| 844 | void removeAttrs(ArrayRef<Attribute::AttrKind> AKs) const { |
||
| 845 | if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT) |
||
| 846 | return; |
||
| 847 | |||
| 848 | AttributeList AttrList; |
||
| 849 | auto *CB = dyn_cast<CallBase>(&getAnchorValue()); |
||
| 850 | if (CB) |
||
| 851 | AttrList = CB->getAttributes(); |
||
| 852 | else |
||
| 853 | AttrList = getAssociatedFunction()->getAttributes(); |
||
| 854 | |||
| 855 | LLVMContext &Ctx = getAnchorValue().getContext(); |
||
| 856 | for (Attribute::AttrKind AK : AKs) |
||
| 857 | AttrList = AttrList.removeAttributeAtIndex(Ctx, getAttrIdx(), AK); |
||
| 858 | |||
| 859 | if (CB) |
||
| 860 | CB->setAttributes(AttrList); |
||
| 861 | else |
||
| 862 | getAssociatedFunction()->setAttributes(AttrList); |
||
| 863 | } |
||
| 864 | |||
| 865 | bool isAnyCallSitePosition() const { |
||
| 866 | switch (getPositionKind()) { |
||
| 867 | case IRPosition::IRP_CALL_SITE: |
||
| 868 | case IRPosition::IRP_CALL_SITE_RETURNED: |
||
| 869 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
||
| 870 | return true; |
||
| 871 | default: |
||
| 872 | return false; |
||
| 873 | } |
||
| 874 | } |
||
| 875 | |||
| 876 | /// Return true if the position is an argument or call site argument. |
||
| 877 | bool isArgumentPosition() const { |
||
| 878 | switch (getPositionKind()) { |
||
| 879 | case IRPosition::IRP_ARGUMENT: |
||
| 880 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
||
| 881 | return true; |
||
| 882 | default: |
||
| 883 | return false; |
||
| 884 | } |
||
| 885 | } |
||
| 886 | |||
| 887 | /// Return the same position without the call base context. |
||
| 888 | IRPosition stripCallBaseContext() const { |
||
| 889 | IRPosition Result = *this; |
||
| 890 | Result.CBContext = nullptr; |
||
| 891 | return Result; |
||
| 892 | } |
||
| 893 | |||
| 894 | /// Get the call base context from the position. |
||
| 895 | const CallBaseContext *getCallBaseContext() const { return CBContext; } |
||
| 896 | |||
| 897 | /// Check if the position has any call base context. |
||
| 898 | bool hasCallBaseContext() const { return CBContext != nullptr; } |
||
| 899 | |||
| 900 | /// Special DenseMap key values. |
||
| 901 | /// |
||
| 902 | ///{ |
||
| 903 | static const IRPosition EmptyKey; |
||
| 904 | static const IRPosition TombstoneKey; |
||
| 905 | ///} |
||
| 906 | |||
| 907 | /// Conversion into a void * to allow reuse of pointer hashing. |
||
| 908 | operator void *() const { return Enc.getOpaqueValue(); } |
||
| 909 | |||
| 910 | private: |
||
| 911 | /// Private constructor for special values only! |
||
| 912 | explicit IRPosition(void *Ptr, const CallBaseContext *CBContext = nullptr) |
||
| 913 | : CBContext(CBContext) { |
||
| 914 | Enc.setFromOpaqueValue(Ptr); |
||
| 915 | } |
||
| 916 | |||
| 917 | /// IRPosition anchored at \p AnchorVal with kind/argument numbet \p PK. |
||
| 918 | explicit IRPosition(Value &AnchorVal, Kind PK, |
||
| 919 | const CallBaseContext *CBContext = nullptr) |
||
| 920 | : CBContext(CBContext) { |
||
| 921 | switch (PK) { |
||
| 922 | case IRPosition::IRP_INVALID: |
||
| 923 | llvm_unreachable("Cannot create invalid IRP with an anchor value!"); |
||
| 924 | break; |
||
| 925 | case IRPosition::IRP_FLOAT: |
||
| 926 | // Special case for floating functions. |
||
| 927 | if (isa<Function>(AnchorVal) || isa<CallBase>(AnchorVal)) |
||
| 928 | Enc = {&AnchorVal, ENC_FLOATING_FUNCTION}; |
||
| 929 | else |
||
| 930 | Enc = {&AnchorVal, ENC_VALUE}; |
||
| 931 | break; |
||
| 932 | case IRPosition::IRP_FUNCTION: |
||
| 933 | case IRPosition::IRP_CALL_SITE: |
||
| 934 | Enc = {&AnchorVal, ENC_VALUE}; |
||
| 935 | break; |
||
| 936 | case IRPosition::IRP_RETURNED: |
||
| 937 | case IRPosition::IRP_CALL_SITE_RETURNED: |
||
| 938 | Enc = {&AnchorVal, ENC_RETURNED_VALUE}; |
||
| 939 | break; |
||
| 940 | case IRPosition::IRP_ARGUMENT: |
||
| 941 | Enc = {&AnchorVal, ENC_VALUE}; |
||
| 942 | break; |
||
| 943 | case IRPosition::IRP_CALL_SITE_ARGUMENT: |
||
| 944 | llvm_unreachable( |
||
| 945 | "Cannot create call site argument IRP with an anchor value!"); |
||
| 946 | break; |
||
| 947 | } |
||
| 948 | verify(); |
||
| 949 | } |
||
| 950 | |||
| 951 | /// Return the callee argument number of the associated value if it is an |
||
| 952 | /// argument or call site argument. See also `getCalleeArgNo` and |
||
| 953 | /// `getCallSiteArgNo`. |
||
| 954 | int getArgNo(bool CallbackCalleeArgIfApplicable) const { |
||
| 955 | if (CallbackCalleeArgIfApplicable) |
||
| 956 | if (Argument *Arg = getAssociatedArgument()) |
||
| 957 | return Arg->getArgNo(); |
||
| 958 | switch (getPositionKind()) { |
||
| 959 | case IRPosition::IRP_ARGUMENT: |
||
| 960 | return cast<Argument>(getAsValuePtr())->getArgNo(); |
||
| 961 | case IRPosition::IRP_CALL_SITE_ARGUMENT: { |
||
| 962 | Use &U = *getAsUsePtr(); |
||
| 963 | return cast<CallBase>(U.getUser())->getArgOperandNo(&U); |
||
| 964 | } |
||
| 965 | default: |
||
| 966 | return -1; |
||
| 967 | } |
||
| 968 | } |
||
| 969 | |||
| 970 | /// IRPosition for the use \p U. The position kind \p PK needs to be |
||
| 971 | /// IRP_CALL_SITE_ARGUMENT, the anchor value is the user, the associated value |
||
| 972 | /// the used value. |
||
| 973 | explicit IRPosition(Use &U, Kind PK) { |
||
| 974 | assert(PK == IRP_CALL_SITE_ARGUMENT && |
||
| 975 | "Use constructor is for call site arguments only!"); |
||
| 976 | Enc = {&U, ENC_CALL_SITE_ARGUMENT_USE}; |
||
| 977 | verify(); |
||
| 978 | } |
||
| 979 | |||
| 980 | /// Verify internal invariants. |
||
| 981 | void verify(); |
||
| 982 | |||
| 983 | /// Return the attributes of kind \p AK existing in the IR as attribute. |
||
| 984 | bool getAttrsFromIRAttr(Attribute::AttrKind AK, |
||
| 985 | SmallVectorImpl<Attribute> &Attrs) const; |
||
| 986 | |||
| 987 | /// Return the attributes of kind \p AK existing in the IR as operand bundles |
||
| 988 | /// of an llvm.assume. |
||
| 989 | bool getAttrsFromAssumes(Attribute::AttrKind AK, |
||
| 990 | SmallVectorImpl<Attribute> &Attrs, |
||
| 991 | Attributor &A) const; |
||
| 992 | |||
| 993 | /// Return the underlying pointer as Value *, valid for all positions but |
||
| 994 | /// IRP_CALL_SITE_ARGUMENT. |
||
| 995 | Value *getAsValuePtr() const { |
||
| 996 | assert(getEncodingBits() != ENC_CALL_SITE_ARGUMENT_USE && |
||
| 997 | "Not a value pointer!"); |
||
| 998 | return reinterpret_cast<Value *>(Enc.getPointer()); |
||
| 999 | } |
||
| 1000 | |||
| 1001 | /// Return the underlying pointer as Use *, valid only for |
||
| 1002 | /// IRP_CALL_SITE_ARGUMENT positions. |
||
| 1003 | Use *getAsUsePtr() const { |
||
| 1004 | assert(getEncodingBits() == ENC_CALL_SITE_ARGUMENT_USE && |
||
| 1005 | "Not a value pointer!"); |
||
| 1006 | return reinterpret_cast<Use *>(Enc.getPointer()); |
||
| 1007 | } |
||
| 1008 | |||
| 1009 | /// Return true if \p EncodingBits describe a returned or call site returned |
||
| 1010 | /// position. |
||
| 1011 | static bool isReturnPosition(char EncodingBits) { |
||
| 1012 | return EncodingBits == ENC_RETURNED_VALUE; |
||
| 1013 | } |
||
| 1014 | |||
| 1015 | /// Return true if the encoding bits describe a returned or call site returned |
||
| 1016 | /// position. |
||
| 1017 | bool isReturnPosition() const { return isReturnPosition(getEncodingBits()); } |
||
| 1018 | |||
| 1019 | /// The encoding of the IRPosition is a combination of a pointer and two |
||
| 1020 | /// encoding bits. The values of the encoding bits are defined in the enum |
||
| 1021 | /// below. The pointer is either a Value* (for the first three encoding bit |
||
| 1022 | /// combinations) or Use* (for ENC_CALL_SITE_ARGUMENT_USE). |
||
| 1023 | /// |
||
| 1024 | ///{ |
||
| 1025 | enum { |
||
| 1026 | ENC_VALUE = 0b00, |
||
| 1027 | ENC_RETURNED_VALUE = 0b01, |
||
| 1028 | ENC_FLOATING_FUNCTION = 0b10, |
||
| 1029 | ENC_CALL_SITE_ARGUMENT_USE = 0b11, |
||
| 1030 | }; |
||
| 1031 | |||
| 1032 | // Reserve the maximal amount of bits so there is no need to mask out the |
||
| 1033 | // remaining ones. We will not encode anything else in the pointer anyway. |
||
| 1034 | static constexpr int NumEncodingBits = |
||
| 1035 | PointerLikeTypeTraits<void *>::NumLowBitsAvailable; |
||
| 1036 | static_assert(NumEncodingBits >= 2, "At least two bits are required!"); |
||
| 1037 | |||
| 1038 | /// The pointer with the encoding bits. |
||
| 1039 | PointerIntPair<void *, NumEncodingBits, char> Enc; |
||
| 1040 | ///} |
||
| 1041 | |||
| 1042 | /// Call base context. Used for callsite specific analysis. |
||
| 1043 | const CallBaseContext *CBContext = nullptr; |
||
| 1044 | |||
| 1045 | /// Return the encoding bits. |
||
| 1046 | char getEncodingBits() const { return Enc.getInt(); } |
||
| 1047 | }; |
||
| 1048 | |||
| 1049 | /// Helper that allows IRPosition as a key in a DenseMap. |
||
| 1050 | template <> struct DenseMapInfo<IRPosition> { |
||
| 1051 | static inline IRPosition getEmptyKey() { return IRPosition::EmptyKey; } |
||
| 1052 | static inline IRPosition getTombstoneKey() { |
||
| 1053 | return IRPosition::TombstoneKey; |
||
| 1054 | } |
||
| 1055 | static unsigned getHashValue(const IRPosition &IRP) { |
||
| 1056 | return (DenseMapInfo<void *>::getHashValue(IRP) << 4) ^ |
||
| 1057 | (DenseMapInfo<Value *>::getHashValue(IRP.getCallBaseContext())); |
||
| 1058 | } |
||
| 1059 | |||
| 1060 | static bool isEqual(const IRPosition &a, const IRPosition &b) { |
||
| 1061 | return a == b; |
||
| 1062 | } |
||
| 1063 | }; |
||
| 1064 | |||
| 1065 | /// A visitor class for IR positions. |
||
| 1066 | /// |
||
| 1067 | /// Given a position P, the SubsumingPositionIterator allows to visit "subsuming |
||
| 1068 | /// positions" wrt. attributes/information. Thus, if a piece of information |
||
| 1069 | /// holds for a subsuming position, it also holds for the position P. |
||
| 1070 | /// |
||
| 1071 | /// The subsuming positions always include the initial position and then, |
||
| 1072 | /// depending on the position kind, additionally the following ones: |
||
| 1073 | /// - for IRP_RETURNED: |
||
| 1074 | /// - the function (IRP_FUNCTION) |
||
| 1075 | /// - for IRP_ARGUMENT: |
||
| 1076 | /// - the function (IRP_FUNCTION) |
||
| 1077 | /// - for IRP_CALL_SITE: |
||
| 1078 | /// - the callee (IRP_FUNCTION), if known |
||
| 1079 | /// - for IRP_CALL_SITE_RETURNED: |
||
| 1080 | /// - the callee (IRP_RETURNED), if known |
||
| 1081 | /// - the call site (IRP_FUNCTION) |
||
| 1082 | /// - the callee (IRP_FUNCTION), if known |
||
| 1083 | /// - for IRP_CALL_SITE_ARGUMENT: |
||
| 1084 | /// - the argument of the callee (IRP_ARGUMENT), if known |
||
| 1085 | /// - the callee (IRP_FUNCTION), if known |
||
| 1086 | /// - the position the call site argument is associated with if it is not |
||
| 1087 | /// anchored to the call site, e.g., if it is an argument then the argument |
||
| 1088 | /// (IRP_ARGUMENT) |
||
| 1089 | class SubsumingPositionIterator { |
||
| 1090 | SmallVector<IRPosition, 4> IRPositions; |
||
| 1091 | using iterator = decltype(IRPositions)::iterator; |
||
| 1092 | |||
| 1093 | public: |
||
| 1094 | SubsumingPositionIterator(const IRPosition &IRP); |
||
| 1095 | iterator begin() { return IRPositions.begin(); } |
||
| 1096 | iterator end() { return IRPositions.end(); } |
||
| 1097 | }; |
||
| 1098 | |||
| 1099 | /// Wrapper for FunctionAnalysisManager. |
||
| 1100 | struct AnalysisGetter { |
||
| 1101 | // The client may be running the old pass manager, in which case, we need to |
||
| 1102 | // map the requested Analysis to its equivalent wrapper in the old pass |
||
| 1103 | // manager. The scheme implemented here does not require every Analysis to be |
||
| 1104 | // updated. Only those new analyses that the client cares about in the old |
||
| 1105 | // pass manager need to expose a LegacyWrapper type, and that wrapper should |
||
| 1106 | // support a getResult() method that matches the new Analysis. |
||
| 1107 | // |
||
| 1108 | // We need SFINAE to check for the LegacyWrapper, but function templates don't |
||
| 1109 | // allow partial specialization, which is needed in this case. So instead, we |
||
| 1110 | // use a constexpr bool to perform the SFINAE, and then use this information |
||
| 1111 | // inside the function template. |
||
| 1112 | template <typename, typename = void> static constexpr bool HasLegacyWrapper = false; |
||
| 1113 | |||
| 1114 | template <typename Analysis> |
||
| 1115 | typename Analysis::Result *getAnalysis(const Function &F) { |
||
| 1116 | if (FAM) |
||
| 1117 | return &FAM->getResult<Analysis>(const_cast<Function &>(F)); |
||
| 1118 | if constexpr (HasLegacyWrapper<Analysis>) |
||
| 1119 | if (LegacyPass) |
||
| 1120 | return &LegacyPass |
||
| 1121 | ->getAnalysis<typename Analysis::LegacyWrapper>( |
||
| 1122 | const_cast<Function &>(F)) |
||
| 1123 | .getResult(); |
||
| 1124 | return nullptr; |
||
| 1125 | } |
||
| 1126 | |||
| 1127 | AnalysisGetter(FunctionAnalysisManager &FAM) : FAM(&FAM) {} |
||
| 1128 | AnalysisGetter(Pass *P) : LegacyPass(P) {} |
||
| 1129 | AnalysisGetter() = default; |
||
| 1130 | |||
| 1131 | private: |
||
| 1132 | FunctionAnalysisManager *FAM = nullptr; |
||
| 1133 | Pass *LegacyPass = nullptr; |
||
| 1134 | }; |
||
| 1135 | |||
| 1136 | template <typename Analysis> |
||
| 1137 | constexpr bool AnalysisGetter::HasLegacyWrapper< |
||
| 1138 | Analysis, std::void_t<typename Analysis::LegacyWrapper>> = true; |
||
| 1139 | |||
| 1140 | /// Data structure to hold cached (LLVM-IR) information. |
||
| 1141 | /// |
||
| 1142 | /// All attributes are given an InformationCache object at creation time to |
||
| 1143 | /// avoid inspection of the IR by all of them individually. This default |
||
| 1144 | /// InformationCache will hold information required by 'default' attributes, |
||
| 1145 | /// thus the ones deduced when Attributor::identifyDefaultAbstractAttributes(..) |
||
| 1146 | /// is called. |
||
| 1147 | /// |
||
| 1148 | /// If custom abstract attributes, registered manually through |
||
| 1149 | /// Attributor::registerAA(...), need more information, especially if it is not |
||
| 1150 | /// reusable, it is advised to inherit from the InformationCache and cast the |
||
| 1151 | /// instance down in the abstract attributes. |
||
| 1152 | struct InformationCache { |
||
| 1153 | InformationCache(const Module &M, AnalysisGetter &AG, |
||
| 1154 | BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC) |
||
| 1155 | : DL(M.getDataLayout()), Allocator(Allocator), |
||
| 1156 | Explorer( |
||
| 1157 | /* ExploreInterBlock */ true, /* ExploreCFGForward */ true, |
||
| 1158 | /* ExploreCFGBackward */ true, |
||
| 1159 | /* LIGetter */ |
||
| 1160 | [&](const Function &F) { return AG.getAnalysis<LoopAnalysis>(F); }, |
||
| 1161 | /* DTGetter */ |
||
| 1162 | [&](const Function &F) { |
||
| 1163 | return AG.getAnalysis<DominatorTreeAnalysis>(F); |
||
| 1164 | }, |
||
| 1165 | /* PDTGetter */ |
||
| 1166 | [&](const Function &F) { |
||
| 1167 | return AG.getAnalysis<PostDominatorTreeAnalysis>(F); |
||
| 1168 | }), |
||
| 1169 | AG(AG), TargetTriple(M.getTargetTriple()) { |
||
| 1170 | if (CGSCC) |
||
| 1171 | initializeModuleSlice(*CGSCC); |
||
| 1172 | } |
||
| 1173 | |||
| 1174 | ~InformationCache() { |
||
| 1175 | // The FunctionInfo objects are allocated via a BumpPtrAllocator, we call |
||
| 1176 | // the destructor manually. |
||
| 1177 | for (auto &It : FuncInfoMap) |
||
| 1178 | It.getSecond()->~FunctionInfo(); |
||
| 1179 | // Same is true for the instruction exclusions sets. |
||
| 1180 | using AA::InstExclusionSetTy; |
||
| 1181 | for (auto *BES : BESets) |
||
| 1182 | BES->~InstExclusionSetTy(); |
||
| 1183 | } |
||
| 1184 | |||
| 1185 | /// Apply \p CB to all uses of \p F. If \p LookThroughConstantExprUses is |
||
| 1186 | /// true, constant expression users are not given to \p CB but their uses are |
||
| 1187 | /// traversed transitively. |
||
| 1188 | template <typename CBTy> |
||
| 1189 | static void foreachUse(Function &F, CBTy CB, |
||
| 1190 | bool LookThroughConstantExprUses = true) { |
||
| 1191 | SmallVector<Use *, 8> Worklist(make_pointer_range(F.uses())); |
||
| 1192 | |||
| 1193 | for (unsigned Idx = 0; Idx < Worklist.size(); ++Idx) { |
||
| 1194 | Use &U = *Worklist[Idx]; |
||
| 1195 | |||
| 1196 | // Allow use in constant bitcasts and simply look through them. |
||
| 1197 | if (LookThroughConstantExprUses && isa<ConstantExpr>(U.getUser())) { |
||
| 1198 | for (Use &CEU : cast<ConstantExpr>(U.getUser())->uses()) |
||
| 1199 | Worklist.push_back(&CEU); |
||
| 1200 | continue; |
||
| 1201 | } |
||
| 1202 | |||
| 1203 | CB(U); |
||
| 1204 | } |
||
| 1205 | } |
||
| 1206 | |||
| 1207 | /// Initialize the ModuleSlice member based on \p SCC. ModuleSlices contains |
||
| 1208 | /// (a subset of) all functions that we can look at during this SCC traversal. |
||
| 1209 | /// This includes functions (transitively) called from the SCC and the |
||
| 1210 | /// (transitive) callers of SCC functions. We also can look at a function if |
||
| 1211 | /// there is a "reference edge", i.a., if the function somehow uses (!=calls) |
||
| 1212 | /// a function in the SCC or a caller of a function in the SCC. |
||
| 1213 | void initializeModuleSlice(SetVector<Function *> &SCC) { |
||
| 1214 | ModuleSlice.insert(SCC.begin(), SCC.end()); |
||
| 1215 | |||
| 1216 | SmallPtrSet<Function *, 16> Seen; |
||
| 1217 | SmallVector<Function *, 16> Worklist(SCC.begin(), SCC.end()); |
||
| 1218 | while (!Worklist.empty()) { |
||
| 1219 | Function *F = Worklist.pop_back_val(); |
||
| 1220 | ModuleSlice.insert(F); |
||
| 1221 | |||
| 1222 | for (Instruction &I : instructions(*F)) |
||
| 1223 | if (auto *CB = dyn_cast<CallBase>(&I)) |
||
| 1224 | if (Function *Callee = CB->getCalledFunction()) |
||
| 1225 | if (Seen.insert(Callee).second) |
||
| 1226 | Worklist.push_back(Callee); |
||
| 1227 | } |
||
| 1228 | |||
| 1229 | Seen.clear(); |
||
| 1230 | Worklist.append(SCC.begin(), SCC.end()); |
||
| 1231 | while (!Worklist.empty()) { |
||
| 1232 | Function *F = Worklist.pop_back_val(); |
||
| 1233 | ModuleSlice.insert(F); |
||
| 1234 | |||
| 1235 | // Traverse all transitive uses. |
||
| 1236 | foreachUse(*F, [&](Use &U) { |
||
| 1237 | if (auto *UsrI = dyn_cast<Instruction>(U.getUser())) |
||
| 1238 | if (Seen.insert(UsrI->getFunction()).second) |
||
| 1239 | Worklist.push_back(UsrI->getFunction()); |
||
| 1240 | }); |
||
| 1241 | } |
||
| 1242 | } |
||
| 1243 | |||
| 1244 | /// The slice of the module we are allowed to look at. |
||
| 1245 | SmallPtrSet<Function *, 8> ModuleSlice; |
||
| 1246 | |||
| 1247 | /// A vector type to hold instructions. |
||
| 1248 | using InstructionVectorTy = SmallVector<Instruction *, 8>; |
||
| 1249 | |||
| 1250 | /// A map type from opcodes to instructions with this opcode. |
||
| 1251 | using OpcodeInstMapTy = DenseMap<unsigned, InstructionVectorTy *>; |
||
| 1252 | |||
| 1253 | /// Return the map that relates "interesting" opcodes with all instructions |
||
| 1254 | /// with that opcode in \p F. |
||
| 1255 | OpcodeInstMapTy &getOpcodeInstMapForFunction(const Function &F) { |
||
| 1256 | return getFunctionInfo(F).OpcodeInstMap; |
||
| 1257 | } |
||
| 1258 | |||
| 1259 | /// Return the instructions in \p F that may read or write memory. |
||
| 1260 | InstructionVectorTy &getReadOrWriteInstsForFunction(const Function &F) { |
||
| 1261 | return getFunctionInfo(F).RWInsts; |
||
| 1262 | } |
||
| 1263 | |||
| 1264 | /// Return MustBeExecutedContextExplorer |
||
| 1265 | MustBeExecutedContextExplorer &getMustBeExecutedContextExplorer() { |
||
| 1266 | return Explorer; |
||
| 1267 | } |
||
| 1268 | |||
| 1269 | /// Return TargetLibraryInfo for function \p F. |
||
| 1270 | TargetLibraryInfo *getTargetLibraryInfoForFunction(const Function &F) { |
||
| 1271 | return AG.getAnalysis<TargetLibraryAnalysis>(F); |
||
| 1272 | } |
||
| 1273 | |||
| 1274 | /// Return AliasAnalysis Result for function \p F. |
||
| 1275 | AAResults *getAAResultsForFunction(const Function &F); |
||
| 1276 | |||
| 1277 | /// Return true if \p Arg is involved in a must-tail call, thus the argument |
||
| 1278 | /// of the caller or callee. |
||
| 1279 | bool isInvolvedInMustTailCall(const Argument &Arg) { |
||
| 1280 | FunctionInfo &FI = getFunctionInfo(*Arg.getParent()); |
||
| 1281 | return FI.CalledViaMustTail || FI.ContainsMustTailCall; |
||
| 1282 | } |
||
| 1283 | |||
| 1284 | bool isOnlyUsedByAssume(const Instruction &I) const { |
||
| 1285 | return AssumeOnlyValues.contains(&I); |
||
| 1286 | } |
||
| 1287 | |||
| 1288 | /// Return the analysis result from a pass \p AP for function \p F. |
||
| 1289 | template <typename AP> |
||
| 1290 | typename AP::Result *getAnalysisResultForFunction(const Function &F) { |
||
| 1291 | return AG.getAnalysis<AP>(F); |
||
| 1292 | } |
||
| 1293 | |||
| 1294 | /// Return datalayout used in the module. |
||
| 1295 | const DataLayout &getDL() { return DL; } |
||
| 1296 | |||
| 1297 | /// Return the map conaining all the knowledge we have from `llvm.assume`s. |
||
| 1298 | const RetainedKnowledgeMap &getKnowledgeMap() const { return KnowledgeMap; } |
||
| 1299 | |||
| 1300 | /// Given \p BES, return a uniqued version. \p BES is destroyed in the |
||
| 1301 | /// process. |
||
| 1302 | const AA::InstExclusionSetTy * |
||
| 1303 | getOrCreateUniqueBlockExecutionSet(const AA::InstExclusionSetTy *BES) { |
||
| 1304 | auto It = BESets.find(BES); |
||
| 1305 | if (It != BESets.end()) |
||
| 1306 | return *It; |
||
| 1307 | auto *UniqueBES = new (Allocator) AA::InstExclusionSetTy(*BES); |
||
| 1308 | BESets.insert(UniqueBES); |
||
| 1309 | return UniqueBES; |
||
| 1310 | } |
||
| 1311 | |||
| 1312 | /// Check whether \p F is part of module slice. |
||
| 1313 | bool isInModuleSlice(const Function &F) { |
||
| 1314 | return ModuleSlice.empty() || ModuleSlice.count(const_cast<Function *>(&F)); |
||
| 1315 | } |
||
| 1316 | |||
| 1317 | /// Return true if the stack (llvm::Alloca) can be accessed by other threads. |
||
| 1318 | bool stackIsAccessibleByOtherThreads() { return !targetIsGPU(); } |
||
| 1319 | |||
| 1320 | /// Return true if the target is a GPU. |
||
| 1321 | bool targetIsGPU() { |
||
| 1322 | return TargetTriple.isAMDGPU() || TargetTriple.isNVPTX(); |
||
| 1323 | } |
||
| 1324 | |||
| 1325 | private: |
||
| 1326 | struct FunctionInfo { |
||
| 1327 | ~FunctionInfo(); |
||
| 1328 | |||
| 1329 | /// A nested map that remembers all instructions in a function with a |
||
| 1330 | /// certain instruction opcode (Instruction::getOpcode()). |
||
| 1331 | OpcodeInstMapTy OpcodeInstMap; |
||
| 1332 | |||
| 1333 | /// A map from functions to their instructions that may read or write |
||
| 1334 | /// memory. |
||
| 1335 | InstructionVectorTy RWInsts; |
||
| 1336 | |||
| 1337 | /// Function is called by a `musttail` call. |
||
| 1338 | bool CalledViaMustTail; |
||
| 1339 | |||
| 1340 | /// Function contains a `musttail` call. |
||
| 1341 | bool ContainsMustTailCall; |
||
| 1342 | }; |
||
| 1343 | |||
| 1344 | /// A map type from functions to informatio about it. |
||
| 1345 | DenseMap<const Function *, FunctionInfo *> FuncInfoMap; |
||
| 1346 | |||
| 1347 | /// Return information about the function \p F, potentially by creating it. |
||
| 1348 | FunctionInfo &getFunctionInfo(const Function &F) { |
||
| 1349 | FunctionInfo *&FI = FuncInfoMap[&F]; |
||
| 1350 | if (!FI) { |
||
| 1351 | FI = new (Allocator) FunctionInfo(); |
||
| 1352 | initializeInformationCache(F, *FI); |
||
| 1353 | } |
||
| 1354 | return *FI; |
||
| 1355 | } |
||
| 1356 | |||
| 1357 | /// Initialize the function information cache \p FI for the function \p F. |
||
| 1358 | /// |
||
| 1359 | /// This method needs to be called for all function that might be looked at |
||
| 1360 | /// through the information cache interface *prior* to looking at them. |
||
| 1361 | void initializeInformationCache(const Function &F, FunctionInfo &FI); |
||
| 1362 | |||
| 1363 | /// The datalayout used in the module. |
||
| 1364 | const DataLayout &DL; |
||
| 1365 | |||
| 1366 | /// The allocator used to allocate memory, e.g. for `FunctionInfo`s. |
||
| 1367 | BumpPtrAllocator &Allocator; |
||
| 1368 | |||
| 1369 | /// MustBeExecutedContextExplorer |
||
| 1370 | MustBeExecutedContextExplorer Explorer; |
||
| 1371 | |||
| 1372 | /// A map with knowledge retained in `llvm.assume` instructions. |
||
| 1373 | RetainedKnowledgeMap KnowledgeMap; |
||
| 1374 | |||
| 1375 | /// A container for all instructions that are only used by `llvm.assume`. |
||
| 1376 | SetVector<const Instruction *> AssumeOnlyValues; |
||
| 1377 | |||
| 1378 | /// Cache for block sets to allow reuse. |
||
| 1379 | DenseSet<AA::InstExclusionSetTy *> BESets; |
||
| 1380 | |||
| 1381 | /// Getters for analysis. |
||
| 1382 | AnalysisGetter &AG; |
||
| 1383 | |||
| 1384 | /// Set of inlineable functions |
||
| 1385 | SmallPtrSet<const Function *, 8> InlineableFunctions; |
||
| 1386 | |||
| 1387 | /// The triple describing the target machine. |
||
| 1388 | Triple TargetTriple; |
||
| 1389 | |||
| 1390 | /// Give the Attributor access to the members so |
||
| 1391 | /// Attributor::identifyDefaultAbstractAttributes(...) can initialize them. |
||
| 1392 | friend struct Attributor; |
||
| 1393 | }; |
||
| 1394 | |||
| 1395 | /// Configuration for the Attributor. |
||
| 1396 | struct AttributorConfig { |
||
| 1397 | |||
| 1398 | AttributorConfig(CallGraphUpdater &CGUpdater) : CGUpdater(CGUpdater) {} |
||
| 1399 | |||
| 1400 | /// Is the user of the Attributor a module pass or not. This determines what |
||
| 1401 | /// IR we can look at and modify. If it is a module pass we might deduce facts |
||
| 1402 | /// outside the initial function set and modify functions outside that set, |
||
| 1403 | /// but only as part of the optimization of the functions in the initial |
||
| 1404 | /// function set. For CGSCC passes we can look at the IR of the module slice |
||
| 1405 | /// but never run any deduction, or perform any modification, outside the |
||
| 1406 | /// initial function set (which we assume is the SCC). |
||
| 1407 | bool IsModulePass = true; |
||
| 1408 | |||
| 1409 | /// Flag to determine if we can delete functions or keep dead ones around. |
||
| 1410 | bool DeleteFns = true; |
||
| 1411 | |||
| 1412 | /// Flag to determine if we rewrite function signatures. |
||
| 1413 | bool RewriteSignatures = true; |
||
| 1414 | |||
| 1415 | /// Flag to determine if we want to initialize all default AAs for an internal |
||
| 1416 | /// function marked live. See also: InitializationCallback> |
||
| 1417 | bool DefaultInitializeLiveInternals = true; |
||
| 1418 | |||
| 1419 | /// Callback function to be invoked on internal functions marked live. |
||
| 1420 | std::function<void(Attributor &A, const Function &F)> InitializationCallback = |
||
| 1421 | nullptr; |
||
| 1422 | |||
| 1423 | /// Helper to update an underlying call graph and to delete functions. |
||
| 1424 | CallGraphUpdater &CGUpdater; |
||
| 1425 | |||
| 1426 | /// If not null, a set limiting the attribute opportunities. |
||
| 1427 | DenseSet<const char *> *Allowed = nullptr; |
||
| 1428 | |||
| 1429 | /// Maximum number of iterations to run until fixpoint. |
||
| 1430 | std::optional<unsigned> MaxFixpointIterations; |
||
| 1431 | |||
| 1432 | /// A callback function that returns an ORE object from a Function pointer. |
||
| 1433 | ///{ |
||
| 1434 | using OptimizationRemarkGetter = |
||
| 1435 | function_ref<OptimizationRemarkEmitter &(Function *)>; |
||
| 1436 | OptimizationRemarkGetter OREGetter = nullptr; |
||
| 1437 | ///} |
||
| 1438 | |||
| 1439 | /// The name of the pass running the attributor, used to emit remarks. |
||
| 1440 | const char *PassName = nullptr; |
||
| 1441 | }; |
||
| 1442 | |||
| 1443 | /// The fixpoint analysis framework that orchestrates the attribute deduction. |
||
| 1444 | /// |
||
| 1445 | /// The Attributor provides a general abstract analysis framework (guided |
||
| 1446 | /// fixpoint iteration) as well as helper functions for the deduction of |
||
| 1447 | /// (LLVM-IR) attributes. However, also other code properties can be deduced, |
||
| 1448 | /// propagated, and ultimately manifested through the Attributor framework. This |
||
| 1449 | /// is particularly useful if these properties interact with attributes and a |
||
| 1450 | /// co-scheduled deduction allows to improve the solution. Even if not, thus if |
||
| 1451 | /// attributes/properties are completely isolated, they should use the |
||
| 1452 | /// Attributor framework to reduce the number of fixpoint iteration frameworks |
||
| 1453 | /// in the code base. Note that the Attributor design makes sure that isolated |
||
| 1454 | /// attributes are not impacted, in any way, by others derived at the same time |
||
| 1455 | /// if there is no cross-reasoning performed. |
||
| 1456 | /// |
||
| 1457 | /// The public facing interface of the Attributor is kept simple and basically |
||
| 1458 | /// allows abstract attributes to one thing, query abstract attributes |
||
| 1459 | /// in-flight. There are two reasons to do this: |
||
| 1460 | /// a) The optimistic state of one abstract attribute can justify an |
||
| 1461 | /// optimistic state of another, allowing to framework to end up with an |
||
| 1462 | /// optimistic (=best possible) fixpoint instead of one based solely on |
||
| 1463 | /// information in the IR. |
||
| 1464 | /// b) This avoids reimplementing various kinds of lookups, e.g., to check |
||
| 1465 | /// for existing IR attributes, in favor of a single lookups interface |
||
| 1466 | /// provided by an abstract attribute subclass. |
||
| 1467 | /// |
||
| 1468 | /// NOTE: The mechanics of adding a new "concrete" abstract attribute are |
||
| 1469 | /// described in the file comment. |
||
| 1470 | struct Attributor { |
||
| 1471 | |||
| 1472 | /// Constructor |
||
| 1473 | /// |
||
| 1474 | /// \param Functions The set of functions we are deriving attributes for. |
||
| 1475 | /// \param InfoCache Cache to hold various information accessible for |
||
| 1476 | /// the abstract attributes. |
||
| 1477 | /// \param Configuration The Attributor configuration which determines what |
||
| 1478 | /// generic features to use. |
||
| 1479 | Attributor(SetVector<Function *> &Functions, InformationCache &InfoCache, |
||
| 1480 | AttributorConfig Configuration) |
||
| 1481 | : Allocator(InfoCache.Allocator), Functions(Functions), |
||
| 1482 | InfoCache(InfoCache), Configuration(Configuration) {} |
||
| 1483 | |||
| 1484 | ~Attributor(); |
||
| 1485 | |||
| 1486 | /// Run the analyses until a fixpoint is reached or enforced (timeout). |
||
| 1487 | /// |
||
| 1488 | /// The attributes registered with this Attributor can be used after as long |
||
| 1489 | /// as the Attributor is not destroyed (it owns the attributes now). |
||
| 1490 | /// |
||
| 1491 | /// \Returns CHANGED if the IR was changed, otherwise UNCHANGED. |
||
| 1492 | ChangeStatus run(); |
||
| 1493 | |||
| 1494 | /// Lookup an abstract attribute of type \p AAType at position \p IRP. While |
||
| 1495 | /// no abstract attribute is found equivalent positions are checked, see |
||
| 1496 | /// SubsumingPositionIterator. Thus, the returned abstract attribute |
||
| 1497 | /// might be anchored at a different position, e.g., the callee if \p IRP is a |
||
| 1498 | /// call base. |
||
| 1499 | /// |
||
| 1500 | /// This method is the only (supported) way an abstract attribute can retrieve |
||
| 1501 | /// information from another abstract attribute. As an example, take an |
||
| 1502 | /// abstract attribute that determines the memory access behavior for a |
||
| 1503 | /// argument (readnone, readonly, ...). It should use `getAAFor` to get the |
||
| 1504 | /// most optimistic information for other abstract attributes in-flight, e.g. |
||
| 1505 | /// the one reasoning about the "captured" state for the argument or the one |
||
| 1506 | /// reasoning on the memory access behavior of the function as a whole. |
||
| 1507 | /// |
||
| 1508 | /// If the DepClass enum is set to `DepClassTy::None` the dependence from |
||
| 1509 | /// \p QueryingAA to the return abstract attribute is not automatically |
||
| 1510 | /// recorded. This should only be used if the caller will record the |
||
| 1511 | /// dependence explicitly if necessary, thus if it the returned abstract |
||
| 1512 | /// attribute is used for reasoning. To record the dependences explicitly use |
||
| 1513 | /// the `Attributor::recordDependence` method. |
||
| 1514 | template <typename AAType> |
||
| 1515 | const AAType &getAAFor(const AbstractAttribute &QueryingAA, |
||
| 1516 | const IRPosition &IRP, DepClassTy DepClass) { |
||
| 1517 | return getOrCreateAAFor<AAType>(IRP, &QueryingAA, DepClass, |
||
| 1518 | /* ForceUpdate */ false); |
||
| 1519 | } |
||
| 1520 | |||
| 1521 | /// Similar to getAAFor but the return abstract attribute will be updated (via |
||
| 1522 | /// `AbstractAttribute::update`) even if it is found in the cache. This is |
||
| 1523 | /// especially useful for AAIsDead as changes in liveness can make updates |
||
| 1524 | /// possible/useful that were not happening before as the abstract attribute |
||
| 1525 | /// was assumed dead. |
||
| 1526 | template <typename AAType> |
||
| 1527 | const AAType &getAndUpdateAAFor(const AbstractAttribute &QueryingAA, |
||
| 1528 | const IRPosition &IRP, DepClassTy DepClass) { |
||
| 1529 | return getOrCreateAAFor<AAType>(IRP, &QueryingAA, DepClass, |
||
| 1530 | /* ForceUpdate */ true); |
||
| 1531 | } |
||
| 1532 | |||
| 1533 | /// The version of getAAFor that allows to omit a querying abstract |
||
| 1534 | /// attribute. Using this after Attributor started running is restricted to |
||
| 1535 | /// only the Attributor itself. Initial seeding of AAs can be done via this |
||
| 1536 | /// function. |
||
| 1537 | /// NOTE: ForceUpdate is ignored in any stage other than the update stage. |
||
| 1538 | template <typename AAType> |
||
| 1539 | const AAType &getOrCreateAAFor(IRPosition IRP, |
||
| 1540 | const AbstractAttribute *QueryingAA, |
||
| 1541 | DepClassTy DepClass, bool ForceUpdate = false, |
||
| 1542 | bool UpdateAfterInit = true) { |
||
| 1543 | if (!shouldPropagateCallBaseContext(IRP)) |
||
| 1544 | IRP = IRP.stripCallBaseContext(); |
||
| 1545 | |||
| 1546 | if (AAType *AAPtr = lookupAAFor<AAType>(IRP, QueryingAA, DepClass, |
||
| 1547 | /* AllowInvalidState */ true)) { |
||
| 1548 | if (ForceUpdate && Phase == AttributorPhase::UPDATE) |
||
| 1549 | updateAA(*AAPtr); |
||
| 1550 | return *AAPtr; |
||
| 1551 | } |
||
| 1552 | |||
| 1553 | // No matching attribute found, create one. |
||
| 1554 | // Use the static create method. |
||
| 1555 | auto &AA = AAType::createForPosition(IRP, *this); |
||
| 1556 | |||
| 1557 | // Always register a new attribute to make sure we clean up the allocated |
||
| 1558 | // memory properly. |
||
| 1559 | registerAA(AA); |
||
| 1560 | |||
| 1561 | // If we are currenty seeding attributes, enforce seeding rules. |
||
| 1562 | if (Phase == AttributorPhase::SEEDING && !shouldSeedAttribute(AA)) { |
||
| 1563 | AA.getState().indicatePessimisticFixpoint(); |
||
| 1564 | return AA; |
||
| 1565 | } |
||
| 1566 | |||
| 1567 | // For now we ignore naked and optnone functions. |
||
| 1568 | bool Invalidate = |
||
| 1569 | Configuration.Allowed && !Configuration.Allowed->count(&AAType::ID); |
||
| 1570 | const Function *AnchorFn = IRP.getAnchorScope(); |
||
| 1571 | if (AnchorFn) { |
||
| 1572 | Invalidate |= |
||
| 1573 | AnchorFn->hasFnAttribute(Attribute::Naked) || |
||
| 1574 | AnchorFn->hasFnAttribute(Attribute::OptimizeNone) || |
||
| 1575 | (!isModulePass() && !getInfoCache().isInModuleSlice(*AnchorFn)); |
||
| 1576 | } |
||
| 1577 | |||
| 1578 | // Avoid too many nested initializations to prevent a stack overflow. |
||
| 1579 | Invalidate |= InitializationChainLength > MaxInitializationChainLength; |
||
| 1580 | |||
| 1581 | // Bootstrap the new attribute with an initial update to propagate |
||
| 1582 | // information, e.g., function -> call site. If it is not on a given |
||
| 1583 | // Allowed we will not perform updates at all. |
||
| 1584 | if (Invalidate) { |
||
| 1585 | AA.getState().indicatePessimisticFixpoint(); |
||
| 1586 | return AA; |
||
| 1587 | } |
||
| 1588 | |||
| 1589 | { |
||
| 1590 | TimeTraceScope TimeScope(AA.getName() + "::initialize"); |
||
| 1591 | ++InitializationChainLength; |
||
| 1592 | AA.initialize(*this); |
||
| 1593 | --InitializationChainLength; |
||
| 1594 | } |
||
| 1595 | |||
| 1596 | // We update only AAs associated with functions in the Functions set or |
||
| 1597 | // call sites of them. |
||
| 1598 | if ((AnchorFn && !isRunOn(const_cast<Function *>(AnchorFn))) && |
||
| 1599 | !isRunOn(IRP.getAssociatedFunction())) { |
||
| 1600 | AA.getState().indicatePessimisticFixpoint(); |
||
| 1601 | return AA; |
||
| 1602 | } |
||
| 1603 | |||
| 1604 | // If this is queried in the manifest stage, we force the AA to indicate |
||
| 1605 | // pessimistic fixpoint immediately. |
||
| 1606 | if (Phase == AttributorPhase::MANIFEST || |
||
| 1607 | Phase == AttributorPhase::CLEANUP) { |
||
| 1608 | AA.getState().indicatePessimisticFixpoint(); |
||
| 1609 | return AA; |
||
| 1610 | } |
||
| 1611 | |||
| 1612 | // Allow seeded attributes to declare dependencies. |
||
| 1613 | // Remember the seeding state. |
||
| 1614 | if (UpdateAfterInit) { |
||
| 1615 | AttributorPhase OldPhase = Phase; |
||
| 1616 | Phase = AttributorPhase::UPDATE; |
||
| 1617 | |||
| 1618 | updateAA(AA); |
||
| 1619 | |||
| 1620 | Phase = OldPhase; |
||
| 1621 | } |
||
| 1622 | |||
| 1623 | if (QueryingAA && AA.getState().isValidState()) |
||
| 1624 | recordDependence(AA, const_cast<AbstractAttribute &>(*QueryingAA), |
||
| 1625 | DepClass); |
||
| 1626 | return AA; |
||
| 1627 | } |
||
| 1628 | template <typename AAType> |
||
| 1629 | const AAType &getOrCreateAAFor(const IRPosition &IRP) { |
||
| 1630 | return getOrCreateAAFor<AAType>(IRP, /* QueryingAA */ nullptr, |
||
| 1631 | DepClassTy::NONE); |
||
| 1632 | } |
||
| 1633 | |||
| 1634 | /// Return the attribute of \p AAType for \p IRP if existing and valid. This |
||
| 1635 | /// also allows non-AA users lookup. |
||
| 1636 | template <typename AAType> |
||
| 1637 | AAType *lookupAAFor(const IRPosition &IRP, |
||
| 1638 | const AbstractAttribute *QueryingAA = nullptr, |
||
| 1639 | DepClassTy DepClass = DepClassTy::OPTIONAL, |
||
| 1640 | bool AllowInvalidState = false) { |
||
| 1641 | static_assert(std::is_base_of<AbstractAttribute, AAType>::value, |
||
| 1642 | "Cannot query an attribute with a type not derived from " |
||
| 1643 | "'AbstractAttribute'!"); |
||
| 1644 | // Lookup the abstract attribute of type AAType. If found, return it after |
||
| 1645 | // registering a dependence of QueryingAA on the one returned attribute. |
||
| 1646 | AbstractAttribute *AAPtr = AAMap.lookup({&AAType::ID, IRP}); |
||
| 1647 | if (!AAPtr) |
||
| 1648 | return nullptr; |
||
| 1649 | |||
| 1650 | AAType *AA = static_cast<AAType *>(AAPtr); |
||
| 1651 | |||
| 1652 | // Do not register a dependence on an attribute with an invalid state. |
||
| 1653 | if (DepClass != DepClassTy::NONE && QueryingAA && |
||
| 1654 | AA->getState().isValidState()) |
||
| 1655 | recordDependence(*AA, const_cast<AbstractAttribute &>(*QueryingAA), |
||
| 1656 | DepClass); |
||
| 1657 | |||
| 1658 | // Return nullptr if this attribute has an invalid state. |
||
| 1659 | if (!AllowInvalidState && !AA->getState().isValidState()) |
||
| 1660 | return nullptr; |
||
| 1661 | return AA; |
||
| 1662 | } |
||
| 1663 | |||
| 1664 | /// Allows a query AA to request an update if a new query was received. |
||
| 1665 | void registerForUpdate(AbstractAttribute &AA); |
||
| 1666 | |||
| 1667 | /// Explicitly record a dependence from \p FromAA to \p ToAA, that is if |
||
| 1668 | /// \p FromAA changes \p ToAA should be updated as well. |
||
| 1669 | /// |
||
| 1670 | /// This method should be used in conjunction with the `getAAFor` method and |
||
| 1671 | /// with the DepClass enum passed to the method set to None. This can |
||
| 1672 | /// be beneficial to avoid false dependences but it requires the users of |
||
| 1673 | /// `getAAFor` to explicitly record true dependences through this method. |
||
| 1674 | /// The \p DepClass flag indicates if the dependence is striclty necessary. |
||
| 1675 | /// That means for required dependences, if \p FromAA changes to an invalid |
||
| 1676 | /// state, \p ToAA can be moved to a pessimistic fixpoint because it required |
||
| 1677 | /// information from \p FromAA but none are available anymore. |
||
| 1678 | void recordDependence(const AbstractAttribute &FromAA, |
||
| 1679 | const AbstractAttribute &ToAA, DepClassTy DepClass); |
||
| 1680 | |||
| 1681 | /// Introduce a new abstract attribute into the fixpoint analysis. |
||
| 1682 | /// |
||
| 1683 | /// Note that ownership of the attribute is given to the Attributor. It will |
||
| 1684 | /// invoke delete for the Attributor on destruction of the Attributor. |
||
| 1685 | /// |
||
| 1686 | /// Attributes are identified by their IR position (AAType::getIRPosition()) |
||
| 1687 | /// and the address of their static member (see AAType::ID). |
||
| 1688 | template <typename AAType> AAType ®isterAA(AAType &AA) { |
||
| 1689 | static_assert(std::is_base_of<AbstractAttribute, AAType>::value, |
||
| 1690 | "Cannot register an attribute with a type not derived from " |
||
| 1691 | "'AbstractAttribute'!"); |
||
| 1692 | // Put the attribute in the lookup map structure and the container we use to |
||
| 1693 | // keep track of all attributes. |
||
| 1694 | const IRPosition &IRP = AA.getIRPosition(); |
||
| 1695 | AbstractAttribute *&AAPtr = AAMap[{&AAType::ID, IRP}]; |
||
| 1696 | |||
| 1697 | assert(!AAPtr && "Attribute already in map!"); |
||
| 1698 | AAPtr = &AA; |
||
| 1699 | |||
| 1700 | // Register AA with the synthetic root only before the manifest stage. |
||
| 1701 | if (Phase == AttributorPhase::SEEDING || Phase == AttributorPhase::UPDATE) |
||
| 1702 | DG.SyntheticRoot.Deps.push_back( |
||
| 1703 | AADepGraphNode::DepTy(&AA, unsigned(DepClassTy::REQUIRED))); |
||
| 1704 | |||
| 1705 | return AA; |
||
| 1706 | } |
||
| 1707 | |||
| 1708 | /// Return the internal information cache. |
||
| 1709 | InformationCache &getInfoCache() { return InfoCache; } |
||
| 1710 | |||
| 1711 | /// Return true if this is a module pass, false otherwise. |
||
| 1712 | bool isModulePass() const { return Configuration.IsModulePass; } |
||
| 1713 | |||
| 1714 | /// Return true if we derive attributes for \p Fn |
||
| 1715 | bool isRunOn(Function &Fn) const { return isRunOn(&Fn); } |
||
| 1716 | bool isRunOn(Function *Fn) const { |
||
| 1717 | return Functions.empty() || Functions.count(Fn); |
||
| 1718 | } |
||
| 1719 | |||
| 1720 | /// Determine opportunities to derive 'default' attributes in \p F and create |
||
| 1721 | /// abstract attribute objects for them. |
||
| 1722 | /// |
||
| 1723 | /// \param F The function that is checked for attribute opportunities. |
||
| 1724 | /// |
||
| 1725 | /// Note that abstract attribute instances are generally created even if the |
||
| 1726 | /// IR already contains the information they would deduce. The most important |
||
| 1727 | /// reason for this is the single interface, the one of the abstract attribute |
||
| 1728 | /// instance, which can be queried without the need to look at the IR in |
||
| 1729 | /// various places. |
||
| 1730 | void identifyDefaultAbstractAttributes(Function &F); |
||
| 1731 | |||
| 1732 | /// Determine whether the function \p F is IPO amendable |
||
| 1733 | /// |
||
| 1734 | /// If a function is exactly defined or it has alwaysinline attribute |
||
| 1735 | /// and is viable to be inlined, we say it is IPO amendable |
||
| 1736 | bool isFunctionIPOAmendable(const Function &F) { |
||
| 1737 | return F.hasExactDefinition() || InfoCache.InlineableFunctions.count(&F); |
||
| 1738 | } |
||
| 1739 | |||
| 1740 | /// Mark the internal function \p F as live. |
||
| 1741 | /// |
||
| 1742 | /// This will trigger the identification and initialization of attributes for |
||
| 1743 | /// \p F. |
||
| 1744 | void markLiveInternalFunction(const Function &F) { |
||
| 1745 | assert(F.hasLocalLinkage() && |
||
| 1746 | "Only local linkage is assumed dead initially."); |
||
| 1747 | |||
| 1748 | if (Configuration.DefaultInitializeLiveInternals) |
||
| 1749 | identifyDefaultAbstractAttributes(const_cast<Function &>(F)); |
||
| 1750 | if (Configuration.InitializationCallback) |
||
| 1751 | Configuration.InitializationCallback(*this, F); |
||
| 1752 | } |
||
| 1753 | |||
| 1754 | /// Helper function to remove callsite. |
||
| 1755 | void removeCallSite(CallInst *CI) { |
||
| 1756 | if (!CI) |
||
| 1757 | return; |
||
| 1758 | |||
| 1759 | Configuration.CGUpdater.removeCallSite(*CI); |
||
| 1760 | } |
||
| 1761 | |||
| 1762 | /// Record that \p U is to be replaces with \p NV after information was |
||
| 1763 | /// manifested. This also triggers deletion of trivially dead istructions. |
||
| 1764 | bool changeUseAfterManifest(Use &U, Value &NV) { |
||
| 1765 | Value *&V = ToBeChangedUses[&U]; |
||
| 1766 | if (V && (V->stripPointerCasts() == NV.stripPointerCasts() || |
||
| 1767 | isa_and_nonnull<UndefValue>(V))) |
||
| 1768 | return false; |
||
| 1769 | assert((!V || V == &NV || isa<UndefValue>(NV)) && |
||
| 1770 | "Use was registered twice for replacement with different values!"); |
||
| 1771 | V = &NV; |
||
| 1772 | return true; |
||
| 1773 | } |
||
| 1774 | |||
| 1775 | /// Helper function to replace all uses associated with \p IRP with \p NV. |
||
| 1776 | /// Return true if there is any change. The flag \p ChangeDroppable indicates |
||
| 1777 | /// if dropppable uses should be changed too. |
||
| 1778 | bool changeAfterManifest(const IRPosition IRP, Value &NV, |
||
| 1779 | bool ChangeDroppable = true) { |
||
| 1780 | if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_ARGUMENT) { |
||
| 1781 | auto *CB = cast<CallBase>(IRP.getCtxI()); |
||
| 1782 | return changeUseAfterManifest( |
||
| 1783 | CB->getArgOperandUse(IRP.getCallSiteArgNo()), NV); |
||
| 1784 | } |
||
| 1785 | Value &V = IRP.getAssociatedValue(); |
||
| 1786 | auto &Entry = ToBeChangedValues[&V]; |
||
| 1787 | Value *CurNV = get<0>(Entry); |
||
| 1788 | if (CurNV && (CurNV->stripPointerCasts() == NV.stripPointerCasts() || |
||
| 1789 | isa<UndefValue>(CurNV))) |
||
| 1790 | return false; |
||
| 1791 | assert((!CurNV || CurNV == &NV || isa<UndefValue>(NV)) && |
||
| 1792 | "Value replacement was registered twice with different values!"); |
||
| 1793 | Entry = {&NV, ChangeDroppable}; |
||
| 1794 | return true; |
||
| 1795 | } |
||
| 1796 | |||
| 1797 | /// Record that \p I is to be replaced with `unreachable` after information |
||
| 1798 | /// was manifested. |
||
| 1799 | void changeToUnreachableAfterManifest(Instruction *I) { |
||
| 1800 | ToBeChangedToUnreachableInsts.insert(I); |
||
| 1801 | } |
||
| 1802 | |||
| 1803 | /// Record that \p II has at least one dead successor block. This information |
||
| 1804 | /// is used, e.g., to replace \p II with a call, after information was |
||
| 1805 | /// manifested. |
||
| 1806 | void registerInvokeWithDeadSuccessor(InvokeInst &II) { |
||
| 1807 | InvokeWithDeadSuccessor.insert(&II); |
||
| 1808 | } |
||
| 1809 | |||
| 1810 | /// Record that \p I is deleted after information was manifested. This also |
||
| 1811 | /// triggers deletion of trivially dead istructions. |
||
| 1812 | void deleteAfterManifest(Instruction &I) { ToBeDeletedInsts.insert(&I); } |
||
| 1813 | |||
| 1814 | /// Record that \p BB is deleted after information was manifested. This also |
||
| 1815 | /// triggers deletion of trivially dead istructions. |
||
| 1816 | void deleteAfterManifest(BasicBlock &BB) { ToBeDeletedBlocks.insert(&BB); } |
||
| 1817 | |||
| 1818 | // Record that \p BB is added during the manifest of an AA. Added basic blocks |
||
| 1819 | // are preserved in the IR. |
||
| 1820 | void registerManifestAddedBasicBlock(BasicBlock &BB) { |
||
| 1821 | ManifestAddedBlocks.insert(&BB); |
||
| 1822 | } |
||
| 1823 | |||
| 1824 | /// Record that \p F is deleted after information was manifested. |
||
| 1825 | void deleteAfterManifest(Function &F) { |
||
| 1826 | if (Configuration.DeleteFns) |
||
| 1827 | ToBeDeletedFunctions.insert(&F); |
||
| 1828 | } |
||
| 1829 | |||
| 1830 | /// If \p IRP is assumed to be a constant, return it, if it is unclear yet, |
||
| 1831 | /// return std::nullopt, otherwise return `nullptr`. |
||
| 1832 | std::optional<Constant *> getAssumedConstant(const IRPosition &IRP, |
||
| 1833 | const AbstractAttribute &AA, |
||
| 1834 | bool &UsedAssumedInformation); |
||
| 1835 | std::optional<Constant *> getAssumedConstant(const Value &V, |
||
| 1836 | const AbstractAttribute &AA, |
||
| 1837 | bool &UsedAssumedInformation) { |
||
| 1838 | return getAssumedConstant(IRPosition::value(V), AA, UsedAssumedInformation); |
||
| 1839 | } |
||
| 1840 | |||
| 1841 | /// If \p V is assumed simplified, return it, if it is unclear yet, |
||
| 1842 | /// return std::nullopt, otherwise return `nullptr`. |
||
| 1843 | std::optional<Value *> getAssumedSimplified(const IRPosition &IRP, |
||
| 1844 | const AbstractAttribute &AA, |
||
| 1845 | bool &UsedAssumedInformation, |
||
| 1846 | AA::ValueScope S) { |
||
| 1847 | return getAssumedSimplified(IRP, &AA, UsedAssumedInformation, S); |
||
| 1848 | } |
||
| 1849 | std::optional<Value *> getAssumedSimplified(const Value &V, |
||
| 1850 | const AbstractAttribute &AA, |
||
| 1851 | bool &UsedAssumedInformation, |
||
| 1852 | AA::ValueScope S) { |
||
| 1853 | return getAssumedSimplified(IRPosition::value(V), AA, |
||
| 1854 | UsedAssumedInformation, S); |
||
| 1855 | } |
||
| 1856 | |||
| 1857 | /// If \p V is assumed simplified, return it, if it is unclear yet, |
||
| 1858 | /// return std::nullopt, otherwise return `nullptr`. Same as the public |
||
| 1859 | /// version except that it can be used without recording dependences on any \p |
||
| 1860 | /// AA. |
||
| 1861 | std::optional<Value *> getAssumedSimplified(const IRPosition &V, |
||
| 1862 | const AbstractAttribute *AA, |
||
| 1863 | bool &UsedAssumedInformation, |
||
| 1864 | AA::ValueScope S); |
||
| 1865 | |||
| 1866 | /// Try to simplify \p IRP and in the scope \p S. If successful, true is |
||
| 1867 | /// returned and all potential values \p IRP can take are put into \p Values. |
||
| 1868 | /// If the result in \p Values contains select or PHI instructions it means |
||
| 1869 | /// those could not be simplified to a single value. Recursive calls with |
||
| 1870 | /// these instructions will yield their respective potential values. If false |
||
| 1871 | /// is returned no other information is valid. |
||
| 1872 | bool getAssumedSimplifiedValues(const IRPosition &IRP, |
||
| 1873 | const AbstractAttribute *AA, |
||
| 1874 | SmallVectorImpl<AA::ValueAndContext> &Values, |
||
| 1875 | AA::ValueScope S, |
||
| 1876 | bool &UsedAssumedInformation); |
||
| 1877 | |||
| 1878 | /// Register \p CB as a simplification callback. |
||
| 1879 | /// `Attributor::getAssumedSimplified` will use these callbacks before |
||
| 1880 | /// we it will ask `AAValueSimplify`. It is important to ensure this |
||
| 1881 | /// is called before `identifyDefaultAbstractAttributes`, assuming the |
||
| 1882 | /// latter is called at all. |
||
| 1883 | using SimplifictionCallbackTy = std::function<std::optional<Value *>( |
||
| 1884 | const IRPosition &, const AbstractAttribute *, bool &)>; |
||
| 1885 | void registerSimplificationCallback(const IRPosition &IRP, |
||
| 1886 | const SimplifictionCallbackTy &CB) { |
||
| 1887 | SimplificationCallbacks[IRP].emplace_back(CB); |
||
| 1888 | } |
||
| 1889 | |||
| 1890 | /// Return true if there is a simplification callback for \p IRP. |
||
| 1891 | bool hasSimplificationCallback(const IRPosition &IRP) { |
||
| 1892 | return SimplificationCallbacks.count(IRP); |
||
| 1893 | } |
||
| 1894 | |||
| 1895 | using VirtualUseCallbackTy = |
||
| 1896 | std::function<bool(Attributor &, const AbstractAttribute *)>; |
||
| 1897 | void registerVirtualUseCallback(const Value &V, |
||
| 1898 | const VirtualUseCallbackTy &CB) { |
||
| 1899 | VirtualUseCallbacks[&V].emplace_back(CB); |
||
| 1900 | } |
||
| 1901 | |||
| 1902 | private: |
||
| 1903 | /// The vector with all simplification callbacks registered by outside AAs. |
||
| 1904 | DenseMap<IRPosition, SmallVector<SimplifictionCallbackTy, 1>> |
||
| 1905 | SimplificationCallbacks; |
||
| 1906 | |||
| 1907 | DenseMap<const Value *, SmallVector<VirtualUseCallbackTy, 1>> |
||
| 1908 | VirtualUseCallbacks; |
||
| 1909 | |||
| 1910 | public: |
||
| 1911 | /// Translate \p V from the callee context into the call site context. |
||
| 1912 | std::optional<Value *> |
||
| 1913 | translateArgumentToCallSiteContent(std::optional<Value *> V, CallBase &CB, |
||
| 1914 | const AbstractAttribute &AA, |
||
| 1915 | bool &UsedAssumedInformation); |
||
| 1916 | |||
| 1917 | /// Return true if \p AA (or its context instruction) is assumed dead. |
||
| 1918 | /// |
||
| 1919 | /// If \p LivenessAA is not provided it is queried. |
||
| 1920 | bool isAssumedDead(const AbstractAttribute &AA, const AAIsDead *LivenessAA, |
||
| 1921 | bool &UsedAssumedInformation, |
||
| 1922 | bool CheckBBLivenessOnly = false, |
||
| 1923 | DepClassTy DepClass = DepClassTy::OPTIONAL); |
||
| 1924 | |||
| 1925 | /// Return true if \p I is assumed dead. |
||
| 1926 | /// |
||
| 1927 | /// If \p LivenessAA is not provided it is queried. |
||
| 1928 | bool isAssumedDead(const Instruction &I, const AbstractAttribute *QueryingAA, |
||
| 1929 | const AAIsDead *LivenessAA, bool &UsedAssumedInformation, |
||
| 1930 | bool CheckBBLivenessOnly = false, |
||
| 1931 | DepClassTy DepClass = DepClassTy::OPTIONAL, |
||
| 1932 | bool CheckForDeadStore = false); |
||
| 1933 | |||
| 1934 | /// Return true if \p U is assumed dead. |
||
| 1935 | /// |
||
| 1936 | /// If \p FnLivenessAA is not provided it is queried. |
||
| 1937 | bool isAssumedDead(const Use &U, const AbstractAttribute *QueryingAA, |
||
| 1938 | const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation, |
||
| 1939 | bool CheckBBLivenessOnly = false, |
||
| 1940 | DepClassTy DepClass = DepClassTy::OPTIONAL); |
||
| 1941 | |||
| 1942 | /// Return true if \p IRP is assumed dead. |
||
| 1943 | /// |
||
| 1944 | /// If \p FnLivenessAA is not provided it is queried. |
||
| 1945 | bool isAssumedDead(const IRPosition &IRP, const AbstractAttribute *QueryingAA, |
||
| 1946 | const AAIsDead *FnLivenessAA, bool &UsedAssumedInformation, |
||
| 1947 | bool CheckBBLivenessOnly = false, |
||
| 1948 | DepClassTy DepClass = DepClassTy::OPTIONAL); |
||
| 1949 | |||
| 1950 | /// Return true if \p BB is assumed dead. |
||
| 1951 | /// |
||
| 1952 | /// If \p LivenessAA is not provided it is queried. |
||
| 1953 | bool isAssumedDead(const BasicBlock &BB, const AbstractAttribute *QueryingAA, |
||
| 1954 | const AAIsDead *FnLivenessAA, |
||
| 1955 | DepClassTy DepClass = DepClassTy::OPTIONAL); |
||
| 1956 | |||
| 1957 | /// Check \p Pred on all (transitive) uses of \p V. |
||
| 1958 | /// |
||
| 1959 | /// This method will evaluate \p Pred on all (transitive) uses of the |
||
| 1960 | /// associated value and return true if \p Pred holds every time. |
||
| 1961 | /// If uses are skipped in favor of equivalent ones, e.g., if we look through |
||
| 1962 | /// memory, the \p EquivalentUseCB will be used to give the caller an idea |
||
| 1963 | /// what original used was replaced by a new one (or new ones). The visit is |
||
| 1964 | /// cut short if \p EquivalentUseCB returns false and the function will return |
||
| 1965 | /// false as well. |
||
| 1966 | bool checkForAllUses(function_ref<bool(const Use &, bool &)> Pred, |
||
| 1967 | const AbstractAttribute &QueryingAA, const Value &V, |
||
| 1968 | bool CheckBBLivenessOnly = false, |
||
| 1969 | DepClassTy LivenessDepClass = DepClassTy::OPTIONAL, |
||
| 1970 | bool IgnoreDroppableUses = true, |
||
| 1971 | function_ref<bool(const Use &OldU, const Use &NewU)> |
||
| 1972 | EquivalentUseCB = nullptr); |
||
| 1973 | |||
| 1974 | /// Emit a remark generically. |
||
| 1975 | /// |
||
| 1976 | /// This template function can be used to generically emit a remark. The |
||
| 1977 | /// RemarkKind should be one of the following: |
||
| 1978 | /// - OptimizationRemark to indicate a successful optimization attempt |
||
| 1979 | /// - OptimizationRemarkMissed to report a failed optimization attempt |
||
| 1980 | /// - OptimizationRemarkAnalysis to provide additional information about an |
||
| 1981 | /// optimization attempt |
||
| 1982 | /// |
||
| 1983 | /// The remark is built using a callback function \p RemarkCB that takes a |
||
| 1984 | /// RemarkKind as input and returns a RemarkKind. |
||
| 1985 | template <typename RemarkKind, typename RemarkCallBack> |
||
| 1986 | void emitRemark(Instruction *I, StringRef RemarkName, |
||
| 1987 | RemarkCallBack &&RemarkCB) const { |
||
| 1988 | if (!Configuration.OREGetter) |
||
| 1989 | return; |
||
| 1990 | |||
| 1991 | Function *F = I->getFunction(); |
||
| 1992 | auto &ORE = Configuration.OREGetter(F); |
||
| 1993 | |||
| 1994 | if (RemarkName.startswith("OMP")) |
||
| 1995 | ORE.emit([&]() { |
||
| 1996 | return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, I)) |
||
| 1997 | << " [" << RemarkName << "]"; |
||
| 1998 | }); |
||
| 1999 | else |
||
| 2000 | ORE.emit([&]() { |
||
| 2001 | return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, I)); |
||
| 2002 | }); |
||
| 2003 | } |
||
| 2004 | |||
| 2005 | /// Emit a remark on a function. |
||
| 2006 | template <typename RemarkKind, typename RemarkCallBack> |
||
| 2007 | void emitRemark(Function *F, StringRef RemarkName, |
||
| 2008 | RemarkCallBack &&RemarkCB) const { |
||
| 2009 | if (!Configuration.OREGetter) |
||
| 2010 | return; |
||
| 2011 | |||
| 2012 | auto &ORE = Configuration.OREGetter(F); |
||
| 2013 | |||
| 2014 | if (RemarkName.startswith("OMP")) |
||
| 2015 | ORE.emit([&]() { |
||
| 2016 | return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, F)) |
||
| 2017 | << " [" << RemarkName << "]"; |
||
| 2018 | }); |
||
| 2019 | else |
||
| 2020 | ORE.emit([&]() { |
||
| 2021 | return RemarkCB(RemarkKind(Configuration.PassName, RemarkName, F)); |
||
| 2022 | }); |
||
| 2023 | } |
||
| 2024 | |||
| 2025 | /// Helper struct used in the communication between an abstract attribute (AA) |
||
| 2026 | /// that wants to change the signature of a function and the Attributor which |
||
| 2027 | /// applies the changes. The struct is partially initialized with the |
||
| 2028 | /// information from the AA (see the constructor). All other members are |
||
| 2029 | /// provided by the Attributor prior to invoking any callbacks. |
||
| 2030 | struct ArgumentReplacementInfo { |
||
| 2031 | /// Callee repair callback type |
||
| 2032 | /// |
||
| 2033 | /// The function repair callback is invoked once to rewire the replacement |
||
| 2034 | /// arguments in the body of the new function. The argument replacement info |
||
| 2035 | /// is passed, as build from the registerFunctionSignatureRewrite call, as |
||
| 2036 | /// well as the replacement function and an iteratore to the first |
||
| 2037 | /// replacement argument. |
||
| 2038 | using CalleeRepairCBTy = std::function<void( |
||
| 2039 | const ArgumentReplacementInfo &, Function &, Function::arg_iterator)>; |
||
| 2040 | |||
| 2041 | /// Abstract call site (ACS) repair callback type |
||
| 2042 | /// |
||
| 2043 | /// The abstract call site repair callback is invoked once on every abstract |
||
| 2044 | /// call site of the replaced function (\see ReplacedFn). The callback needs |
||
| 2045 | /// to provide the operands for the call to the new replacement function. |
||
| 2046 | /// The number and type of the operands appended to the provided vector |
||
| 2047 | /// (second argument) is defined by the number and types determined through |
||
| 2048 | /// the replacement type vector (\see ReplacementTypes). The first argument |
||
| 2049 | /// is the ArgumentReplacementInfo object registered with the Attributor |
||
| 2050 | /// through the registerFunctionSignatureRewrite call. |
||
| 2051 | using ACSRepairCBTy = |
||
| 2052 | std::function<void(const ArgumentReplacementInfo &, AbstractCallSite, |
||
| 2053 | SmallVectorImpl<Value *> &)>; |
||
| 2054 | |||
| 2055 | /// Simple getters, see the corresponding members for details. |
||
| 2056 | ///{ |
||
| 2057 | |||
| 2058 | Attributor &getAttributor() const { return A; } |
||
| 2059 | const Function &getReplacedFn() const { return ReplacedFn; } |
||
| 2060 | const Argument &getReplacedArg() const { return ReplacedArg; } |
||
| 2061 | unsigned getNumReplacementArgs() const { return ReplacementTypes.size(); } |
||
| 2062 | const SmallVectorImpl<Type *> &getReplacementTypes() const { |
||
| 2063 | return ReplacementTypes; |
||
| 2064 | } |
||
| 2065 | |||
| 2066 | ///} |
||
| 2067 | |||
| 2068 | private: |
||
| 2069 | /// Constructor that takes the argument to be replaced, the types of |
||
| 2070 | /// the replacement arguments, as well as callbacks to repair the call sites |
||
| 2071 | /// and new function after the replacement happened. |
||
| 2072 | ArgumentReplacementInfo(Attributor &A, Argument &Arg, |
||
| 2073 | ArrayRef<Type *> ReplacementTypes, |
||
| 2074 | CalleeRepairCBTy &&CalleeRepairCB, |
||
| 2075 | ACSRepairCBTy &&ACSRepairCB) |
||
| 2076 | : A(A), ReplacedFn(*Arg.getParent()), ReplacedArg(Arg), |
||
| 2077 | ReplacementTypes(ReplacementTypes.begin(), ReplacementTypes.end()), |
||
| 2078 | CalleeRepairCB(std::move(CalleeRepairCB)), |
||
| 2079 | ACSRepairCB(std::move(ACSRepairCB)) {} |
||
| 2080 | |||
| 2081 | /// Reference to the attributor to allow access from the callbacks. |
||
| 2082 | Attributor &A; |
||
| 2083 | |||
| 2084 | /// The "old" function replaced by ReplacementFn. |
||
| 2085 | const Function &ReplacedFn; |
||
| 2086 | |||
| 2087 | /// The "old" argument replaced by new ones defined via ReplacementTypes. |
||
| 2088 | const Argument &ReplacedArg; |
||
| 2089 | |||
| 2090 | /// The types of the arguments replacing ReplacedArg. |
||
| 2091 | const SmallVector<Type *, 8> ReplacementTypes; |
||
| 2092 | |||
| 2093 | /// Callee repair callback, see CalleeRepairCBTy. |
||
| 2094 | const CalleeRepairCBTy CalleeRepairCB; |
||
| 2095 | |||
| 2096 | /// Abstract call site (ACS) repair callback, see ACSRepairCBTy. |
||
| 2097 | const ACSRepairCBTy ACSRepairCB; |
||
| 2098 | |||
| 2099 | /// Allow access to the private members from the Attributor. |
||
| 2100 | friend struct Attributor; |
||
| 2101 | }; |
||
| 2102 | |||
| 2103 | /// Check if we can rewrite a function signature. |
||
| 2104 | /// |
||
| 2105 | /// The argument \p Arg is replaced with new ones defined by the number, |
||
| 2106 | /// order, and types in \p ReplacementTypes. |
||
| 2107 | /// |
||
| 2108 | /// \returns True, if the replacement can be registered, via |
||
| 2109 | /// registerFunctionSignatureRewrite, false otherwise. |
||
| 2110 | bool isValidFunctionSignatureRewrite(Argument &Arg, |
||
| 2111 | ArrayRef<Type *> ReplacementTypes); |
||
| 2112 | |||
| 2113 | /// Register a rewrite for a function signature. |
||
| 2114 | /// |
||
| 2115 | /// The argument \p Arg is replaced with new ones defined by the number, |
||
| 2116 | /// order, and types in \p ReplacementTypes. The rewiring at the call sites is |
||
| 2117 | /// done through \p ACSRepairCB and at the callee site through |
||
| 2118 | /// \p CalleeRepairCB. |
||
| 2119 | /// |
||
| 2120 | /// \returns True, if the replacement was registered, false otherwise. |
||
| 2121 | bool registerFunctionSignatureRewrite( |
||
| 2122 | Argument &Arg, ArrayRef<Type *> ReplacementTypes, |
||
| 2123 | ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB, |
||
| 2124 | ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB); |
||
| 2125 | |||
| 2126 | /// Check \p Pred on all function call sites. |
||
| 2127 | /// |
||
| 2128 | /// This method will evaluate \p Pred on call sites and return |
||
| 2129 | /// true if \p Pred holds in every call sites. However, this is only possible |
||
| 2130 | /// all call sites are known, hence the function has internal linkage. |
||
| 2131 | /// If true is returned, \p UsedAssumedInformation is set if assumed |
||
| 2132 | /// information was used to skip or simplify potential call sites. |
||
| 2133 | bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred, |
||
| 2134 | const AbstractAttribute &QueryingAA, |
||
| 2135 | bool RequireAllCallSites, |
||
| 2136 | bool &UsedAssumedInformation); |
||
| 2137 | |||
| 2138 | /// Check \p Pred on all call sites of \p Fn. |
||
| 2139 | /// |
||
| 2140 | /// This method will evaluate \p Pred on call sites and return |
||
| 2141 | /// true if \p Pred holds in every call sites. However, this is only possible |
||
| 2142 | /// all call sites are known, hence the function has internal linkage. |
||
| 2143 | /// If true is returned, \p UsedAssumedInformation is set if assumed |
||
| 2144 | /// information was used to skip or simplify potential call sites. |
||
| 2145 | bool checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred, |
||
| 2146 | const Function &Fn, bool RequireAllCallSites, |
||
| 2147 | const AbstractAttribute *QueryingAA, |
||
| 2148 | bool &UsedAssumedInformation, |
||
| 2149 | bool CheckPotentiallyDead = false); |
||
| 2150 | |||
| 2151 | /// Check \p Pred on all values potentially returned by \p F. |
||
| 2152 | /// |
||
| 2153 | /// This method will evaluate \p Pred on all values potentially returned by |
||
| 2154 | /// the function associated with \p QueryingAA. The returned values are |
||
| 2155 | /// matched with their respective return instructions. Returns true if \p Pred |
||
| 2156 | /// holds on all of them. |
||
| 2157 | bool checkForAllReturnedValuesAndReturnInsts( |
||
| 2158 | function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred, |
||
| 2159 | const AbstractAttribute &QueryingAA); |
||
| 2160 | |||
| 2161 | /// Check \p Pred on all values potentially returned by the function |
||
| 2162 | /// associated with \p QueryingAA. |
||
| 2163 | /// |
||
| 2164 | /// This is the context insensitive version of the method above. |
||
| 2165 | bool checkForAllReturnedValues(function_ref<bool(Value &)> Pred, |
||
| 2166 | const AbstractAttribute &QueryingAA); |
||
| 2167 | |||
| 2168 | /// Check \p Pred on all instructions in \p Fn with an opcode present in |
||
| 2169 | /// \p Opcodes. |
||
| 2170 | /// |
||
| 2171 | /// This method will evaluate \p Pred on all instructions with an opcode |
||
| 2172 | /// present in \p Opcode and return true if \p Pred holds on all of them. |
||
| 2173 | bool checkForAllInstructions(function_ref<bool(Instruction &)> Pred, |
||
| 2174 | const Function *Fn, |
||
| 2175 | const AbstractAttribute &QueryingAA, |
||
| 2176 | const ArrayRef<unsigned> &Opcodes, |
||
| 2177 | bool &UsedAssumedInformation, |
||
| 2178 | bool CheckBBLivenessOnly = false, |
||
| 2179 | bool CheckPotentiallyDead = false); |
||
| 2180 | |||
| 2181 | /// Check \p Pred on all instructions with an opcode present in \p Opcodes. |
||
| 2182 | /// |
||
| 2183 | /// This method will evaluate \p Pred on all instructions with an opcode |
||
| 2184 | /// present in \p Opcode and return true if \p Pred holds on all of them. |
||
| 2185 | bool checkForAllInstructions(function_ref<bool(Instruction &)> Pred, |
||
| 2186 | const AbstractAttribute &QueryingAA, |
||
| 2187 | const ArrayRef<unsigned> &Opcodes, |
||
| 2188 | bool &UsedAssumedInformation, |
||
| 2189 | bool CheckBBLivenessOnly = false, |
||
| 2190 | bool CheckPotentiallyDead = false); |
||
| 2191 | |||
| 2192 | /// Check \p Pred on all call-like instructions (=CallBased derived). |
||
| 2193 | /// |
||
| 2194 | /// See checkForAllCallLikeInstructions(...) for more information. |
||
| 2195 | bool checkForAllCallLikeInstructions(function_ref<bool(Instruction &)> Pred, |
||
| 2196 | const AbstractAttribute &QueryingAA, |
||
| 2197 | bool &UsedAssumedInformation, |
||
| 2198 | bool CheckBBLivenessOnly = false, |
||
| 2199 | bool CheckPotentiallyDead = false) { |
||
| 2200 | return checkForAllInstructions( |
||
| 2201 | Pred, QueryingAA, |
||
| 2202 | {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, |
||
| 2203 | (unsigned)Instruction::Call}, |
||
| 2204 | UsedAssumedInformation, CheckBBLivenessOnly, CheckPotentiallyDead); |
||
| 2205 | } |
||
| 2206 | |||
| 2207 | /// Check \p Pred on all Read/Write instructions. |
||
| 2208 | /// |
||
| 2209 | /// This method will evaluate \p Pred on all instructions that read or write |
||
| 2210 | /// to memory present in the information cache and return true if \p Pred |
||
| 2211 | /// holds on all of them. |
||
| 2212 | bool checkForAllReadWriteInstructions(function_ref<bool(Instruction &)> Pred, |
||
| 2213 | AbstractAttribute &QueryingAA, |
||
| 2214 | bool &UsedAssumedInformation); |
||
| 2215 | |||
| 2216 | /// Create a shallow wrapper for \p F such that \p F has internal linkage |
||
| 2217 | /// afterwards. It also sets the original \p F 's name to anonymous |
||
| 2218 | /// |
||
| 2219 | /// A wrapper is a function with the same type (and attributes) as \p F |
||
| 2220 | /// that will only call \p F and return the result, if any. |
||
| 2221 | /// |
||
| 2222 | /// Assuming the declaration of looks like: |
||
| 2223 | /// rty F(aty0 arg0, ..., atyN argN); |
||
| 2224 | /// |
||
| 2225 | /// The wrapper will then look as follows: |
||
| 2226 | /// rty wrapper(aty0 arg0, ..., atyN argN) { |
||
| 2227 | /// return F(arg0, ..., argN); |
||
| 2228 | /// } |
||
| 2229 | /// |
||
| 2230 | static void createShallowWrapper(Function &F); |
||
| 2231 | |||
| 2232 | /// Returns true if the function \p F can be internalized. i.e. it has a |
||
| 2233 | /// compatible linkage. |
||
| 2234 | static bool isInternalizable(Function &F); |
||
| 2235 | |||
| 2236 | /// Make another copy of the function \p F such that the copied version has |
||
| 2237 | /// internal linkage afterwards and can be analysed. Then we replace all uses |
||
| 2238 | /// of the original function to the copied one |
||
| 2239 | /// |
||
| 2240 | /// Only non-locally linked functions that have `linkonce_odr` or `weak_odr` |
||
| 2241 | /// linkage can be internalized because these linkages guarantee that other |
||
| 2242 | /// definitions with the same name have the same semantics as this one. |
||
| 2243 | /// |
||
| 2244 | /// This will only be run if the `attributor-allow-deep-wrappers` option is |
||
| 2245 | /// set, or if the function is called with \p Force set to true. |
||
| 2246 | /// |
||
| 2247 | /// If the function \p F failed to be internalized the return value will be a |
||
| 2248 | /// null pointer. |
||
| 2249 | static Function *internalizeFunction(Function &F, bool Force = false); |
||
| 2250 | |||
| 2251 | /// Make copies of each function in the set \p FnSet such that the copied |
||
| 2252 | /// version has internal linkage afterwards and can be analysed. Then we |
||
| 2253 | /// replace all uses of the original function to the copied one. The map |
||
| 2254 | /// \p FnMap contains a mapping of functions to their internalized versions. |
||
| 2255 | /// |
||
| 2256 | /// Only non-locally linked functions that have `linkonce_odr` or `weak_odr` |
||
| 2257 | /// linkage can be internalized because these linkages guarantee that other |
||
| 2258 | /// definitions with the same name have the same semantics as this one. |
||
| 2259 | /// |
||
| 2260 | /// This version will internalize all the functions in the set \p FnSet at |
||
| 2261 | /// once and then replace the uses. This prevents internalized functions being |
||
| 2262 | /// called by external functions when there is an internalized version in the |
||
| 2263 | /// module. |
||
| 2264 | static bool internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet, |
||
| 2265 | DenseMap<Function *, Function *> &FnMap); |
||
| 2266 | |||
| 2267 | /// Return the data layout associated with the anchor scope. |
||
| 2268 | const DataLayout &getDataLayout() const { return InfoCache.DL; } |
||
| 2269 | |||
| 2270 | /// The allocator used to allocate memory, e.g. for `AbstractAttribute`s. |
||
| 2271 | BumpPtrAllocator &Allocator; |
||
| 2272 | |||
| 2273 | private: |
||
| 2274 | /// This method will do fixpoint iteration until fixpoint or the |
||
| 2275 | /// maximum iteration count is reached. |
||
| 2276 | /// |
||
| 2277 | /// If the maximum iteration count is reached, This method will |
||
| 2278 | /// indicate pessimistic fixpoint on attributes that transitively depend |
||
| 2279 | /// on attributes that were scheduled for an update. |
||
| 2280 | void runTillFixpoint(); |
||
| 2281 | |||
| 2282 | /// Gets called after scheduling, manifests attributes to the LLVM IR. |
||
| 2283 | ChangeStatus manifestAttributes(); |
||
| 2284 | |||
| 2285 | /// Gets called after attributes have been manifested, cleans up the IR. |
||
| 2286 | /// Deletes dead functions, blocks and instructions. |
||
| 2287 | /// Rewrites function signitures and updates the call graph. |
||
| 2288 | ChangeStatus cleanupIR(); |
||
| 2289 | |||
| 2290 | /// Identify internal functions that are effectively dead, thus not reachable |
||
| 2291 | /// from a live entry point. The functions are added to ToBeDeletedFunctions. |
||
| 2292 | void identifyDeadInternalFunctions(); |
||
| 2293 | |||
| 2294 | /// Run `::update` on \p AA and track the dependences queried while doing so. |
||
| 2295 | /// Also adjust the state if we know further updates are not necessary. |
||
| 2296 | ChangeStatus updateAA(AbstractAttribute &AA); |
||
| 2297 | |||
| 2298 | /// Remember the dependences on the top of the dependence stack such that they |
||
| 2299 | /// may trigger further updates. (\see DependenceStack) |
||
| 2300 | void rememberDependences(); |
||
| 2301 | |||
| 2302 | /// Determine if CallBase context in \p IRP should be propagated. |
||
| 2303 | bool shouldPropagateCallBaseContext(const IRPosition &IRP); |
||
| 2304 | |||
| 2305 | /// Apply all requested function signature rewrites |
||
| 2306 | /// (\see registerFunctionSignatureRewrite) and return Changed if the module |
||
| 2307 | /// was altered. |
||
| 2308 | ChangeStatus |
||
| 2309 | rewriteFunctionSignatures(SmallSetVector<Function *, 8> &ModifiedFns); |
||
| 2310 | |||
| 2311 | /// Check if the Attribute \p AA should be seeded. |
||
| 2312 | /// See getOrCreateAAFor. |
||
| 2313 | bool shouldSeedAttribute(AbstractAttribute &AA); |
||
| 2314 | |||
| 2315 | /// A nested map to lookup abstract attributes based on the argument position |
||
| 2316 | /// on the outer level, and the addresses of the static member (AAType::ID) on |
||
| 2317 | /// the inner level. |
||
| 2318 | ///{ |
||
| 2319 | using AAMapKeyTy = std::pair<const char *, IRPosition>; |
||
| 2320 | DenseMap<AAMapKeyTy, AbstractAttribute *> AAMap; |
||
| 2321 | ///} |
||
| 2322 | |||
| 2323 | /// Map to remember all requested signature changes (= argument replacements). |
||
| 2324 | DenseMap<Function *, SmallVector<std::unique_ptr<ArgumentReplacementInfo>, 8>> |
||
| 2325 | ArgumentReplacementMap; |
||
| 2326 | |||
| 2327 | /// The set of functions we are deriving attributes for. |
||
| 2328 | SetVector<Function *> &Functions; |
||
| 2329 | |||
| 2330 | /// The information cache that holds pre-processed (LLVM-IR) information. |
||
| 2331 | InformationCache &InfoCache; |
||
| 2332 | |||
| 2333 | /// Abstract Attribute dependency graph |
||
| 2334 | AADepGraph DG; |
||
| 2335 | |||
| 2336 | /// Set of functions for which we modified the content such that it might |
||
| 2337 | /// impact the call graph. |
||
| 2338 | SmallSetVector<Function *, 8> CGModifiedFunctions; |
||
| 2339 | |||
| 2340 | /// Information about a dependence. If FromAA is changed ToAA needs to be |
||
| 2341 | /// updated as well. |
||
| 2342 | struct DepInfo { |
||
| 2343 | const AbstractAttribute *FromAA; |
||
| 2344 | const AbstractAttribute *ToAA; |
||
| 2345 | DepClassTy DepClass; |
||
| 2346 | }; |
||
| 2347 | |||
| 2348 | /// The dependence stack is used to track dependences during an |
||
| 2349 | /// `AbstractAttribute::update` call. As `AbstractAttribute::update` can be |
||
| 2350 | /// recursive we might have multiple vectors of dependences in here. The stack |
||
| 2351 | /// size, should be adjusted according to the expected recursion depth and the |
||
| 2352 | /// inner dependence vector size to the expected number of dependences per |
||
| 2353 | /// abstract attribute. Since the inner vectors are actually allocated on the |
||
| 2354 | /// stack we can be generous with their size. |
||
| 2355 | using DependenceVector = SmallVector<DepInfo, 8>; |
||
| 2356 | SmallVector<DependenceVector *, 16> DependenceStack; |
||
| 2357 | |||
| 2358 | /// A set to remember the functions we already assume to be live and visited. |
||
| 2359 | DenseSet<const Function *> VisitedFunctions; |
||
| 2360 | |||
| 2361 | /// Uses we replace with a new value after manifest is done. We will remove |
||
| 2362 | /// then trivially dead instructions as well. |
||
| 2363 | SmallMapVector<Use *, Value *, 32> ToBeChangedUses; |
||
| 2364 | |||
| 2365 | /// Values we replace with a new value after manifest is done. We will remove |
||
| 2366 | /// then trivially dead instructions as well. |
||
| 2367 | SmallMapVector<Value *, PointerIntPair<Value *, 1, bool>, 32> |
||
| 2368 | ToBeChangedValues; |
||
| 2369 | |||
| 2370 | /// Instructions we replace with `unreachable` insts after manifest is done. |
||
| 2371 | SmallSetVector<WeakVH, 16> ToBeChangedToUnreachableInsts; |
||
| 2372 | |||
| 2373 | /// Invoke instructions with at least a single dead successor block. |
||
| 2374 | SmallSetVector<WeakVH, 16> InvokeWithDeadSuccessor; |
||
| 2375 | |||
| 2376 | /// A flag that indicates which stage of the process we are in. Initially, the |
||
| 2377 | /// phase is SEEDING. Phase is changed in `Attributor::run()` |
||
| 2378 | enum class AttributorPhase { |
||
| 2379 | SEEDING, |
||
| 2380 | UPDATE, |
||
| 2381 | MANIFEST, |
||
| 2382 | CLEANUP, |
||
| 2383 | } Phase = AttributorPhase::SEEDING; |
||
| 2384 | |||
| 2385 | /// The current initialization chain length. Tracked to avoid stack overflows. |
||
| 2386 | unsigned InitializationChainLength = 0; |
||
| 2387 | |||
| 2388 | /// Functions, blocks, and instructions we delete after manifest is done. |
||
| 2389 | /// |
||
| 2390 | ///{ |
||
| 2391 | SmallPtrSet<BasicBlock *, 8> ManifestAddedBlocks; |
||
| 2392 | SmallSetVector<Function *, 8> ToBeDeletedFunctions; |
||
| 2393 | SmallSetVector<BasicBlock *, 8> ToBeDeletedBlocks; |
||
| 2394 | SmallSetVector<WeakVH, 8> ToBeDeletedInsts; |
||
| 2395 | ///} |
||
| 2396 | |||
| 2397 | /// Container with all the query AAs that requested an update via |
||
| 2398 | /// registerForUpdate. |
||
| 2399 | SmallSetVector<AbstractAttribute *, 16> QueryAAsAwaitingUpdate; |
||
| 2400 | |||
| 2401 | /// User provided configuration for this Attributor instance. |
||
| 2402 | const AttributorConfig Configuration; |
||
| 2403 | |||
| 2404 | friend AADepGraph; |
||
| 2405 | friend AttributorCallGraph; |
||
| 2406 | }; |
||
| 2407 | |||
| 2408 | /// An interface to query the internal state of an abstract attribute. |
||
| 2409 | /// |
||
| 2410 | /// The abstract state is a minimal interface that allows the Attributor to |
||
| 2411 | /// communicate with the abstract attributes about their internal state without |
||
| 2412 | /// enforcing or exposing implementation details, e.g., the (existence of an) |
||
| 2413 | /// underlying lattice. |
||
| 2414 | /// |
||
| 2415 | /// It is sufficient to be able to query if a state is (1) valid or invalid, (2) |
||
| 2416 | /// at a fixpoint, and to indicate to the state that (3) an optimistic fixpoint |
||
| 2417 | /// was reached or (4) a pessimistic fixpoint was enforced. |
||
| 2418 | /// |
||
| 2419 | /// All methods need to be implemented by the subclass. For the common use case, |
||
| 2420 | /// a single boolean state or a bit-encoded state, the BooleanState and |
||
| 2421 | /// {Inc,Dec,Bit}IntegerState classes are already provided. An abstract |
||
| 2422 | /// attribute can inherit from them to get the abstract state interface and |
||
| 2423 | /// additional methods to directly modify the state based if needed. See the |
||
| 2424 | /// class comments for help. |
||
| 2425 | struct AbstractState { |
||
| 2426 | virtual ~AbstractState() = default; |
||
| 2427 | |||
| 2428 | /// Return if this abstract state is in a valid state. If false, no |
||
| 2429 | /// information provided should be used. |
||
| 2430 | virtual bool isValidState() const = 0; |
||
| 2431 | |||
| 2432 | /// Return if this abstract state is fixed, thus does not need to be updated |
||
| 2433 | /// if information changes as it cannot change itself. |
||
| 2434 | virtual bool isAtFixpoint() const = 0; |
||
| 2435 | |||
| 2436 | /// Indicate that the abstract state should converge to the optimistic state. |
||
| 2437 | /// |
||
| 2438 | /// This will usually make the optimistically assumed state the known to be |
||
| 2439 | /// true state. |
||
| 2440 | /// |
||
| 2441 | /// \returns ChangeStatus::UNCHANGED as the assumed value should not change. |
||
| 2442 | virtual ChangeStatus indicateOptimisticFixpoint() = 0; |
||
| 2443 | |||
| 2444 | /// Indicate that the abstract state should converge to the pessimistic state. |
||
| 2445 | /// |
||
| 2446 | /// This will usually revert the optimistically assumed state to the known to |
||
| 2447 | /// be true state. |
||
| 2448 | /// |
||
| 2449 | /// \returns ChangeStatus::CHANGED as the assumed value may change. |
||
| 2450 | virtual ChangeStatus indicatePessimisticFixpoint() = 0; |
||
| 2451 | }; |
||
| 2452 | |||
| 2453 | /// Simple state with integers encoding. |
||
| 2454 | /// |
||
| 2455 | /// The interface ensures that the assumed bits are always a subset of the known |
||
| 2456 | /// bits. Users can only add known bits and, except through adding known bits, |
||
| 2457 | /// they can only remove assumed bits. This should guarantee monotoniticy and |
||
| 2458 | /// thereby the existence of a fixpoint (if used corretly). The fixpoint is |
||
| 2459 | /// reached when the assumed and known state/bits are equal. Users can |
||
| 2460 | /// force/inidicate a fixpoint. If an optimistic one is indicated, the known |
||
| 2461 | /// state will catch up with the assumed one, for a pessimistic fixpoint it is |
||
| 2462 | /// the other way around. |
||
| 2463 | template <typename base_ty, base_ty BestState, base_ty WorstState> |
||
| 2464 | struct IntegerStateBase : public AbstractState { |
||
| 2465 | using base_t = base_ty; |
||
| 2466 | |||
| 2467 | IntegerStateBase() = default; |
||
| 2468 | IntegerStateBase(base_t Assumed) : Assumed(Assumed) {} |
||
| 2469 | |||
| 2470 | /// Return the best possible representable state. |
||
| 2471 | static constexpr base_t getBestState() { return BestState; } |
||
| 2472 | static constexpr base_t getBestState(const IntegerStateBase &) { |
||
| 2473 | return getBestState(); |
||
| 2474 | } |
||
| 2475 | |||
| 2476 | /// Return the worst possible representable state. |
||
| 2477 | static constexpr base_t getWorstState() { return WorstState; } |
||
| 2478 | static constexpr base_t getWorstState(const IntegerStateBase &) { |
||
| 2479 | return getWorstState(); |
||
| 2480 | } |
||
| 2481 | |||
| 2482 | /// See AbstractState::isValidState() |
||
| 2483 | /// NOTE: For now we simply pretend that the worst possible state is invalid. |
||
| 2484 | bool isValidState() const override { return Assumed != getWorstState(); } |
||
| 2485 | |||
| 2486 | /// See AbstractState::isAtFixpoint() |
||
| 2487 | bool isAtFixpoint() const override { return Assumed == Known; } |
||
| 2488 | |||
| 2489 | /// See AbstractState::indicateOptimisticFixpoint(...) |
||
| 2490 | ChangeStatus indicateOptimisticFixpoint() override { |
||
| 2491 | Known = Assumed; |
||
| 2492 | return ChangeStatus::UNCHANGED; |
||
| 2493 | } |
||
| 2494 | |||
| 2495 | /// See AbstractState::indicatePessimisticFixpoint(...) |
||
| 2496 | ChangeStatus indicatePessimisticFixpoint() override { |
||
| 2497 | Assumed = Known; |
||
| 2498 | return ChangeStatus::CHANGED; |
||
| 2499 | } |
||
| 2500 | |||
| 2501 | /// Return the known state encoding |
||
| 2502 | base_t getKnown() const { return Known; } |
||
| 2503 | |||
| 2504 | /// Return the assumed state encoding. |
||
| 2505 | base_t getAssumed() const { return Assumed; } |
||
| 2506 | |||
| 2507 | /// Equality for IntegerStateBase. |
||
| 2508 | bool |
||
| 2509 | operator==(const IntegerStateBase<base_t, BestState, WorstState> &R) const { |
||
| 2510 | return this->getAssumed() == R.getAssumed() && |
||
| 2511 | this->getKnown() == R.getKnown(); |
||
| 2512 | } |
||
| 2513 | |||
| 2514 | /// Inequality for IntegerStateBase. |
||
| 2515 | bool |
||
| 2516 | operator!=(const IntegerStateBase<base_t, BestState, WorstState> &R) const { |
||
| 2517 | return !(*this == R); |
||
| 2518 | } |
||
| 2519 | |||
| 2520 | /// "Clamp" this state with \p R. The result is subtype dependent but it is |
||
| 2521 | /// intended that only information assumed in both states will be assumed in |
||
| 2522 | /// this one afterwards. |
||
| 2523 | void operator^=(const IntegerStateBase<base_t, BestState, WorstState> &R) { |
||
| 2524 | handleNewAssumedValue(R.getAssumed()); |
||
| 2525 | } |
||
| 2526 | |||
| 2527 | /// "Clamp" this state with \p R. The result is subtype dependent but it is |
||
| 2528 | /// intended that information known in either state will be known in |
||
| 2529 | /// this one afterwards. |
||
| 2530 | void operator+=(const IntegerStateBase<base_t, BestState, WorstState> &R) { |
||
| 2531 | handleNewKnownValue(R.getKnown()); |
||
| 2532 | } |
||
| 2533 | |||
| 2534 | void operator|=(const IntegerStateBase<base_t, BestState, WorstState> &R) { |
||
| 2535 | joinOR(R.getAssumed(), R.getKnown()); |
||
| 2536 | } |
||
| 2537 | |||
| 2538 | void operator&=(const IntegerStateBase<base_t, BestState, WorstState> &R) { |
||
| 2539 | joinAND(R.getAssumed(), R.getKnown()); |
||
| 2540 | } |
||
| 2541 | |||
| 2542 | protected: |
||
| 2543 | /// Handle a new assumed value \p Value. Subtype dependent. |
||
| 2544 | virtual void handleNewAssumedValue(base_t Value) = 0; |
||
| 2545 | |||
| 2546 | /// Handle a new known value \p Value. Subtype dependent. |
||
| 2547 | virtual void handleNewKnownValue(base_t Value) = 0; |
||
| 2548 | |||
| 2549 | /// Handle a value \p Value. Subtype dependent. |
||
| 2550 | virtual void joinOR(base_t AssumedValue, base_t KnownValue) = 0; |
||
| 2551 | |||
| 2552 | /// Handle a new assumed value \p Value. Subtype dependent. |
||
| 2553 | virtual void joinAND(base_t AssumedValue, base_t KnownValue) = 0; |
||
| 2554 | |||
| 2555 | /// The known state encoding in an integer of type base_t. |
||
| 2556 | base_t Known = getWorstState(); |
||
| 2557 | |||
| 2558 | /// The assumed state encoding in an integer of type base_t. |
||
| 2559 | base_t Assumed = getBestState(); |
||
| 2560 | }; |
||
| 2561 | |||
| 2562 | /// Specialization of the integer state for a bit-wise encoding. |
||
| 2563 | template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0), |
||
| 2564 | base_ty WorstState = 0> |
||
| 2565 | struct BitIntegerState |
||
| 2566 | : public IntegerStateBase<base_ty, BestState, WorstState> { |
||
| 2567 | using base_t = base_ty; |
||
| 2568 | |||
| 2569 | /// Return true if the bits set in \p BitsEncoding are "known bits". |
||
| 2570 | bool isKnown(base_t BitsEncoding) const { |
||
| 2571 | return (this->Known & BitsEncoding) == BitsEncoding; |
||
| 2572 | } |
||
| 2573 | |||
| 2574 | /// Return true if the bits set in \p BitsEncoding are "assumed bits". |
||
| 2575 | bool isAssumed(base_t BitsEncoding) const { |
||
| 2576 | return (this->Assumed & BitsEncoding) == BitsEncoding; |
||
| 2577 | } |
||
| 2578 | |||
| 2579 | /// Add the bits in \p BitsEncoding to the "known bits". |
||
| 2580 | BitIntegerState &addKnownBits(base_t Bits) { |
||
| 2581 | // Make sure we never miss any "known bits". |
||
| 2582 | this->Assumed |= Bits; |
||
| 2583 | this->Known |= Bits; |
||
| 2584 | return *this; |
||
| 2585 | } |
||
| 2586 | |||
| 2587 | /// Remove the bits in \p BitsEncoding from the "assumed bits" if not known. |
||
| 2588 | BitIntegerState &removeAssumedBits(base_t BitsEncoding) { |
||
| 2589 | return intersectAssumedBits(~BitsEncoding); |
||
| 2590 | } |
||
| 2591 | |||
| 2592 | /// Remove the bits in \p BitsEncoding from the "known bits". |
||
| 2593 | BitIntegerState &removeKnownBits(base_t BitsEncoding) { |
||
| 2594 | this->Known = (this->Known & ~BitsEncoding); |
||
| 2595 | return *this; |
||
| 2596 | } |
||
| 2597 | |||
| 2598 | /// Keep only "assumed bits" also set in \p BitsEncoding but all known ones. |
||
| 2599 | BitIntegerState &intersectAssumedBits(base_t BitsEncoding) { |
||
| 2600 | // Make sure we never loose any "known bits". |
||
| 2601 | this->Assumed = (this->Assumed & BitsEncoding) | this->Known; |
||
| 2602 | return *this; |
||
| 2603 | } |
||
| 2604 | |||
| 2605 | private: |
||
| 2606 | void handleNewAssumedValue(base_t Value) override { |
||
| 2607 | intersectAssumedBits(Value); |
||
| 2608 | } |
||
| 2609 | void handleNewKnownValue(base_t Value) override { addKnownBits(Value); } |
||
| 2610 | void joinOR(base_t AssumedValue, base_t KnownValue) override { |
||
| 2611 | this->Known |= KnownValue; |
||
| 2612 | this->Assumed |= AssumedValue; |
||
| 2613 | } |
||
| 2614 | void joinAND(base_t AssumedValue, base_t KnownValue) override { |
||
| 2615 | this->Known &= KnownValue; |
||
| 2616 | this->Assumed &= AssumedValue; |
||
| 2617 | } |
||
| 2618 | }; |
||
| 2619 | |||
| 2620 | /// Specialization of the integer state for an increasing value, hence ~0u is |
||
| 2621 | /// the best state and 0 the worst. |
||
| 2622 | template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0), |
||
| 2623 | base_ty WorstState = 0> |
||
| 2624 | struct IncIntegerState |
||
| 2625 | : public IntegerStateBase<base_ty, BestState, WorstState> { |
||
| 2626 | using super = IntegerStateBase<base_ty, BestState, WorstState>; |
||
| 2627 | using base_t = base_ty; |
||
| 2628 | |||
| 2629 | IncIntegerState() : super() {} |
||
| 2630 | IncIntegerState(base_t Assumed) : super(Assumed) {} |
||
| 2631 | |||
| 2632 | /// Return the best possible representable state. |
||
| 2633 | static constexpr base_t getBestState() { return BestState; } |
||
| 2634 | static constexpr base_t |
||
| 2635 | getBestState(const IncIntegerState<base_ty, BestState, WorstState> &) { |
||
| 2636 | return getBestState(); |
||
| 2637 | } |
||
| 2638 | |||
| 2639 | /// Take minimum of assumed and \p Value. |
||
| 2640 | IncIntegerState &takeAssumedMinimum(base_t Value) { |
||
| 2641 | // Make sure we never loose "known value". |
||
| 2642 | this->Assumed = std::max(std::min(this->Assumed, Value), this->Known); |
||
| 2643 | return *this; |
||
| 2644 | } |
||
| 2645 | |||
| 2646 | /// Take maximum of known and \p Value. |
||
| 2647 | IncIntegerState &takeKnownMaximum(base_t Value) { |
||
| 2648 | // Make sure we never loose "known value". |
||
| 2649 | this->Assumed = std::max(Value, this->Assumed); |
||
| 2650 | this->Known = std::max(Value, this->Known); |
||
| 2651 | return *this; |
||
| 2652 | } |
||
| 2653 | |||
| 2654 | private: |
||
| 2655 | void handleNewAssumedValue(base_t Value) override { |
||
| 2656 | takeAssumedMinimum(Value); |
||
| 2657 | } |
||
| 2658 | void handleNewKnownValue(base_t Value) override { takeKnownMaximum(Value); } |
||
| 2659 | void joinOR(base_t AssumedValue, base_t KnownValue) override { |
||
| 2660 | this->Known = std::max(this->Known, KnownValue); |
||
| 2661 | this->Assumed = std::max(this->Assumed, AssumedValue); |
||
| 2662 | } |
||
| 2663 | void joinAND(base_t AssumedValue, base_t KnownValue) override { |
||
| 2664 | this->Known = std::min(this->Known, KnownValue); |
||
| 2665 | this->Assumed = std::min(this->Assumed, AssumedValue); |
||
| 2666 | } |
||
| 2667 | }; |
||
| 2668 | |||
| 2669 | /// Specialization of the integer state for a decreasing value, hence 0 is the |
||
| 2670 | /// best state and ~0u the worst. |
||
| 2671 | template <typename base_ty = uint32_t> |
||
| 2672 | struct DecIntegerState : public IntegerStateBase<base_ty, 0, ~base_ty(0)> { |
||
| 2673 | using base_t = base_ty; |
||
| 2674 | |||
| 2675 | /// Take maximum of assumed and \p Value. |
||
| 2676 | DecIntegerState &takeAssumedMaximum(base_t Value) { |
||
| 2677 | // Make sure we never loose "known value". |
||
| 2678 | this->Assumed = std::min(std::max(this->Assumed, Value), this->Known); |
||
| 2679 | return *this; |
||
| 2680 | } |
||
| 2681 | |||
| 2682 | /// Take minimum of known and \p Value. |
||
| 2683 | DecIntegerState &takeKnownMinimum(base_t Value) { |
||
| 2684 | // Make sure we never loose "known value". |
||
| 2685 | this->Assumed = std::min(Value, this->Assumed); |
||
| 2686 | this->Known = std::min(Value, this->Known); |
||
| 2687 | return *this; |
||
| 2688 | } |
||
| 2689 | |||
| 2690 | private: |
||
| 2691 | void handleNewAssumedValue(base_t Value) override { |
||
| 2692 | takeAssumedMaximum(Value); |
||
| 2693 | } |
||
| 2694 | void handleNewKnownValue(base_t Value) override { takeKnownMinimum(Value); } |
||
| 2695 | void joinOR(base_t AssumedValue, base_t KnownValue) override { |
||
| 2696 | this->Assumed = std::min(this->Assumed, KnownValue); |
||
| 2697 | this->Assumed = std::min(this->Assumed, AssumedValue); |
||
| 2698 | } |
||
| 2699 | void joinAND(base_t AssumedValue, base_t KnownValue) override { |
||
| 2700 | this->Assumed = std::max(this->Assumed, KnownValue); |
||
| 2701 | this->Assumed = std::max(this->Assumed, AssumedValue); |
||
| 2702 | } |
||
| 2703 | }; |
||
| 2704 | |||
| 2705 | /// Simple wrapper for a single bit (boolean) state. |
||
| 2706 | struct BooleanState : public IntegerStateBase<bool, true, false> { |
||
| 2707 | using super = IntegerStateBase<bool, true, false>; |
||
| 2708 | using base_t = IntegerStateBase::base_t; |
||
| 2709 | |||
| 2710 | BooleanState() = default; |
||
| 2711 | BooleanState(base_t Assumed) : super(Assumed) {} |
||
| 2712 | |||
| 2713 | /// Set the assumed value to \p Value but never below the known one. |
||
| 2714 | void setAssumed(bool Value) { Assumed &= (Known | Value); } |
||
| 2715 | |||
| 2716 | /// Set the known and asssumed value to \p Value. |
||
| 2717 | void setKnown(bool Value) { |
||
| 2718 | Known |= Value; |
||
| 2719 | Assumed |= Value; |
||
| 2720 | } |
||
| 2721 | |||
| 2722 | /// Return true if the state is assumed to hold. |
||
| 2723 | bool isAssumed() const { return getAssumed(); } |
||
| 2724 | |||
| 2725 | /// Return true if the state is known to hold. |
||
| 2726 | bool isKnown() const { return getKnown(); } |
||
| 2727 | |||
| 2728 | private: |
||
| 2729 | void handleNewAssumedValue(base_t Value) override { |
||
| 2730 | if (!Value) |
||
| 2731 | Assumed = Known; |
||
| 2732 | } |
||
| 2733 | void handleNewKnownValue(base_t Value) override { |
||
| 2734 | if (Value) |
||
| 2735 | Known = (Assumed = Value); |
||
| 2736 | } |
||
| 2737 | void joinOR(base_t AssumedValue, base_t KnownValue) override { |
||
| 2738 | Known |= KnownValue; |
||
| 2739 | Assumed |= AssumedValue; |
||
| 2740 | } |
||
| 2741 | void joinAND(base_t AssumedValue, base_t KnownValue) override { |
||
| 2742 | Known &= KnownValue; |
||
| 2743 | Assumed &= AssumedValue; |
||
| 2744 | } |
||
| 2745 | }; |
||
| 2746 | |||
| 2747 | /// State for an integer range. |
||
| 2748 | struct IntegerRangeState : public AbstractState { |
||
| 2749 | |||
| 2750 | /// Bitwidth of the associated value. |
||
| 2751 | uint32_t BitWidth; |
||
| 2752 | |||
| 2753 | /// State representing assumed range, initially set to empty. |
||
| 2754 | ConstantRange Assumed; |
||
| 2755 | |||
| 2756 | /// State representing known range, initially set to [-inf, inf]. |
||
| 2757 | ConstantRange Known; |
||
| 2758 | |||
| 2759 | IntegerRangeState(uint32_t BitWidth) |
||
| 2760 | : BitWidth(BitWidth), Assumed(ConstantRange::getEmpty(BitWidth)), |
||
| 2761 | Known(ConstantRange::getFull(BitWidth)) {} |
||
| 2762 | |||
| 2763 | IntegerRangeState(const ConstantRange &CR) |
||
| 2764 | : BitWidth(CR.getBitWidth()), Assumed(CR), |
||
| 2765 | Known(getWorstState(CR.getBitWidth())) {} |
||
| 2766 | |||
| 2767 | /// Return the worst possible representable state. |
||
| 2768 | static ConstantRange getWorstState(uint32_t BitWidth) { |
||
| 2769 | return ConstantRange::getFull(BitWidth); |
||
| 2770 | } |
||
| 2771 | |||
| 2772 | /// Return the best possible representable state. |
||
| 2773 | static ConstantRange getBestState(uint32_t BitWidth) { |
||
| 2774 | return ConstantRange::getEmpty(BitWidth); |
||
| 2775 | } |
||
| 2776 | static ConstantRange getBestState(const IntegerRangeState &IRS) { |
||
| 2777 | return getBestState(IRS.getBitWidth()); |
||
| 2778 | } |
||
| 2779 | |||
| 2780 | /// Return associated values' bit width. |
||
| 2781 | uint32_t getBitWidth() const { return BitWidth; } |
||
| 2782 | |||
| 2783 | /// See AbstractState::isValidState() |
||
| 2784 | bool isValidState() const override { |
||
| 2785 | return BitWidth > 0 && !Assumed.isFullSet(); |
||
| 2786 | } |
||
| 2787 | |||
| 2788 | /// See AbstractState::isAtFixpoint() |
||
| 2789 | bool isAtFixpoint() const override { return Assumed == Known; } |
||
| 2790 | |||
| 2791 | /// See AbstractState::indicateOptimisticFixpoint(...) |
||
| 2792 | ChangeStatus indicateOptimisticFixpoint() override { |
||
| 2793 | Known = Assumed; |
||
| 2794 | return ChangeStatus::CHANGED; |
||
| 2795 | } |
||
| 2796 | |||
| 2797 | /// See AbstractState::indicatePessimisticFixpoint(...) |
||
| 2798 | ChangeStatus indicatePessimisticFixpoint() override { |
||
| 2799 | Assumed = Known; |
||
| 2800 | return ChangeStatus::CHANGED; |
||
| 2801 | } |
||
| 2802 | |||
| 2803 | /// Return the known state encoding |
||
| 2804 | ConstantRange getKnown() const { return Known; } |
||
| 2805 | |||
| 2806 | /// Return the assumed state encoding. |
||
| 2807 | ConstantRange getAssumed() const { return Assumed; } |
||
| 2808 | |||
| 2809 | /// Unite assumed range with the passed state. |
||
| 2810 | void unionAssumed(const ConstantRange &R) { |
||
| 2811 | // Don't loose a known range. |
||
| 2812 | Assumed = Assumed.unionWith(R).intersectWith(Known); |
||
| 2813 | } |
||
| 2814 | |||
| 2815 | /// See IntegerRangeState::unionAssumed(..). |
||
| 2816 | void unionAssumed(const IntegerRangeState &R) { |
||
| 2817 | unionAssumed(R.getAssumed()); |
||
| 2818 | } |
||
| 2819 | |||
| 2820 | /// Intersect known range with the passed state. |
||
| 2821 | void intersectKnown(const ConstantRange &R) { |
||
| 2822 | Assumed = Assumed.intersectWith(R); |
||
| 2823 | Known = Known.intersectWith(R); |
||
| 2824 | } |
||
| 2825 | |||
| 2826 | /// See IntegerRangeState::intersectKnown(..). |
||
| 2827 | void intersectKnown(const IntegerRangeState &R) { |
||
| 2828 | intersectKnown(R.getKnown()); |
||
| 2829 | } |
||
| 2830 | |||
| 2831 | /// Equality for IntegerRangeState. |
||
| 2832 | bool operator==(const IntegerRangeState &R) const { |
||
| 2833 | return getAssumed() == R.getAssumed() && getKnown() == R.getKnown(); |
||
| 2834 | } |
||
| 2835 | |||
| 2836 | /// "Clamp" this state with \p R. The result is subtype dependent but it is |
||
| 2837 | /// intended that only information assumed in both states will be assumed in |
||
| 2838 | /// this one afterwards. |
||
| 2839 | IntegerRangeState operator^=(const IntegerRangeState &R) { |
||
| 2840 | // NOTE: `^=` operator seems like `intersect` but in this case, we need to |
||
| 2841 | // take `union`. |
||
| 2842 | unionAssumed(R); |
||
| 2843 | return *this; |
||
| 2844 | } |
||
| 2845 | |||
| 2846 | IntegerRangeState operator&=(const IntegerRangeState &R) { |
||
| 2847 | // NOTE: `&=` operator seems like `intersect` but in this case, we need to |
||
| 2848 | // take `union`. |
||
| 2849 | Known = Known.unionWith(R.getKnown()); |
||
| 2850 | Assumed = Assumed.unionWith(R.getAssumed()); |
||
| 2851 | return *this; |
||
| 2852 | } |
||
| 2853 | }; |
||
| 2854 | |||
| 2855 | /// Simple state for a set. |
||
| 2856 | /// |
||
| 2857 | /// This represents a state containing a set of values. The interface supports |
||
| 2858 | /// modelling sets that contain all possible elements. The state's internal |
||
| 2859 | /// value is modified using union or intersection operations. |
||
| 2860 | template <typename BaseTy> struct SetState : public AbstractState { |
||
| 2861 | /// A wrapper around a set that has semantics for handling unions and |
||
| 2862 | /// intersections with a "universal" set that contains all elements. |
||
| 2863 | struct SetContents { |
||
| 2864 | /// Creates a universal set with no concrete elements or an empty set. |
||
| 2865 | SetContents(bool Universal) : Universal(Universal) {} |
||
| 2866 | |||
| 2867 | /// Creates a non-universal set with concrete values. |
||
| 2868 | SetContents(const DenseSet<BaseTy> &Assumptions) |
||
| 2869 | : Universal(false), Set(Assumptions) {} |
||
| 2870 | |||
| 2871 | SetContents(bool Universal, const DenseSet<BaseTy> &Assumptions) |
||
| 2872 | : Universal(Universal), Set(Assumptions) {} |
||
| 2873 | |||
| 2874 | const DenseSet<BaseTy> &getSet() const { return Set; } |
||
| 2875 | |||
| 2876 | bool isUniversal() const { return Universal; } |
||
| 2877 | |||
| 2878 | bool empty() const { return Set.empty() && !Universal; } |
||
| 2879 | |||
| 2880 | /// Finds A := A ^ B where A or B could be the "Universal" set which |
||
| 2881 | /// contains every possible attribute. Returns true if changes were made. |
||
| 2882 | bool getIntersection(const SetContents &RHS) { |
||
| 2883 | bool IsUniversal = Universal; |
||
| 2884 | unsigned Size = Set.size(); |
||
| 2885 | |||
| 2886 | // A := A ^ U = A |
||
| 2887 | if (RHS.isUniversal()) |
||
| 2888 | return false; |
||
| 2889 | |||
| 2890 | // A := U ^ B = B |
||
| 2891 | if (Universal) |
||
| 2892 | Set = RHS.getSet(); |
||
| 2893 | else |
||
| 2894 | set_intersect(Set, RHS.getSet()); |
||
| 2895 | |||
| 2896 | Universal &= RHS.isUniversal(); |
||
| 2897 | return IsUniversal != Universal || Size != Set.size(); |
||
| 2898 | } |
||
| 2899 | |||
| 2900 | /// Finds A := A u B where A or B could be the "Universal" set which |
||
| 2901 | /// contains every possible attribute. returns true if changes were made. |
||
| 2902 | bool getUnion(const SetContents &RHS) { |
||
| 2903 | bool IsUniversal = Universal; |
||
| 2904 | unsigned Size = Set.size(); |
||
| 2905 | |||
| 2906 | // A := A u U = U = U u B |
||
| 2907 | if (!RHS.isUniversal() && !Universal) |
||
| 2908 | set_union(Set, RHS.getSet()); |
||
| 2909 | |||
| 2910 | Universal |= RHS.isUniversal(); |
||
| 2911 | return IsUniversal != Universal || Size != Set.size(); |
||
| 2912 | } |
||
| 2913 | |||
| 2914 | private: |
||
| 2915 | /// Indicates if this set is "universal", containing every possible element. |
||
| 2916 | bool Universal; |
||
| 2917 | |||
| 2918 | /// The set of currently active assumptions. |
||
| 2919 | DenseSet<BaseTy> Set; |
||
| 2920 | }; |
||
| 2921 | |||
| 2922 | SetState() : Known(false), Assumed(true), IsAtFixedpoint(false) {} |
||
| 2923 | |||
| 2924 | /// Initializes the known state with an initial set and initializes the |
||
| 2925 | /// assumed state as universal. |
||
| 2926 | SetState(const DenseSet<BaseTy> &Known) |
||
| 2927 | : Known(Known), Assumed(true), IsAtFixedpoint(false) {} |
||
| 2928 | |||
| 2929 | /// See AbstractState::isValidState() |
||
| 2930 | bool isValidState() const override { return !Assumed.empty(); } |
||
| 2931 | |||
| 2932 | /// See AbstractState::isAtFixpoint() |
||
| 2933 | bool isAtFixpoint() const override { return IsAtFixedpoint; } |
||
| 2934 | |||
| 2935 | /// See AbstractState::indicateOptimisticFixpoint(...) |
||
| 2936 | ChangeStatus indicateOptimisticFixpoint() override { |
||
| 2937 | IsAtFixedpoint = true; |
||
| 2938 | Known = Assumed; |
||
| 2939 | return ChangeStatus::UNCHANGED; |
||
| 2940 | } |
||
| 2941 | |||
| 2942 | /// See AbstractState::indicatePessimisticFixpoint(...) |
||
| 2943 | ChangeStatus indicatePessimisticFixpoint() override { |
||
| 2944 | IsAtFixedpoint = true; |
||
| 2945 | Assumed = Known; |
||
| 2946 | return ChangeStatus::CHANGED; |
||
| 2947 | } |
||
| 2948 | |||
| 2949 | /// Return the known state encoding. |
||
| 2950 | const SetContents &getKnown() const { return Known; } |
||
| 2951 | |||
| 2952 | /// Return the assumed state encoding. |
||
| 2953 | const SetContents &getAssumed() const { return Assumed; } |
||
| 2954 | |||
| 2955 | /// Returns if the set state contains the element. |
||
| 2956 | bool setContains(const BaseTy &Elem) const { |
||
| 2957 | return Assumed.getSet().contains(Elem) || Known.getSet().contains(Elem); |
||
| 2958 | } |
||
| 2959 | |||
| 2960 | /// Performs the set intersection between this set and \p RHS. Returns true if |
||
| 2961 | /// changes were made. |
||
| 2962 | bool getIntersection(const SetContents &RHS) { |
||
| 2963 | unsigned SizeBefore = Assumed.getSet().size(); |
||
| 2964 | |||
| 2965 | // Get intersection and make sure that the known set is still a proper |
||
| 2966 | // subset of the assumed set. A := K u (A ^ R). |
||
| 2967 | Assumed.getIntersection(RHS); |
||
| 2968 | Assumed.getUnion(Known); |
||
| 2969 | |||
| 2970 | return SizeBefore != Assumed.getSet().size(); |
||
| 2971 | } |
||
| 2972 | |||
| 2973 | /// Performs the set union between this set and \p RHS. Returns true if |
||
| 2974 | /// changes were made. |
||
| 2975 | bool getUnion(const SetContents &RHS) { return Assumed.getUnion(RHS); } |
||
| 2976 | |||
| 2977 | private: |
||
| 2978 | /// The set of values known for this state. |
||
| 2979 | SetContents Known; |
||
| 2980 | |||
| 2981 | /// The set of assumed values for this state. |
||
| 2982 | SetContents Assumed; |
||
| 2983 | |||
| 2984 | bool IsAtFixedpoint; |
||
| 2985 | }; |
||
| 2986 | |||
| 2987 | /// Helper struct necessary as the modular build fails if the virtual method |
||
| 2988 | /// IRAttribute::manifest is defined in the Attributor.cpp. |
||
| 2989 | struct IRAttributeManifest { |
||
| 2990 | static ChangeStatus manifestAttrs(Attributor &A, const IRPosition &IRP, |
||
| 2991 | const ArrayRef<Attribute> &DeducedAttrs, |
||
| 2992 | bool ForceReplace = false); |
||
| 2993 | }; |
||
| 2994 | |||
| 2995 | /// Helper to tie a abstract state implementation to an abstract attribute. |
||
| 2996 | template <typename StateTy, typename BaseType, class... Ts> |
||
| 2997 | struct StateWrapper : public BaseType, public StateTy { |
||
| 2998 | /// Provide static access to the type of the state. |
||
| 2999 | using StateType = StateTy; |
||
| 3000 | |||
| 3001 | StateWrapper(const IRPosition &IRP, Ts... Args) |
||
| 3002 | : BaseType(IRP), StateTy(Args...) {} |
||
| 3003 | |||
| 3004 | /// See AbstractAttribute::getState(...). |
||
| 3005 | StateType &getState() override { return *this; } |
||
| 3006 | |||
| 3007 | /// See AbstractAttribute::getState(...). |
||
| 3008 | const StateType &getState() const override { return *this; } |
||
| 3009 | }; |
||
| 3010 | |||
| 3011 | /// Helper class that provides common functionality to manifest IR attributes. |
||
| 3012 | template <Attribute::AttrKind AK, typename BaseType> |
||
| 3013 | struct IRAttribute : public BaseType { |
||
| 3014 | IRAttribute(const IRPosition &IRP) : BaseType(IRP) {} |
||
| 3015 | |||
| 3016 | /// See AbstractAttribute::initialize(...). |
||
| 3017 | void initialize(Attributor &A) override { |
||
| 3018 | const IRPosition &IRP = this->getIRPosition(); |
||
| 3019 | if (isa<UndefValue>(IRP.getAssociatedValue()) || |
||
| 3020 | this->hasAttr(getAttrKind(), /* IgnoreSubsumingPositions */ false, |
||
| 3021 | &A)) { |
||
| 3022 | this->getState().indicateOptimisticFixpoint(); |
||
| 3023 | return; |
||
| 3024 | } |
||
| 3025 | |||
| 3026 | bool IsFnInterface = IRP.isFnInterfaceKind(); |
||
| 3027 | const Function *FnScope = IRP.getAnchorScope(); |
||
| 3028 | // TODO: Not all attributes require an exact definition. Find a way to |
||
| 3029 | // enable deduction for some but not all attributes in case the |
||
| 3030 | // definition might be changed at runtime, see also |
||
| 3031 | // http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html. |
||
| 3032 | // TODO: We could always determine abstract attributes and if sufficient |
||
| 3033 | // information was found we could duplicate the functions that do not |
||
| 3034 | // have an exact definition. |
||
| 3035 | if (IsFnInterface && (!FnScope || !A.isFunctionIPOAmendable(*FnScope))) |
||
| 3036 | this->getState().indicatePessimisticFixpoint(); |
||
| 3037 | } |
||
| 3038 | |||
| 3039 | /// See AbstractAttribute::manifest(...). |
||
| 3040 | ChangeStatus manifest(Attributor &A) override { |
||
| 3041 | if (isa<UndefValue>(this->getIRPosition().getAssociatedValue())) |
||
| 3042 | return ChangeStatus::UNCHANGED; |
||
| 3043 | SmallVector<Attribute, 4> DeducedAttrs; |
||
| 3044 | getDeducedAttributes(this->getAnchorValue().getContext(), DeducedAttrs); |
||
| 3045 | return IRAttributeManifest::manifestAttrs(A, this->getIRPosition(), |
||
| 3046 | DeducedAttrs); |
||
| 3047 | } |
||
| 3048 | |||
| 3049 | /// Return the kind that identifies the abstract attribute implementation. |
||
| 3050 | Attribute::AttrKind getAttrKind() const { return AK; } |
||
| 3051 | |||
| 3052 | /// Return the deduced attributes in \p Attrs. |
||
| 3053 | virtual void getDeducedAttributes(LLVMContext &Ctx, |
||
| 3054 | SmallVectorImpl<Attribute> &Attrs) const { |
||
| 3055 | Attrs.emplace_back(Attribute::get(Ctx, getAttrKind())); |
||
| 3056 | } |
||
| 3057 | }; |
||
| 3058 | |||
| 3059 | /// Base struct for all "concrete attribute" deductions. |
||
| 3060 | /// |
||
| 3061 | /// The abstract attribute is a minimal interface that allows the Attributor to |
||
| 3062 | /// orchestrate the abstract/fixpoint analysis. The design allows to hide away |
||
| 3063 | /// implementation choices made for the subclasses but also to structure their |
||
| 3064 | /// implementation and simplify the use of other abstract attributes in-flight. |
||
| 3065 | /// |
||
| 3066 | /// To allow easy creation of new attributes, most methods have default |
||
| 3067 | /// implementations. The ones that do not are generally straight forward, except |
||
| 3068 | /// `AbstractAttribute::updateImpl` which is the location of most reasoning |
||
| 3069 | /// associated with the abstract attribute. The update is invoked by the |
||
| 3070 | /// Attributor in case the situation used to justify the current optimistic |
||
| 3071 | /// state might have changed. The Attributor determines this automatically |
||
| 3072 | /// by monitoring the `Attributor::getAAFor` calls made by abstract attributes. |
||
| 3073 | /// |
||
| 3074 | /// The `updateImpl` method should inspect the IR and other abstract attributes |
||
| 3075 | /// in-flight to justify the best possible (=optimistic) state. The actual |
||
| 3076 | /// implementation is, similar to the underlying abstract state encoding, not |
||
| 3077 | /// exposed. In the most common case, the `updateImpl` will go through a list of |
||
| 3078 | /// reasons why its optimistic state is valid given the current information. If |
||
| 3079 | /// any combination of them holds and is sufficient to justify the current |
||
| 3080 | /// optimistic state, the method shall return UNCHAGED. If not, the optimistic |
||
| 3081 | /// state is adjusted to the situation and the method shall return CHANGED. |
||
| 3082 | /// |
||
| 3083 | /// If the manifestation of the "concrete attribute" deduced by the subclass |
||
| 3084 | /// differs from the "default" behavior, which is a (set of) LLVM-IR |
||
| 3085 | /// attribute(s) for an argument, call site argument, function return value, or |
||
| 3086 | /// function, the `AbstractAttribute::manifest` method should be overloaded. |
||
| 3087 | /// |
||
| 3088 | /// NOTE: If the state obtained via getState() is INVALID, thus if |
||
| 3089 | /// AbstractAttribute::getState().isValidState() returns false, no |
||
| 3090 | /// information provided by the methods of this class should be used. |
||
| 3091 | /// NOTE: The Attributor currently has certain limitations to what we can do. |
||
| 3092 | /// As a general rule of thumb, "concrete" abstract attributes should *for |
||
| 3093 | /// now* only perform "backward" information propagation. That means |
||
| 3094 | /// optimistic information obtained through abstract attributes should |
||
| 3095 | /// only be used at positions that precede the origin of the information |
||
| 3096 | /// with regards to the program flow. More practically, information can |
||
| 3097 | /// *now* be propagated from instructions to their enclosing function, but |
||
| 3098 | /// *not* from call sites to the called function. The mechanisms to allow |
||
| 3099 | /// both directions will be added in the future. |
||
| 3100 | /// NOTE: The mechanics of adding a new "concrete" abstract attribute are |
||
| 3101 | /// described in the file comment. |
||
| 3102 | struct AbstractAttribute : public IRPosition, public AADepGraphNode { |
||
| 3103 | using StateType = AbstractState; |
||
| 3104 | |||
| 3105 | AbstractAttribute(const IRPosition &IRP) : IRPosition(IRP) {} |
||
| 3106 | |||
| 3107 | /// Virtual destructor. |
||
| 3108 | virtual ~AbstractAttribute() = default; |
||
| 3109 | |||
| 3110 | /// This function is used to identify if an \p DGN is of type |
||
| 3111 | /// AbstractAttribute so that the dyn_cast and cast can use such information |
||
| 3112 | /// to cast an AADepGraphNode to an AbstractAttribute. |
||
| 3113 | /// |
||
| 3114 | /// We eagerly return true here because all AADepGraphNodes except for the |
||
| 3115 | /// Synthethis Node are of type AbstractAttribute |
||
| 3116 | static bool classof(const AADepGraphNode *DGN) { return true; } |
||
| 3117 | |||
| 3118 | /// Initialize the state with the information in the Attributor \p A. |
||
| 3119 | /// |
||
| 3120 | /// This function is called by the Attributor once all abstract attributes |
||
| 3121 | /// have been identified. It can and shall be used for task like: |
||
| 3122 | /// - identify existing knowledge in the IR and use it for the "known state" |
||
| 3123 | /// - perform any work that is not going to change over time, e.g., determine |
||
| 3124 | /// a subset of the IR, or attributes in-flight, that have to be looked at |
||
| 3125 | /// in the `updateImpl` method. |
||
| 3126 | virtual void initialize(Attributor &A) {} |
||
| 3127 | |||
| 3128 | /// A query AA is always scheduled as long as we do updates because it does |
||
| 3129 | /// lazy computation that cannot be determined to be done from the outside. |
||
| 3130 | /// However, while query AAs will not be fixed if they do not have outstanding |
||
| 3131 | /// dependences, we will only schedule them like other AAs. If a query AA that |
||
| 3132 | /// received a new query it needs to request an update via |
||
| 3133 | /// `Attributor::requestUpdateForAA`. |
||
| 3134 | virtual bool isQueryAA() const { return false; } |
||
| 3135 | |||
| 3136 | /// Return the internal abstract state for inspection. |
||
| 3137 | virtual StateType &getState() = 0; |
||
| 3138 | virtual const StateType &getState() const = 0; |
||
| 3139 | |||
| 3140 | /// Return an IR position, see struct IRPosition. |
||
| 3141 | const IRPosition &getIRPosition() const { return *this; }; |
||
| 3142 | IRPosition &getIRPosition() { return *this; }; |
||
| 3143 | |||
| 3144 | /// Helper functions, for debug purposes only. |
||
| 3145 | ///{ |
||
| 3146 | void print(raw_ostream &OS) const override; |
||
| 3147 | virtual void printWithDeps(raw_ostream &OS) const; |
||
| 3148 | void dump() const { print(dbgs()); } |
||
| 3149 | |||
| 3150 | /// This function should return the "summarized" assumed state as string. |
||
| 3151 | virtual const std::string getAsStr() const = 0; |
||
| 3152 | |||
| 3153 | /// This function should return the name of the AbstractAttribute |
||
| 3154 | virtual const std::string getName() const = 0; |
||
| 3155 | |||
| 3156 | /// This function should return the address of the ID of the AbstractAttribute |
||
| 3157 | virtual const char *getIdAddr() const = 0; |
||
| 3158 | ///} |
||
| 3159 | |||
| 3160 | /// Allow the Attributor access to the protected methods. |
||
| 3161 | friend struct Attributor; |
||
| 3162 | |||
| 3163 | protected: |
||
| 3164 | /// Hook for the Attributor to trigger an update of the internal state. |
||
| 3165 | /// |
||
| 3166 | /// If this attribute is already fixed, this method will return UNCHANGED, |
||
| 3167 | /// otherwise it delegates to `AbstractAttribute::updateImpl`. |
||
| 3168 | /// |
||
| 3169 | /// \Return CHANGED if the internal state changed, otherwise UNCHANGED. |
||
| 3170 | ChangeStatus update(Attributor &A); |
||
| 3171 | |||
| 3172 | /// Hook for the Attributor to trigger the manifestation of the information |
||
| 3173 | /// represented by the abstract attribute in the LLVM-IR. |
||
| 3174 | /// |
||
| 3175 | /// \Return CHANGED if the IR was altered, otherwise UNCHANGED. |
||
| 3176 | virtual ChangeStatus manifest(Attributor &A) { |
||
| 3177 | return ChangeStatus::UNCHANGED; |
||
| 3178 | } |
||
| 3179 | |||
| 3180 | /// Hook to enable custom statistic tracking, called after manifest that |
||
| 3181 | /// resulted in a change if statistics are enabled. |
||
| 3182 | /// |
||
| 3183 | /// We require subclasses to provide an implementation so we remember to |
||
| 3184 | /// add statistics for them. |
||
| 3185 | virtual void trackStatistics() const = 0; |
||
| 3186 | |||
| 3187 | /// The actual update/transfer function which has to be implemented by the |
||
| 3188 | /// derived classes. |
||
| 3189 | /// |
||
| 3190 | /// If it is called, the environment has changed and we have to determine if |
||
| 3191 | /// the current information is still valid or adjust it otherwise. |
||
| 3192 | /// |
||
| 3193 | /// \Return CHANGED if the internal state changed, otherwise UNCHANGED. |
||
| 3194 | virtual ChangeStatus updateImpl(Attributor &A) = 0; |
||
| 3195 | }; |
||
| 3196 | |||
| 3197 | /// Forward declarations of output streams for debug purposes. |
||
| 3198 | /// |
||
| 3199 | ///{ |
||
| 3200 | raw_ostream &operator<<(raw_ostream &OS, const AbstractAttribute &AA); |
||
| 3201 | raw_ostream &operator<<(raw_ostream &OS, ChangeStatus S); |
||
| 3202 | raw_ostream &operator<<(raw_ostream &OS, IRPosition::Kind); |
||
| 3203 | raw_ostream &operator<<(raw_ostream &OS, const IRPosition &); |
||
| 3204 | raw_ostream &operator<<(raw_ostream &OS, const AbstractState &State); |
||
| 3205 | template <typename base_ty, base_ty BestState, base_ty WorstState> |
||
| 3206 | raw_ostream & |
||
| 3207 | operator<<(raw_ostream &OS, |
||
| 3208 | const IntegerStateBase<base_ty, BestState, WorstState> &S) { |
||
| 3209 | return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")" |
||
| 3210 | << static_cast<const AbstractState &>(S); |
||
| 3211 | } |
||
| 3212 | raw_ostream &operator<<(raw_ostream &OS, const IntegerRangeState &State); |
||
| 3213 | ///} |
||
| 3214 | |||
| 3215 | struct AttributorPass : public PassInfoMixin<AttributorPass> { |
||
| 3216 | PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); |
||
| 3217 | }; |
||
| 3218 | struct AttributorCGSCCPass : public PassInfoMixin<AttributorCGSCCPass> { |
||
| 3219 | PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, |
||
| 3220 | LazyCallGraph &CG, CGSCCUpdateResult &UR); |
||
| 3221 | }; |
||
| 3222 | |||
| 3223 | Pass *createAttributorLegacyPass(); |
||
| 3224 | Pass *createAttributorCGSCCLegacyPass(); |
||
| 3225 | |||
| 3226 | /// Helper function to clamp a state \p S of type \p StateType with the |
||
| 3227 | /// information in \p R and indicate/return if \p S did change (as-in update is |
||
| 3228 | /// required to be run again). |
||
| 3229 | template <typename StateType> |
||
| 3230 | ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R) { |
||
| 3231 | auto Assumed = S.getAssumed(); |
||
| 3232 | S ^= R; |
||
| 3233 | return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED |
||
| 3234 | : ChangeStatus::CHANGED; |
||
| 3235 | } |
||
| 3236 | |||
| 3237 | /// ---------------------------------------------------------------------------- |
||
| 3238 | /// Abstract Attribute Classes |
||
| 3239 | /// ---------------------------------------------------------------------------- |
||
| 3240 | |||
| 3241 | /// An abstract attribute for the returned values of a function. |
||
| 3242 | struct AAReturnedValues |
||
| 3243 | : public IRAttribute<Attribute::Returned, AbstractAttribute> { |
||
| 3244 | AAReturnedValues(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3245 | |||
| 3246 | /// Check \p Pred on all returned values. |
||
| 3247 | /// |
||
| 3248 | /// This method will evaluate \p Pred on returned values and return |
||
| 3249 | /// true if (1) all returned values are known, and (2) \p Pred returned true |
||
| 3250 | /// for all returned values. |
||
| 3251 | /// |
||
| 3252 | /// Note: Unlike the Attributor::checkForAllReturnedValuesAndReturnInsts |
||
| 3253 | /// method, this one will not filter dead return instructions. |
||
| 3254 | virtual bool checkForAllReturnedValuesAndReturnInsts( |
||
| 3255 | function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred) |
||
| 3256 | const = 0; |
||
| 3257 | |||
| 3258 | using iterator = |
||
| 3259 | MapVector<Value *, SmallSetVector<ReturnInst *, 4>>::iterator; |
||
| 3260 | using const_iterator = |
||
| 3261 | MapVector<Value *, SmallSetVector<ReturnInst *, 4>>::const_iterator; |
||
| 3262 | virtual llvm::iterator_range<iterator> returned_values() = 0; |
||
| 3263 | virtual llvm::iterator_range<const_iterator> returned_values() const = 0; |
||
| 3264 | |||
| 3265 | virtual size_t getNumReturnValues() const = 0; |
||
| 3266 | |||
| 3267 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3268 | static AAReturnedValues &createForPosition(const IRPosition &IRP, |
||
| 3269 | Attributor &A); |
||
| 3270 | |||
| 3271 | /// See AbstractAttribute::getName() |
||
| 3272 | const std::string getName() const override { return "AAReturnedValues"; } |
||
| 3273 | |||
| 3274 | /// See AbstractAttribute::getIdAddr() |
||
| 3275 | const char *getIdAddr() const override { return &ID; } |
||
| 3276 | |||
| 3277 | /// This function should return true if the type of the \p AA is |
||
| 3278 | /// AAReturnedValues |
||
| 3279 | static bool classof(const AbstractAttribute *AA) { |
||
| 3280 | return (AA->getIdAddr() == &ID); |
||
| 3281 | } |
||
| 3282 | |||
| 3283 | /// Unique ID (due to the unique address) |
||
| 3284 | static const char ID; |
||
| 3285 | }; |
||
| 3286 | |||
| 3287 | struct AANoUnwind |
||
| 3288 | : public IRAttribute<Attribute::NoUnwind, |
||
| 3289 | StateWrapper<BooleanState, AbstractAttribute>> { |
||
| 3290 | AANoUnwind(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3291 | |||
| 3292 | /// Returns true if nounwind is assumed. |
||
| 3293 | bool isAssumedNoUnwind() const { return getAssumed(); } |
||
| 3294 | |||
| 3295 | /// Returns true if nounwind is known. |
||
| 3296 | bool isKnownNoUnwind() const { return getKnown(); } |
||
| 3297 | |||
| 3298 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3299 | static AANoUnwind &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3300 | |||
| 3301 | /// See AbstractAttribute::getName() |
||
| 3302 | const std::string getName() const override { return "AANoUnwind"; } |
||
| 3303 | |||
| 3304 | /// See AbstractAttribute::getIdAddr() |
||
| 3305 | const char *getIdAddr() const override { return &ID; } |
||
| 3306 | |||
| 3307 | /// This function should return true if the type of the \p AA is AANoUnwind |
||
| 3308 | static bool classof(const AbstractAttribute *AA) { |
||
| 3309 | return (AA->getIdAddr() == &ID); |
||
| 3310 | } |
||
| 3311 | |||
| 3312 | /// Unique ID (due to the unique address) |
||
| 3313 | static const char ID; |
||
| 3314 | }; |
||
| 3315 | |||
| 3316 | struct AANoSync |
||
| 3317 | : public IRAttribute<Attribute::NoSync, |
||
| 3318 | StateWrapper<BooleanState, AbstractAttribute>> { |
||
| 3319 | AANoSync(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3320 | |||
| 3321 | /// Returns true if "nosync" is assumed. |
||
| 3322 | bool isAssumedNoSync() const { return getAssumed(); } |
||
| 3323 | |||
| 3324 | /// Returns true if "nosync" is known. |
||
| 3325 | bool isKnownNoSync() const { return getKnown(); } |
||
| 3326 | |||
| 3327 | /// Helper function used to determine whether an instruction is non-relaxed |
||
| 3328 | /// atomic. In other words, if an atomic instruction does not have unordered |
||
| 3329 | /// or monotonic ordering |
||
| 3330 | static bool isNonRelaxedAtomic(const Instruction *I); |
||
| 3331 | |||
| 3332 | /// Helper function specific for intrinsics which are potentially volatile. |
||
| 3333 | static bool isNoSyncIntrinsic(const Instruction *I); |
||
| 3334 | |||
| 3335 | /// Helper function to determine if \p CB is an aligned (GPU) barrier. Aligned |
||
| 3336 | /// barriers have to be executed by all threads. The flag \p ExecutedAligned |
||
| 3337 | /// indicates if the call is executed by all threads in a (thread) block in an |
||
| 3338 | /// aligned way. If that is the case, non-aligned barriers are effectively |
||
| 3339 | /// aligned barriers. |
||
| 3340 | static bool isAlignedBarrier(const CallBase &CB, bool ExecutedAligned); |
||
| 3341 | |||
| 3342 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3343 | static AANoSync &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3344 | |||
| 3345 | /// See AbstractAttribute::getName() |
||
| 3346 | const std::string getName() const override { return "AANoSync"; } |
||
| 3347 | |||
| 3348 | /// See AbstractAttribute::getIdAddr() |
||
| 3349 | const char *getIdAddr() const override { return &ID; } |
||
| 3350 | |||
| 3351 | /// This function should return true if the type of the \p AA is AANoSync |
||
| 3352 | static bool classof(const AbstractAttribute *AA) { |
||
| 3353 | return (AA->getIdAddr() == &ID); |
||
| 3354 | } |
||
| 3355 | |||
| 3356 | /// Unique ID (due to the unique address) |
||
| 3357 | static const char ID; |
||
| 3358 | }; |
||
| 3359 | |||
| 3360 | /// An abstract interface for all nonnull attributes. |
||
| 3361 | struct AANonNull |
||
| 3362 | : public IRAttribute<Attribute::NonNull, |
||
| 3363 | StateWrapper<BooleanState, AbstractAttribute>> { |
||
| 3364 | AANonNull(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3365 | |||
| 3366 | /// Return true if we assume that the underlying value is nonnull. |
||
| 3367 | bool isAssumedNonNull() const { return getAssumed(); } |
||
| 3368 | |||
| 3369 | /// Return true if we know that underlying value is nonnull. |
||
| 3370 | bool isKnownNonNull() const { return getKnown(); } |
||
| 3371 | |||
| 3372 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3373 | static AANonNull &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3374 | |||
| 3375 | /// See AbstractAttribute::getName() |
||
| 3376 | const std::string getName() const override { return "AANonNull"; } |
||
| 3377 | |||
| 3378 | /// See AbstractAttribute::getIdAddr() |
||
| 3379 | const char *getIdAddr() const override { return &ID; } |
||
| 3380 | |||
| 3381 | /// This function should return true if the type of the \p AA is AANonNull |
||
| 3382 | static bool classof(const AbstractAttribute *AA) { |
||
| 3383 | return (AA->getIdAddr() == &ID); |
||
| 3384 | } |
||
| 3385 | |||
| 3386 | /// Unique ID (due to the unique address) |
||
| 3387 | static const char ID; |
||
| 3388 | }; |
||
| 3389 | |||
| 3390 | /// An abstract attribute for norecurse. |
||
| 3391 | struct AANoRecurse |
||
| 3392 | : public IRAttribute<Attribute::NoRecurse, |
||
| 3393 | StateWrapper<BooleanState, AbstractAttribute>> { |
||
| 3394 | AANoRecurse(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3395 | |||
| 3396 | /// Return true if "norecurse" is assumed. |
||
| 3397 | bool isAssumedNoRecurse() const { return getAssumed(); } |
||
| 3398 | |||
| 3399 | /// Return true if "norecurse" is known. |
||
| 3400 | bool isKnownNoRecurse() const { return getKnown(); } |
||
| 3401 | |||
| 3402 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3403 | static AANoRecurse &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3404 | |||
| 3405 | /// See AbstractAttribute::getName() |
||
| 3406 | const std::string getName() const override { return "AANoRecurse"; } |
||
| 3407 | |||
| 3408 | /// See AbstractAttribute::getIdAddr() |
||
| 3409 | const char *getIdAddr() const override { return &ID; } |
||
| 3410 | |||
| 3411 | /// This function should return true if the type of the \p AA is AANoRecurse |
||
| 3412 | static bool classof(const AbstractAttribute *AA) { |
||
| 3413 | return (AA->getIdAddr() == &ID); |
||
| 3414 | } |
||
| 3415 | |||
| 3416 | /// Unique ID (due to the unique address) |
||
| 3417 | static const char ID; |
||
| 3418 | }; |
||
| 3419 | |||
| 3420 | /// An abstract attribute for willreturn. |
||
| 3421 | struct AAWillReturn |
||
| 3422 | : public IRAttribute<Attribute::WillReturn, |
||
| 3423 | StateWrapper<BooleanState, AbstractAttribute>> { |
||
| 3424 | AAWillReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3425 | |||
| 3426 | /// Return true if "willreturn" is assumed. |
||
| 3427 | bool isAssumedWillReturn() const { return getAssumed(); } |
||
| 3428 | |||
| 3429 | /// Return true if "willreturn" is known. |
||
| 3430 | bool isKnownWillReturn() const { return getKnown(); } |
||
| 3431 | |||
| 3432 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3433 | static AAWillReturn &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3434 | |||
| 3435 | /// See AbstractAttribute::getName() |
||
| 3436 | const std::string getName() const override { return "AAWillReturn"; } |
||
| 3437 | |||
| 3438 | /// See AbstractAttribute::getIdAddr() |
||
| 3439 | const char *getIdAddr() const override { return &ID; } |
||
| 3440 | |||
| 3441 | /// This function should return true if the type of the \p AA is AAWillReturn |
||
| 3442 | static bool classof(const AbstractAttribute *AA) { |
||
| 3443 | return (AA->getIdAddr() == &ID); |
||
| 3444 | } |
||
| 3445 | |||
| 3446 | /// Unique ID (due to the unique address) |
||
| 3447 | static const char ID; |
||
| 3448 | }; |
||
| 3449 | |||
| 3450 | /// An abstract attribute for undefined behavior. |
||
| 3451 | struct AAUndefinedBehavior |
||
| 3452 | : public StateWrapper<BooleanState, AbstractAttribute> { |
||
| 3453 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
||
| 3454 | AAUndefinedBehavior(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
||
| 3455 | |||
| 3456 | /// Return true if "undefined behavior" is assumed. |
||
| 3457 | bool isAssumedToCauseUB() const { return getAssumed(); } |
||
| 3458 | |||
| 3459 | /// Return true if "undefined behavior" is assumed for a specific instruction. |
||
| 3460 | virtual bool isAssumedToCauseUB(Instruction *I) const = 0; |
||
| 3461 | |||
| 3462 | /// Return true if "undefined behavior" is known. |
||
| 3463 | bool isKnownToCauseUB() const { return getKnown(); } |
||
| 3464 | |||
| 3465 | /// Return true if "undefined behavior" is known for a specific instruction. |
||
| 3466 | virtual bool isKnownToCauseUB(Instruction *I) const = 0; |
||
| 3467 | |||
| 3468 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3469 | static AAUndefinedBehavior &createForPosition(const IRPosition &IRP, |
||
| 3470 | Attributor &A); |
||
| 3471 | |||
| 3472 | /// See AbstractAttribute::getName() |
||
| 3473 | const std::string getName() const override { return "AAUndefinedBehavior"; } |
||
| 3474 | |||
| 3475 | /// See AbstractAttribute::getIdAddr() |
||
| 3476 | const char *getIdAddr() const override { return &ID; } |
||
| 3477 | |||
| 3478 | /// This function should return true if the type of the \p AA is |
||
| 3479 | /// AAUndefineBehavior |
||
| 3480 | static bool classof(const AbstractAttribute *AA) { |
||
| 3481 | return (AA->getIdAddr() == &ID); |
||
| 3482 | } |
||
| 3483 | |||
| 3484 | /// Unique ID (due to the unique address) |
||
| 3485 | static const char ID; |
||
| 3486 | }; |
||
| 3487 | |||
| 3488 | /// An abstract interface to determine reachability of point A to B. |
||
| 3489 | struct AAIntraFnReachability |
||
| 3490 | : public StateWrapper<BooleanState, AbstractAttribute> { |
||
| 3491 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
||
| 3492 | AAIntraFnReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
||
| 3493 | |||
| 3494 | /// Returns true if 'From' instruction is assumed to reach, 'To' instruction. |
||
| 3495 | /// Users should provide two positions they are interested in, and the class |
||
| 3496 | /// determines (and caches) reachability. |
||
| 3497 | virtual bool isAssumedReachable( |
||
| 3498 | Attributor &A, const Instruction &From, const Instruction &To, |
||
| 3499 | const AA::InstExclusionSetTy *ExclusionSet = nullptr) const = 0; |
||
| 3500 | |||
| 3501 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3502 | static AAIntraFnReachability &createForPosition(const IRPosition &IRP, |
||
| 3503 | Attributor &A); |
||
| 3504 | |||
| 3505 | /// See AbstractAttribute::getName() |
||
| 3506 | const std::string getName() const override { return "AAIntraFnReachability"; } |
||
| 3507 | |||
| 3508 | /// See AbstractAttribute::getIdAddr() |
||
| 3509 | const char *getIdAddr() const override { return &ID; } |
||
| 3510 | |||
| 3511 | /// This function should return true if the type of the \p AA is |
||
| 3512 | /// AAIntraFnReachability |
||
| 3513 | static bool classof(const AbstractAttribute *AA) { |
||
| 3514 | return (AA->getIdAddr() == &ID); |
||
| 3515 | } |
||
| 3516 | |||
| 3517 | /// Unique ID (due to the unique address) |
||
| 3518 | static const char ID; |
||
| 3519 | }; |
||
| 3520 | |||
| 3521 | /// An abstract interface for all noalias attributes. |
||
| 3522 | struct AANoAlias |
||
| 3523 | : public IRAttribute<Attribute::NoAlias, |
||
| 3524 | StateWrapper<BooleanState, AbstractAttribute>> { |
||
| 3525 | AANoAlias(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3526 | |||
| 3527 | /// Return true if we assume that the underlying value is alias. |
||
| 3528 | bool isAssumedNoAlias() const { return getAssumed(); } |
||
| 3529 | |||
| 3530 | /// Return true if we know that underlying value is noalias. |
||
| 3531 | bool isKnownNoAlias() const { return getKnown(); } |
||
| 3532 | |||
| 3533 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3534 | static AANoAlias &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3535 | |||
| 3536 | /// See AbstractAttribute::getName() |
||
| 3537 | const std::string getName() const override { return "AANoAlias"; } |
||
| 3538 | |||
| 3539 | /// See AbstractAttribute::getIdAddr() |
||
| 3540 | const char *getIdAddr() const override { return &ID; } |
||
| 3541 | |||
| 3542 | /// This function should return true if the type of the \p AA is AANoAlias |
||
| 3543 | static bool classof(const AbstractAttribute *AA) { |
||
| 3544 | return (AA->getIdAddr() == &ID); |
||
| 3545 | } |
||
| 3546 | |||
| 3547 | /// Unique ID (due to the unique address) |
||
| 3548 | static const char ID; |
||
| 3549 | }; |
||
| 3550 | |||
| 3551 | /// An AbstractAttribute for nofree. |
||
| 3552 | struct AANoFree |
||
| 3553 | : public IRAttribute<Attribute::NoFree, |
||
| 3554 | StateWrapper<BooleanState, AbstractAttribute>> { |
||
| 3555 | AANoFree(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3556 | |||
| 3557 | /// Return true if "nofree" is assumed. |
||
| 3558 | bool isAssumedNoFree() const { return getAssumed(); } |
||
| 3559 | |||
| 3560 | /// Return true if "nofree" is known. |
||
| 3561 | bool isKnownNoFree() const { return getKnown(); } |
||
| 3562 | |||
| 3563 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3564 | static AANoFree &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3565 | |||
| 3566 | /// See AbstractAttribute::getName() |
||
| 3567 | const std::string getName() const override { return "AANoFree"; } |
||
| 3568 | |||
| 3569 | /// See AbstractAttribute::getIdAddr() |
||
| 3570 | const char *getIdAddr() const override { return &ID; } |
||
| 3571 | |||
| 3572 | /// This function should return true if the type of the \p AA is AANoFree |
||
| 3573 | static bool classof(const AbstractAttribute *AA) { |
||
| 3574 | return (AA->getIdAddr() == &ID); |
||
| 3575 | } |
||
| 3576 | |||
| 3577 | /// Unique ID (due to the unique address) |
||
| 3578 | static const char ID; |
||
| 3579 | }; |
||
| 3580 | |||
| 3581 | /// An AbstractAttribute for noreturn. |
||
| 3582 | struct AANoReturn |
||
| 3583 | : public IRAttribute<Attribute::NoReturn, |
||
| 3584 | StateWrapper<BooleanState, AbstractAttribute>> { |
||
| 3585 | AANoReturn(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3586 | |||
| 3587 | /// Return true if the underlying object is assumed to never return. |
||
| 3588 | bool isAssumedNoReturn() const { return getAssumed(); } |
||
| 3589 | |||
| 3590 | /// Return true if the underlying object is known to never return. |
||
| 3591 | bool isKnownNoReturn() const { return getKnown(); } |
||
| 3592 | |||
| 3593 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3594 | static AANoReturn &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3595 | |||
| 3596 | /// See AbstractAttribute::getName() |
||
| 3597 | const std::string getName() const override { return "AANoReturn"; } |
||
| 3598 | |||
| 3599 | /// See AbstractAttribute::getIdAddr() |
||
| 3600 | const char *getIdAddr() const override { return &ID; } |
||
| 3601 | |||
| 3602 | /// This function should return true if the type of the \p AA is AANoReturn |
||
| 3603 | static bool classof(const AbstractAttribute *AA) { |
||
| 3604 | return (AA->getIdAddr() == &ID); |
||
| 3605 | } |
||
| 3606 | |||
| 3607 | /// Unique ID (due to the unique address) |
||
| 3608 | static const char ID; |
||
| 3609 | }; |
||
| 3610 | |||
| 3611 | /// An abstract interface for liveness abstract attribute. |
||
| 3612 | struct AAIsDead |
||
| 3613 | : public StateWrapper<BitIntegerState<uint8_t, 3, 0>, AbstractAttribute> { |
||
| 3614 | using Base = StateWrapper<BitIntegerState<uint8_t, 3, 0>, AbstractAttribute>; |
||
| 3615 | AAIsDead(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
||
| 3616 | |||
| 3617 | /// State encoding bits. A set bit in the state means the property holds. |
||
| 3618 | enum { |
||
| 3619 | HAS_NO_EFFECT = 1 << 0, |
||
| 3620 | IS_REMOVABLE = 1 << 1, |
||
| 3621 | |||
| 3622 | IS_DEAD = HAS_NO_EFFECT | IS_REMOVABLE, |
||
| 3623 | }; |
||
| 3624 | static_assert(IS_DEAD == getBestState(), "Unexpected BEST_STATE value"); |
||
| 3625 | |||
| 3626 | protected: |
||
| 3627 | /// The query functions are protected such that other attributes need to go |
||
| 3628 | /// through the Attributor interfaces: `Attributor::isAssumedDead(...)` |
||
| 3629 | |||
| 3630 | /// Returns true if the underlying value is assumed dead. |
||
| 3631 | virtual bool isAssumedDead() const = 0; |
||
| 3632 | |||
| 3633 | /// Returns true if the underlying value is known dead. |
||
| 3634 | virtual bool isKnownDead() const = 0; |
||
| 3635 | |||
| 3636 | /// Returns true if \p BB is known dead. |
||
| 3637 | virtual bool isKnownDead(const BasicBlock *BB) const = 0; |
||
| 3638 | |||
| 3639 | /// Returns true if \p I is assumed dead. |
||
| 3640 | virtual bool isAssumedDead(const Instruction *I) const = 0; |
||
| 3641 | |||
| 3642 | /// Returns true if \p I is known dead. |
||
| 3643 | virtual bool isKnownDead(const Instruction *I) const = 0; |
||
| 3644 | |||
| 3645 | /// Return true if the underlying value is a store that is known to be |
||
| 3646 | /// removable. This is different from dead stores as the removable store |
||
| 3647 | /// can have an effect on live values, especially loads, but that effect |
||
| 3648 | /// is propagated which allows us to remove the store in turn. |
||
| 3649 | virtual bool isRemovableStore() const { return false; } |
||
| 3650 | |||
| 3651 | /// This method is used to check if at least one instruction in a collection |
||
| 3652 | /// of instructions is live. |
||
| 3653 | template <typename T> bool isLiveInstSet(T begin, T end) const { |
||
| 3654 | for (const auto &I : llvm::make_range(begin, end)) { |
||
| 3655 | assert(I->getFunction() == getIRPosition().getAssociatedFunction() && |
||
| 3656 | "Instruction must be in the same anchor scope function."); |
||
| 3657 | |||
| 3658 | if (!isAssumedDead(I)) |
||
| 3659 | return true; |
||
| 3660 | } |
||
| 3661 | |||
| 3662 | return false; |
||
| 3663 | } |
||
| 3664 | |||
| 3665 | public: |
||
| 3666 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3667 | static AAIsDead &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3668 | |||
| 3669 | /// Determine if \p F might catch asynchronous exceptions. |
||
| 3670 | static bool mayCatchAsynchronousExceptions(const Function &F) { |
||
| 3671 | return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F); |
||
| 3672 | } |
||
| 3673 | |||
| 3674 | /// Returns true if \p BB is assumed dead. |
||
| 3675 | virtual bool isAssumedDead(const BasicBlock *BB) const = 0; |
||
| 3676 | |||
| 3677 | /// Return if the edge from \p From BB to \p To BB is assumed dead. |
||
| 3678 | /// This is specifically useful in AAReachability. |
||
| 3679 | virtual bool isEdgeDead(const BasicBlock *From, const BasicBlock *To) const { |
||
| 3680 | return false; |
||
| 3681 | } |
||
| 3682 | |||
| 3683 | /// See AbstractAttribute::getName() |
||
| 3684 | const std::string getName() const override { return "AAIsDead"; } |
||
| 3685 | |||
| 3686 | /// See AbstractAttribute::getIdAddr() |
||
| 3687 | const char *getIdAddr() const override { return &ID; } |
||
| 3688 | |||
| 3689 | /// This function should return true if the type of the \p AA is AAIsDead |
||
| 3690 | static bool classof(const AbstractAttribute *AA) { |
||
| 3691 | return (AA->getIdAddr() == &ID); |
||
| 3692 | } |
||
| 3693 | |||
| 3694 | /// Unique ID (due to the unique address) |
||
| 3695 | static const char ID; |
||
| 3696 | |||
| 3697 | friend struct Attributor; |
||
| 3698 | }; |
||
| 3699 | |||
| 3700 | /// State for dereferenceable attribute |
||
| 3701 | struct DerefState : AbstractState { |
||
| 3702 | |||
| 3703 | static DerefState getBestState() { return DerefState(); } |
||
| 3704 | static DerefState getBestState(const DerefState &) { return getBestState(); } |
||
| 3705 | |||
| 3706 | /// Return the worst possible representable state. |
||
| 3707 | static DerefState getWorstState() { |
||
| 3708 | DerefState DS; |
||
| 3709 | DS.indicatePessimisticFixpoint(); |
||
| 3710 | return DS; |
||
| 3711 | } |
||
| 3712 | static DerefState getWorstState(const DerefState &) { |
||
| 3713 | return getWorstState(); |
||
| 3714 | } |
||
| 3715 | |||
| 3716 | /// State representing for dereferenceable bytes. |
||
| 3717 | IncIntegerState<> DerefBytesState; |
||
| 3718 | |||
| 3719 | /// Map representing for accessed memory offsets and sizes. |
||
| 3720 | /// A key is Offset and a value is size. |
||
| 3721 | /// If there is a load/store instruction something like, |
||
| 3722 | /// p[offset] = v; |
||
| 3723 | /// (offset, sizeof(v)) will be inserted to this map. |
||
| 3724 | /// std::map is used because we want to iterate keys in ascending order. |
||
| 3725 | std::map<int64_t, uint64_t> AccessedBytesMap; |
||
| 3726 | |||
| 3727 | /// Helper function to calculate dereferenceable bytes from current known |
||
| 3728 | /// bytes and accessed bytes. |
||
| 3729 | /// |
||
| 3730 | /// int f(int *A){ |
||
| 3731 | /// *A = 0; |
||
| 3732 | /// *(A+2) = 2; |
||
| 3733 | /// *(A+1) = 1; |
||
| 3734 | /// *(A+10) = 10; |
||
| 3735 | /// } |
||
| 3736 | /// ``` |
||
| 3737 | /// In that case, AccessedBytesMap is `{0:4, 4:4, 8:4, 40:4}`. |
||
| 3738 | /// AccessedBytesMap is std::map so it is iterated in accending order on |
||
| 3739 | /// key(Offset). So KnownBytes will be updated like this: |
||
| 3740 | /// |
||
| 3741 | /// |Access | KnownBytes |
||
| 3742 | /// |(0, 4)| 0 -> 4 |
||
| 3743 | /// |(4, 4)| 4 -> 8 |
||
| 3744 | /// |(8, 4)| 8 -> 12 |
||
| 3745 | /// |(40, 4) | 12 (break) |
||
| 3746 | void computeKnownDerefBytesFromAccessedMap() { |
||
| 3747 | int64_t KnownBytes = DerefBytesState.getKnown(); |
||
| 3748 | for (auto &Access : AccessedBytesMap) { |
||
| 3749 | if (KnownBytes < Access.first) |
||
| 3750 | break; |
||
| 3751 | KnownBytes = std::max(KnownBytes, Access.first + (int64_t)Access.second); |
||
| 3752 | } |
||
| 3753 | |||
| 3754 | DerefBytesState.takeKnownMaximum(KnownBytes); |
||
| 3755 | } |
||
| 3756 | |||
| 3757 | /// State representing that whether the value is globaly dereferenceable. |
||
| 3758 | BooleanState GlobalState; |
||
| 3759 | |||
| 3760 | /// See AbstractState::isValidState() |
||
| 3761 | bool isValidState() const override { return DerefBytesState.isValidState(); } |
||
| 3762 | |||
| 3763 | /// See AbstractState::isAtFixpoint() |
||
| 3764 | bool isAtFixpoint() const override { |
||
| 3765 | return !isValidState() || |
||
| 3766 | (DerefBytesState.isAtFixpoint() && GlobalState.isAtFixpoint()); |
||
| 3767 | } |
||
| 3768 | |||
| 3769 | /// See AbstractState::indicateOptimisticFixpoint(...) |
||
| 3770 | ChangeStatus indicateOptimisticFixpoint() override { |
||
| 3771 | DerefBytesState.indicateOptimisticFixpoint(); |
||
| 3772 | GlobalState.indicateOptimisticFixpoint(); |
||
| 3773 | return ChangeStatus::UNCHANGED; |
||
| 3774 | } |
||
| 3775 | |||
| 3776 | /// See AbstractState::indicatePessimisticFixpoint(...) |
||
| 3777 | ChangeStatus indicatePessimisticFixpoint() override { |
||
| 3778 | DerefBytesState.indicatePessimisticFixpoint(); |
||
| 3779 | GlobalState.indicatePessimisticFixpoint(); |
||
| 3780 | return ChangeStatus::CHANGED; |
||
| 3781 | } |
||
| 3782 | |||
| 3783 | /// Update known dereferenceable bytes. |
||
| 3784 | void takeKnownDerefBytesMaximum(uint64_t Bytes) { |
||
| 3785 | DerefBytesState.takeKnownMaximum(Bytes); |
||
| 3786 | |||
| 3787 | // Known bytes might increase. |
||
| 3788 | computeKnownDerefBytesFromAccessedMap(); |
||
| 3789 | } |
||
| 3790 | |||
| 3791 | /// Update assumed dereferenceable bytes. |
||
| 3792 | void takeAssumedDerefBytesMinimum(uint64_t Bytes) { |
||
| 3793 | DerefBytesState.takeAssumedMinimum(Bytes); |
||
| 3794 | } |
||
| 3795 | |||
| 3796 | /// Add accessed bytes to the map. |
||
| 3797 | void addAccessedBytes(int64_t Offset, uint64_t Size) { |
||
| 3798 | uint64_t &AccessedBytes = AccessedBytesMap[Offset]; |
||
| 3799 | AccessedBytes = std::max(AccessedBytes, Size); |
||
| 3800 | |||
| 3801 | // Known bytes might increase. |
||
| 3802 | computeKnownDerefBytesFromAccessedMap(); |
||
| 3803 | } |
||
| 3804 | |||
| 3805 | /// Equality for DerefState. |
||
| 3806 | bool operator==(const DerefState &R) const { |
||
| 3807 | return this->DerefBytesState == R.DerefBytesState && |
||
| 3808 | this->GlobalState == R.GlobalState; |
||
| 3809 | } |
||
| 3810 | |||
| 3811 | /// Inequality for DerefState. |
||
| 3812 | bool operator!=(const DerefState &R) const { return !(*this == R); } |
||
| 3813 | |||
| 3814 | /// See IntegerStateBase::operator^= |
||
| 3815 | DerefState operator^=(const DerefState &R) { |
||
| 3816 | DerefBytesState ^= R.DerefBytesState; |
||
| 3817 | GlobalState ^= R.GlobalState; |
||
| 3818 | return *this; |
||
| 3819 | } |
||
| 3820 | |||
| 3821 | /// See IntegerStateBase::operator+= |
||
| 3822 | DerefState operator+=(const DerefState &R) { |
||
| 3823 | DerefBytesState += R.DerefBytesState; |
||
| 3824 | GlobalState += R.GlobalState; |
||
| 3825 | return *this; |
||
| 3826 | } |
||
| 3827 | |||
| 3828 | /// See IntegerStateBase::operator&= |
||
| 3829 | DerefState operator&=(const DerefState &R) { |
||
| 3830 | DerefBytesState &= R.DerefBytesState; |
||
| 3831 | GlobalState &= R.GlobalState; |
||
| 3832 | return *this; |
||
| 3833 | } |
||
| 3834 | |||
| 3835 | /// See IntegerStateBase::operator|= |
||
| 3836 | DerefState operator|=(const DerefState &R) { |
||
| 3837 | DerefBytesState |= R.DerefBytesState; |
||
| 3838 | GlobalState |= R.GlobalState; |
||
| 3839 | return *this; |
||
| 3840 | } |
||
| 3841 | |||
| 3842 | protected: |
||
| 3843 | const AANonNull *NonNullAA = nullptr; |
||
| 3844 | }; |
||
| 3845 | |||
| 3846 | /// An abstract interface for all dereferenceable attribute. |
||
| 3847 | struct AADereferenceable |
||
| 3848 | : public IRAttribute<Attribute::Dereferenceable, |
||
| 3849 | StateWrapper<DerefState, AbstractAttribute>> { |
||
| 3850 | AADereferenceable(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3851 | |||
| 3852 | /// Return true if we assume that the underlying value is nonnull. |
||
| 3853 | bool isAssumedNonNull() const { |
||
| 3854 | return NonNullAA && NonNullAA->isAssumedNonNull(); |
||
| 3855 | } |
||
| 3856 | |||
| 3857 | /// Return true if we know that the underlying value is nonnull. |
||
| 3858 | bool isKnownNonNull() const { |
||
| 3859 | return NonNullAA && NonNullAA->isKnownNonNull(); |
||
| 3860 | } |
||
| 3861 | |||
| 3862 | /// Return true if we assume that underlying value is |
||
| 3863 | /// dereferenceable(_or_null) globally. |
||
| 3864 | bool isAssumedGlobal() const { return GlobalState.getAssumed(); } |
||
| 3865 | |||
| 3866 | /// Return true if we know that underlying value is |
||
| 3867 | /// dereferenceable(_or_null) globally. |
||
| 3868 | bool isKnownGlobal() const { return GlobalState.getKnown(); } |
||
| 3869 | |||
| 3870 | /// Return assumed dereferenceable bytes. |
||
| 3871 | uint32_t getAssumedDereferenceableBytes() const { |
||
| 3872 | return DerefBytesState.getAssumed(); |
||
| 3873 | } |
||
| 3874 | |||
| 3875 | /// Return known dereferenceable bytes. |
||
| 3876 | uint32_t getKnownDereferenceableBytes() const { |
||
| 3877 | return DerefBytesState.getKnown(); |
||
| 3878 | } |
||
| 3879 | |||
| 3880 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3881 | static AADereferenceable &createForPosition(const IRPosition &IRP, |
||
| 3882 | Attributor &A); |
||
| 3883 | |||
| 3884 | /// See AbstractAttribute::getName() |
||
| 3885 | const std::string getName() const override { return "AADereferenceable"; } |
||
| 3886 | |||
| 3887 | /// See AbstractAttribute::getIdAddr() |
||
| 3888 | const char *getIdAddr() const override { return &ID; } |
||
| 3889 | |||
| 3890 | /// This function should return true if the type of the \p AA is |
||
| 3891 | /// AADereferenceable |
||
| 3892 | static bool classof(const AbstractAttribute *AA) { |
||
| 3893 | return (AA->getIdAddr() == &ID); |
||
| 3894 | } |
||
| 3895 | |||
| 3896 | /// Unique ID (due to the unique address) |
||
| 3897 | static const char ID; |
||
| 3898 | }; |
||
| 3899 | |||
| 3900 | using AAAlignmentStateType = |
||
| 3901 | IncIntegerState<uint64_t, Value::MaximumAlignment, 1>; |
||
| 3902 | /// An abstract interface for all align attributes. |
||
| 3903 | struct AAAlign : public IRAttribute< |
||
| 3904 | Attribute::Alignment, |
||
| 3905 | StateWrapper<AAAlignmentStateType, AbstractAttribute>> { |
||
| 3906 | AAAlign(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3907 | |||
| 3908 | /// Return assumed alignment. |
||
| 3909 | Align getAssumedAlign() const { return Align(getAssumed()); } |
||
| 3910 | |||
| 3911 | /// Return known alignment. |
||
| 3912 | Align getKnownAlign() const { return Align(getKnown()); } |
||
| 3913 | |||
| 3914 | /// See AbstractAttribute::getName() |
||
| 3915 | const std::string getName() const override { return "AAAlign"; } |
||
| 3916 | |||
| 3917 | /// See AbstractAttribute::getIdAddr() |
||
| 3918 | const char *getIdAddr() const override { return &ID; } |
||
| 3919 | |||
| 3920 | /// This function should return true if the type of the \p AA is AAAlign |
||
| 3921 | static bool classof(const AbstractAttribute *AA) { |
||
| 3922 | return (AA->getIdAddr() == &ID); |
||
| 3923 | } |
||
| 3924 | |||
| 3925 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3926 | static AAAlign &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 3927 | |||
| 3928 | /// Unique ID (due to the unique address) |
||
| 3929 | static const char ID; |
||
| 3930 | }; |
||
| 3931 | |||
| 3932 | /// An abstract interface to track if a value leaves it's defining function |
||
| 3933 | /// instance. |
||
| 3934 | /// TODO: We should make it a ternary AA tracking uniqueness, and uniqueness |
||
| 3935 | /// wrt. the Attributor analysis separately. |
||
| 3936 | struct AAInstanceInfo : public StateWrapper<BooleanState, AbstractAttribute> { |
||
| 3937 | AAInstanceInfo(const IRPosition &IRP, Attributor &A) |
||
| 3938 | : StateWrapper<BooleanState, AbstractAttribute>(IRP) {} |
||
| 3939 | |||
| 3940 | /// Return true if we know that the underlying value is unique in its scope |
||
| 3941 | /// wrt. the Attributor analysis. That means it might not be unique but we can |
||
| 3942 | /// still use pointer equality without risking to represent two instances with |
||
| 3943 | /// one `llvm::Value`. |
||
| 3944 | bool isKnownUniqueForAnalysis() const { return isKnown(); } |
||
| 3945 | |||
| 3946 | /// Return true if we assume that the underlying value is unique in its scope |
||
| 3947 | /// wrt. the Attributor analysis. That means it might not be unique but we can |
||
| 3948 | /// still use pointer equality without risking to represent two instances with |
||
| 3949 | /// one `llvm::Value`. |
||
| 3950 | bool isAssumedUniqueForAnalysis() const { return isAssumed(); } |
||
| 3951 | |||
| 3952 | /// Create an abstract attribute view for the position \p IRP. |
||
| 3953 | static AAInstanceInfo &createForPosition(const IRPosition &IRP, |
||
| 3954 | Attributor &A); |
||
| 3955 | |||
| 3956 | /// See AbstractAttribute::getName() |
||
| 3957 | const std::string getName() const override { return "AAInstanceInfo"; } |
||
| 3958 | |||
| 3959 | /// See AbstractAttribute::getIdAddr() |
||
| 3960 | const char *getIdAddr() const override { return &ID; } |
||
| 3961 | |||
| 3962 | /// This function should return true if the type of the \p AA is |
||
| 3963 | /// AAInstanceInfo |
||
| 3964 | static bool classof(const AbstractAttribute *AA) { |
||
| 3965 | return (AA->getIdAddr() == &ID); |
||
| 3966 | } |
||
| 3967 | |||
| 3968 | /// Unique ID (due to the unique address) |
||
| 3969 | static const char ID; |
||
| 3970 | }; |
||
| 3971 | |||
| 3972 | /// An abstract interface for all nocapture attributes. |
||
| 3973 | struct AANoCapture |
||
| 3974 | : public IRAttribute< |
||
| 3975 | Attribute::NoCapture, |
||
| 3976 | StateWrapper<BitIntegerState<uint16_t, 7, 0>, AbstractAttribute>> { |
||
| 3977 | AANoCapture(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 3978 | |||
| 3979 | /// State encoding bits. A set bit in the state means the property holds. |
||
| 3980 | /// NO_CAPTURE is the best possible state, 0 the worst possible state. |
||
| 3981 | enum { |
||
| 3982 | NOT_CAPTURED_IN_MEM = 1 << 0, |
||
| 3983 | NOT_CAPTURED_IN_INT = 1 << 1, |
||
| 3984 | NOT_CAPTURED_IN_RET = 1 << 2, |
||
| 3985 | |||
| 3986 | /// If we do not capture the value in memory or through integers we can only |
||
| 3987 | /// communicate it back as a derived pointer. |
||
| 3988 | NO_CAPTURE_MAYBE_RETURNED = NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT, |
||
| 3989 | |||
| 3990 | /// If we do not capture the value in memory, through integers, or as a |
||
| 3991 | /// derived pointer we know it is not captured. |
||
| 3992 | NO_CAPTURE = |
||
| 3993 | NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT | NOT_CAPTURED_IN_RET, |
||
| 3994 | }; |
||
| 3995 | |||
| 3996 | /// Return true if we know that the underlying value is not captured in its |
||
| 3997 | /// respective scope. |
||
| 3998 | bool isKnownNoCapture() const { return isKnown(NO_CAPTURE); } |
||
| 3999 | |||
| 4000 | /// Return true if we assume that the underlying value is not captured in its |
||
| 4001 | /// respective scope. |
||
| 4002 | bool isAssumedNoCapture() const { return isAssumed(NO_CAPTURE); } |
||
| 4003 | |||
| 4004 | /// Return true if we know that the underlying value is not captured in its |
||
| 4005 | /// respective scope but we allow it to escape through a "return". |
||
| 4006 | bool isKnownNoCaptureMaybeReturned() const { |
||
| 4007 | return isKnown(NO_CAPTURE_MAYBE_RETURNED); |
||
| 4008 | } |
||
| 4009 | |||
| 4010 | /// Return true if we assume that the underlying value is not captured in its |
||
| 4011 | /// respective scope but we allow it to escape through a "return". |
||
| 4012 | bool isAssumedNoCaptureMaybeReturned() const { |
||
| 4013 | return isAssumed(NO_CAPTURE_MAYBE_RETURNED); |
||
| 4014 | } |
||
| 4015 | |||
| 4016 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4017 | static AANoCapture &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 4018 | |||
| 4019 | /// See AbstractAttribute::getName() |
||
| 4020 | const std::string getName() const override { return "AANoCapture"; } |
||
| 4021 | |||
| 4022 | /// See AbstractAttribute::getIdAddr() |
||
| 4023 | const char *getIdAddr() const override { return &ID; } |
||
| 4024 | |||
| 4025 | /// This function should return true if the type of the \p AA is AANoCapture |
||
| 4026 | static bool classof(const AbstractAttribute *AA) { |
||
| 4027 | return (AA->getIdAddr() == &ID); |
||
| 4028 | } |
||
| 4029 | |||
| 4030 | /// Unique ID (due to the unique address) |
||
| 4031 | static const char ID; |
||
| 4032 | }; |
||
| 4033 | |||
| 4034 | struct ValueSimplifyStateType : public AbstractState { |
||
| 4035 | |||
| 4036 | ValueSimplifyStateType(Type *Ty) : Ty(Ty) {} |
||
| 4037 | |||
| 4038 | static ValueSimplifyStateType getBestState(Type *Ty) { |
||
| 4039 | return ValueSimplifyStateType(Ty); |
||
| 4040 | } |
||
| 4041 | static ValueSimplifyStateType getBestState(const ValueSimplifyStateType &VS) { |
||
| 4042 | return getBestState(VS.Ty); |
||
| 4043 | } |
||
| 4044 | |||
| 4045 | /// Return the worst possible representable state. |
||
| 4046 | static ValueSimplifyStateType getWorstState(Type *Ty) { |
||
| 4047 | ValueSimplifyStateType DS(Ty); |
||
| 4048 | DS.indicatePessimisticFixpoint(); |
||
| 4049 | return DS; |
||
| 4050 | } |
||
| 4051 | static ValueSimplifyStateType |
||
| 4052 | getWorstState(const ValueSimplifyStateType &VS) { |
||
| 4053 | return getWorstState(VS.Ty); |
||
| 4054 | } |
||
| 4055 | |||
| 4056 | /// See AbstractState::isValidState(...) |
||
| 4057 | bool isValidState() const override { return BS.isValidState(); } |
||
| 4058 | |||
| 4059 | /// See AbstractState::isAtFixpoint(...) |
||
| 4060 | bool isAtFixpoint() const override { return BS.isAtFixpoint(); } |
||
| 4061 | |||
| 4062 | /// Return the assumed state encoding. |
||
| 4063 | ValueSimplifyStateType getAssumed() { return *this; } |
||
| 4064 | const ValueSimplifyStateType &getAssumed() const { return *this; } |
||
| 4065 | |||
| 4066 | /// See AbstractState::indicatePessimisticFixpoint(...) |
||
| 4067 | ChangeStatus indicatePessimisticFixpoint() override { |
||
| 4068 | return BS.indicatePessimisticFixpoint(); |
||
| 4069 | } |
||
| 4070 | |||
| 4071 | /// See AbstractState::indicateOptimisticFixpoint(...) |
||
| 4072 | ChangeStatus indicateOptimisticFixpoint() override { |
||
| 4073 | return BS.indicateOptimisticFixpoint(); |
||
| 4074 | } |
||
| 4075 | |||
| 4076 | /// "Clamp" this state with \p PVS. |
||
| 4077 | ValueSimplifyStateType operator^=(const ValueSimplifyStateType &VS) { |
||
| 4078 | BS ^= VS.BS; |
||
| 4079 | unionAssumed(VS.SimplifiedAssociatedValue); |
||
| 4080 | return *this; |
||
| 4081 | } |
||
| 4082 | |||
| 4083 | bool operator==(const ValueSimplifyStateType &RHS) const { |
||
| 4084 | if (isValidState() != RHS.isValidState()) |
||
| 4085 | return false; |
||
| 4086 | if (!isValidState() && !RHS.isValidState()) |
||
| 4087 | return true; |
||
| 4088 | return SimplifiedAssociatedValue == RHS.SimplifiedAssociatedValue; |
||
| 4089 | } |
||
| 4090 | |||
| 4091 | protected: |
||
| 4092 | /// The type of the original value. |
||
| 4093 | Type *Ty; |
||
| 4094 | |||
| 4095 | /// Merge \p Other into the currently assumed simplified value |
||
| 4096 | bool unionAssumed(std::optional<Value *> Other); |
||
| 4097 | |||
| 4098 | /// Helper to track validity and fixpoint |
||
| 4099 | BooleanState BS; |
||
| 4100 | |||
| 4101 | /// An assumed simplified value. Initially, it is set to std::nullopt, which |
||
| 4102 | /// means that the value is not clear under current assumption. If in the |
||
| 4103 | /// pessimistic state, getAssumedSimplifiedValue doesn't return this value but |
||
| 4104 | /// returns orignal associated value. |
||
| 4105 | std::optional<Value *> SimplifiedAssociatedValue; |
||
| 4106 | }; |
||
| 4107 | |||
| 4108 | /// An abstract interface for value simplify abstract attribute. |
||
| 4109 | struct AAValueSimplify |
||
| 4110 | : public StateWrapper<ValueSimplifyStateType, AbstractAttribute, Type *> { |
||
| 4111 | using Base = StateWrapper<ValueSimplifyStateType, AbstractAttribute, Type *>; |
||
| 4112 | AAValueSimplify(const IRPosition &IRP, Attributor &A) |
||
| 4113 | : Base(IRP, IRP.getAssociatedType()) {} |
||
| 4114 | |||
| 4115 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4116 | static AAValueSimplify &createForPosition(const IRPosition &IRP, |
||
| 4117 | Attributor &A); |
||
| 4118 | |||
| 4119 | /// See AbstractAttribute::getName() |
||
| 4120 | const std::string getName() const override { return "AAValueSimplify"; } |
||
| 4121 | |||
| 4122 | /// See AbstractAttribute::getIdAddr() |
||
| 4123 | const char *getIdAddr() const override { return &ID; } |
||
| 4124 | |||
| 4125 | /// This function should return true if the type of the \p AA is |
||
| 4126 | /// AAValueSimplify |
||
| 4127 | static bool classof(const AbstractAttribute *AA) { |
||
| 4128 | return (AA->getIdAddr() == &ID); |
||
| 4129 | } |
||
| 4130 | |||
| 4131 | /// Unique ID (due to the unique address) |
||
| 4132 | static const char ID; |
||
| 4133 | |||
| 4134 | private: |
||
| 4135 | /// Return an assumed simplified value if a single candidate is found. If |
||
| 4136 | /// there cannot be one, return original value. If it is not clear yet, return |
||
| 4137 | /// std::nullopt. |
||
| 4138 | /// |
||
| 4139 | /// Use `Attributor::getAssumedSimplified` for value simplification. |
||
| 4140 | virtual std::optional<Value *> |
||
| 4141 | getAssumedSimplifiedValue(Attributor &A) const = 0; |
||
| 4142 | |||
| 4143 | friend struct Attributor; |
||
| 4144 | }; |
||
| 4145 | |||
| 4146 | struct AAHeapToStack : public StateWrapper<BooleanState, AbstractAttribute> { |
||
| 4147 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
||
| 4148 | AAHeapToStack(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
||
| 4149 | |||
| 4150 | /// Returns true if HeapToStack conversion is assumed to be possible. |
||
| 4151 | virtual bool isAssumedHeapToStack(const CallBase &CB) const = 0; |
||
| 4152 | |||
| 4153 | /// Returns true if HeapToStack conversion is assumed and the CB is a |
||
| 4154 | /// callsite to a free operation to be removed. |
||
| 4155 | virtual bool isAssumedHeapToStackRemovedFree(CallBase &CB) const = 0; |
||
| 4156 | |||
| 4157 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4158 | static AAHeapToStack &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 4159 | |||
| 4160 | /// See AbstractAttribute::getName() |
||
| 4161 | const std::string getName() const override { return "AAHeapToStack"; } |
||
| 4162 | |||
| 4163 | /// See AbstractAttribute::getIdAddr() |
||
| 4164 | const char *getIdAddr() const override { return &ID; } |
||
| 4165 | |||
| 4166 | /// This function should return true if the type of the \p AA is AAHeapToStack |
||
| 4167 | static bool classof(const AbstractAttribute *AA) { |
||
| 4168 | return (AA->getIdAddr() == &ID); |
||
| 4169 | } |
||
| 4170 | |||
| 4171 | /// Unique ID (due to the unique address) |
||
| 4172 | static const char ID; |
||
| 4173 | }; |
||
| 4174 | |||
| 4175 | /// An abstract interface for privatizability. |
||
| 4176 | /// |
||
| 4177 | /// A pointer is privatizable if it can be replaced by a new, private one. |
||
| 4178 | /// Privatizing pointer reduces the use count, interaction between unrelated |
||
| 4179 | /// code parts. |
||
| 4180 | /// |
||
| 4181 | /// In order for a pointer to be privatizable its value cannot be observed |
||
| 4182 | /// (=nocapture), it is (for now) not written (=readonly & noalias), we know |
||
| 4183 | /// what values are necessary to make the private copy look like the original |
||
| 4184 | /// one, and the values we need can be loaded (=dereferenceable). |
||
| 4185 | struct AAPrivatizablePtr |
||
| 4186 | : public StateWrapper<BooleanState, AbstractAttribute> { |
||
| 4187 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
||
| 4188 | AAPrivatizablePtr(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
||
| 4189 | |||
| 4190 | /// Returns true if pointer privatization is assumed to be possible. |
||
| 4191 | bool isAssumedPrivatizablePtr() const { return getAssumed(); } |
||
| 4192 | |||
| 4193 | /// Returns true if pointer privatization is known to be possible. |
||
| 4194 | bool isKnownPrivatizablePtr() const { return getKnown(); } |
||
| 4195 | |||
| 4196 | /// Return the type we can choose for a private copy of the underlying |
||
| 4197 | /// value. std::nullopt means it is not clear yet, nullptr means there is |
||
| 4198 | /// none. |
||
| 4199 | virtual std::optional<Type *> getPrivatizableType() const = 0; |
||
| 4200 | |||
| 4201 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4202 | static AAPrivatizablePtr &createForPosition(const IRPosition &IRP, |
||
| 4203 | Attributor &A); |
||
| 4204 | |||
| 4205 | /// See AbstractAttribute::getName() |
||
| 4206 | const std::string getName() const override { return "AAPrivatizablePtr"; } |
||
| 4207 | |||
| 4208 | /// See AbstractAttribute::getIdAddr() |
||
| 4209 | const char *getIdAddr() const override { return &ID; } |
||
| 4210 | |||
| 4211 | /// This function should return true if the type of the \p AA is |
||
| 4212 | /// AAPricatizablePtr |
||
| 4213 | static bool classof(const AbstractAttribute *AA) { |
||
| 4214 | return (AA->getIdAddr() == &ID); |
||
| 4215 | } |
||
| 4216 | |||
| 4217 | /// Unique ID (due to the unique address) |
||
| 4218 | static const char ID; |
||
| 4219 | }; |
||
| 4220 | |||
| 4221 | /// An abstract interface for memory access kind related attributes |
||
| 4222 | /// (readnone/readonly/writeonly). |
||
| 4223 | struct AAMemoryBehavior |
||
| 4224 | : public IRAttribute< |
||
| 4225 | Attribute::ReadNone, |
||
| 4226 | StateWrapper<BitIntegerState<uint8_t, 3>, AbstractAttribute>> { |
||
| 4227 | AAMemoryBehavior(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 4228 | |||
| 4229 | /// State encoding bits. A set bit in the state means the property holds. |
||
| 4230 | /// BEST_STATE is the best possible state, 0 the worst possible state. |
||
| 4231 | enum { |
||
| 4232 | NO_READS = 1 << 0, |
||
| 4233 | NO_WRITES = 1 << 1, |
||
| 4234 | NO_ACCESSES = NO_READS | NO_WRITES, |
||
| 4235 | |||
| 4236 | BEST_STATE = NO_ACCESSES, |
||
| 4237 | }; |
||
| 4238 | static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value"); |
||
| 4239 | |||
| 4240 | /// Return true if we know that the underlying value is not read or accessed |
||
| 4241 | /// in its respective scope. |
||
| 4242 | bool isKnownReadNone() const { return isKnown(NO_ACCESSES); } |
||
| 4243 | |||
| 4244 | /// Return true if we assume that the underlying value is not read or accessed |
||
| 4245 | /// in its respective scope. |
||
| 4246 | bool isAssumedReadNone() const { return isAssumed(NO_ACCESSES); } |
||
| 4247 | |||
| 4248 | /// Return true if we know that the underlying value is not accessed |
||
| 4249 | /// (=written) in its respective scope. |
||
| 4250 | bool isKnownReadOnly() const { return isKnown(NO_WRITES); } |
||
| 4251 | |||
| 4252 | /// Return true if we assume that the underlying value is not accessed |
||
| 4253 | /// (=written) in its respective scope. |
||
| 4254 | bool isAssumedReadOnly() const { return isAssumed(NO_WRITES); } |
||
| 4255 | |||
| 4256 | /// Return true if we know that the underlying value is not read in its |
||
| 4257 | /// respective scope. |
||
| 4258 | bool isKnownWriteOnly() const { return isKnown(NO_READS); } |
||
| 4259 | |||
| 4260 | /// Return true if we assume that the underlying value is not read in its |
||
| 4261 | /// respective scope. |
||
| 4262 | bool isAssumedWriteOnly() const { return isAssumed(NO_READS); } |
||
| 4263 | |||
| 4264 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4265 | static AAMemoryBehavior &createForPosition(const IRPosition &IRP, |
||
| 4266 | Attributor &A); |
||
| 4267 | |||
| 4268 | /// See AbstractAttribute::getName() |
||
| 4269 | const std::string getName() const override { return "AAMemoryBehavior"; } |
||
| 4270 | |||
| 4271 | /// See AbstractAttribute::getIdAddr() |
||
| 4272 | const char *getIdAddr() const override { return &ID; } |
||
| 4273 | |||
| 4274 | /// This function should return true if the type of the \p AA is |
||
| 4275 | /// AAMemoryBehavior |
||
| 4276 | static bool classof(const AbstractAttribute *AA) { |
||
| 4277 | return (AA->getIdAddr() == &ID); |
||
| 4278 | } |
||
| 4279 | |||
| 4280 | /// Unique ID (due to the unique address) |
||
| 4281 | static const char ID; |
||
| 4282 | }; |
||
| 4283 | |||
| 4284 | /// An abstract interface for all memory location attributes |
||
| 4285 | /// (readnone/argmemonly/inaccessiblememonly/inaccessibleorargmemonly). |
||
| 4286 | struct AAMemoryLocation |
||
| 4287 | : public IRAttribute< |
||
| 4288 | Attribute::ReadNone, |
||
| 4289 | StateWrapper<BitIntegerState<uint32_t, 511>, AbstractAttribute>> { |
||
| 4290 | using MemoryLocationsKind = StateType::base_t; |
||
| 4291 | |||
| 4292 | AAMemoryLocation(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 4293 | |||
| 4294 | /// Encoding of different locations that could be accessed by a memory |
||
| 4295 | /// access. |
||
| 4296 | enum { |
||
| 4297 | ALL_LOCATIONS = 0, |
||
| 4298 | NO_LOCAL_MEM = 1 << 0, |
||
| 4299 | NO_CONST_MEM = 1 << 1, |
||
| 4300 | NO_GLOBAL_INTERNAL_MEM = 1 << 2, |
||
| 4301 | NO_GLOBAL_EXTERNAL_MEM = 1 << 3, |
||
| 4302 | NO_GLOBAL_MEM = NO_GLOBAL_INTERNAL_MEM | NO_GLOBAL_EXTERNAL_MEM, |
||
| 4303 | NO_ARGUMENT_MEM = 1 << 4, |
||
| 4304 | NO_INACCESSIBLE_MEM = 1 << 5, |
||
| 4305 | NO_MALLOCED_MEM = 1 << 6, |
||
| 4306 | NO_UNKOWN_MEM = 1 << 7, |
||
| 4307 | NO_LOCATIONS = NO_LOCAL_MEM | NO_CONST_MEM | NO_GLOBAL_INTERNAL_MEM | |
||
| 4308 | NO_GLOBAL_EXTERNAL_MEM | NO_ARGUMENT_MEM | |
||
| 4309 | NO_INACCESSIBLE_MEM | NO_MALLOCED_MEM | NO_UNKOWN_MEM, |
||
| 4310 | |||
| 4311 | // Helper bit to track if we gave up or not. |
||
| 4312 | VALID_STATE = NO_LOCATIONS + 1, |
||
| 4313 | |||
| 4314 | BEST_STATE = NO_LOCATIONS | VALID_STATE, |
||
| 4315 | }; |
||
| 4316 | static_assert(BEST_STATE == getBestState(), "Unexpected BEST_STATE value"); |
||
| 4317 | |||
| 4318 | /// Return true if we know that the associated functions has no observable |
||
| 4319 | /// accesses. |
||
| 4320 | bool isKnownReadNone() const { return isKnown(NO_LOCATIONS); } |
||
| 4321 | |||
| 4322 | /// Return true if we assume that the associated functions has no observable |
||
| 4323 | /// accesses. |
||
| 4324 | bool isAssumedReadNone() const { |
||
| 4325 | return isAssumed(NO_LOCATIONS) || isAssumedStackOnly(); |
||
| 4326 | } |
||
| 4327 | |||
| 4328 | /// Return true if we know that the associated functions has at most |
||
| 4329 | /// local/stack accesses. |
||
| 4330 | bool isKnowStackOnly() const { |
||
| 4331 | return isKnown(inverseLocation(NO_LOCAL_MEM, true, true)); |
||
| 4332 | } |
||
| 4333 | |||
| 4334 | /// Return true if we assume that the associated functions has at most |
||
| 4335 | /// local/stack accesses. |
||
| 4336 | bool isAssumedStackOnly() const { |
||
| 4337 | return isAssumed(inverseLocation(NO_LOCAL_MEM, true, true)); |
||
| 4338 | } |
||
| 4339 | |||
| 4340 | /// Return true if we know that the underlying value will only access |
||
| 4341 | /// inaccesible memory only (see Attribute::InaccessibleMemOnly). |
||
| 4342 | bool isKnownInaccessibleMemOnly() const { |
||
| 4343 | return isKnown(inverseLocation(NO_INACCESSIBLE_MEM, true, true)); |
||
| 4344 | } |
||
| 4345 | |||
| 4346 | /// Return true if we assume that the underlying value will only access |
||
| 4347 | /// inaccesible memory only (see Attribute::InaccessibleMemOnly). |
||
| 4348 | bool isAssumedInaccessibleMemOnly() const { |
||
| 4349 | return isAssumed(inverseLocation(NO_INACCESSIBLE_MEM, true, true)); |
||
| 4350 | } |
||
| 4351 | |||
| 4352 | /// Return true if we know that the underlying value will only access |
||
| 4353 | /// argument pointees (see Attribute::ArgMemOnly). |
||
| 4354 | bool isKnownArgMemOnly() const { |
||
| 4355 | return isKnown(inverseLocation(NO_ARGUMENT_MEM, true, true)); |
||
| 4356 | } |
||
| 4357 | |||
| 4358 | /// Return true if we assume that the underlying value will only access |
||
| 4359 | /// argument pointees (see Attribute::ArgMemOnly). |
||
| 4360 | bool isAssumedArgMemOnly() const { |
||
| 4361 | return isAssumed(inverseLocation(NO_ARGUMENT_MEM, true, true)); |
||
| 4362 | } |
||
| 4363 | |||
| 4364 | /// Return true if we know that the underlying value will only access |
||
| 4365 | /// inaccesible memory or argument pointees (see |
||
| 4366 | /// Attribute::InaccessibleOrArgMemOnly). |
||
| 4367 | bool isKnownInaccessibleOrArgMemOnly() const { |
||
| 4368 | return isKnown( |
||
| 4369 | inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true)); |
||
| 4370 | } |
||
| 4371 | |||
| 4372 | /// Return true if we assume that the underlying value will only access |
||
| 4373 | /// inaccesible memory or argument pointees (see |
||
| 4374 | /// Attribute::InaccessibleOrArgMemOnly). |
||
| 4375 | bool isAssumedInaccessibleOrArgMemOnly() const { |
||
| 4376 | return isAssumed( |
||
| 4377 | inverseLocation(NO_INACCESSIBLE_MEM | NO_ARGUMENT_MEM, true, true)); |
||
| 4378 | } |
||
| 4379 | |||
| 4380 | /// Return true if the underlying value may access memory through arguement |
||
| 4381 | /// pointers of the associated function, if any. |
||
| 4382 | bool mayAccessArgMem() const { return !isAssumed(NO_ARGUMENT_MEM); } |
||
| 4383 | |||
| 4384 | /// Return true if only the memory locations specififed by \p MLK are assumed |
||
| 4385 | /// to be accessed by the associated function. |
||
| 4386 | bool isAssumedSpecifiedMemOnly(MemoryLocationsKind MLK) const { |
||
| 4387 | return isAssumed(MLK); |
||
| 4388 | } |
||
| 4389 | |||
| 4390 | /// Return the locations that are assumed to be not accessed by the associated |
||
| 4391 | /// function, if any. |
||
| 4392 | MemoryLocationsKind getAssumedNotAccessedLocation() const { |
||
| 4393 | return getAssumed(); |
||
| 4394 | } |
||
| 4395 | |||
| 4396 | /// Return the inverse of location \p Loc, thus for NO_XXX the return |
||
| 4397 | /// describes ONLY_XXX. The flags \p AndLocalMem and \p AndConstMem determine |
||
| 4398 | /// if local (=stack) and constant memory are allowed as well. Most of the |
||
| 4399 | /// time we do want them to be included, e.g., argmemonly allows accesses via |
||
| 4400 | /// argument pointers or local or constant memory accesses. |
||
| 4401 | static MemoryLocationsKind |
||
| 4402 | inverseLocation(MemoryLocationsKind Loc, bool AndLocalMem, bool AndConstMem) { |
||
| 4403 | return NO_LOCATIONS & ~(Loc | (AndLocalMem ? NO_LOCAL_MEM : 0) | |
||
| 4404 | (AndConstMem ? NO_CONST_MEM : 0)); |
||
| 4405 | }; |
||
| 4406 | |||
| 4407 | /// Return the locations encoded by \p MLK as a readable string. |
||
| 4408 | static std::string getMemoryLocationsAsStr(MemoryLocationsKind MLK); |
||
| 4409 | |||
| 4410 | /// Simple enum to distinguish read/write/read-write accesses. |
||
| 4411 | enum AccessKind { |
||
| 4412 | NONE = 0, |
||
| 4413 | READ = 1 << 0, |
||
| 4414 | WRITE = 1 << 1, |
||
| 4415 | READ_WRITE = READ | WRITE, |
||
| 4416 | }; |
||
| 4417 | |||
| 4418 | /// Check \p Pred on all accesses to the memory kinds specified by \p MLK. |
||
| 4419 | /// |
||
| 4420 | /// This method will evaluate \p Pred on all accesses (access instruction + |
||
| 4421 | /// underlying accessed memory pointer) and it will return true if \p Pred |
||
| 4422 | /// holds every time. |
||
| 4423 | virtual bool checkForAllAccessesToMemoryKind( |
||
| 4424 | function_ref<bool(const Instruction *, const Value *, AccessKind, |
||
| 4425 | MemoryLocationsKind)> |
||
| 4426 | Pred, |
||
| 4427 | MemoryLocationsKind MLK) const = 0; |
||
| 4428 | |||
| 4429 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4430 | static AAMemoryLocation &createForPosition(const IRPosition &IRP, |
||
| 4431 | Attributor &A); |
||
| 4432 | |||
| 4433 | /// See AbstractState::getAsStr(). |
||
| 4434 | const std::string getAsStr() const override { |
||
| 4435 | return getMemoryLocationsAsStr(getAssumedNotAccessedLocation()); |
||
| 4436 | } |
||
| 4437 | |||
| 4438 | /// See AbstractAttribute::getName() |
||
| 4439 | const std::string getName() const override { return "AAMemoryLocation"; } |
||
| 4440 | |||
| 4441 | /// See AbstractAttribute::getIdAddr() |
||
| 4442 | const char *getIdAddr() const override { return &ID; } |
||
| 4443 | |||
| 4444 | /// This function should return true if the type of the \p AA is |
||
| 4445 | /// AAMemoryLocation |
||
| 4446 | static bool classof(const AbstractAttribute *AA) { |
||
| 4447 | return (AA->getIdAddr() == &ID); |
||
| 4448 | } |
||
| 4449 | |||
| 4450 | /// Unique ID (due to the unique address) |
||
| 4451 | static const char ID; |
||
| 4452 | }; |
||
| 4453 | |||
| 4454 | /// An abstract interface for range value analysis. |
||
| 4455 | struct AAValueConstantRange |
||
| 4456 | : public StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t> { |
||
| 4457 | using Base = StateWrapper<IntegerRangeState, AbstractAttribute, uint32_t>; |
||
| 4458 | AAValueConstantRange(const IRPosition &IRP, Attributor &A) |
||
| 4459 | : Base(IRP, IRP.getAssociatedType()->getIntegerBitWidth()) {} |
||
| 4460 | |||
| 4461 | /// See AbstractAttribute::getState(...). |
||
| 4462 | IntegerRangeState &getState() override { return *this; } |
||
| 4463 | const IntegerRangeState &getState() const override { return *this; } |
||
| 4464 | |||
| 4465 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4466 | static AAValueConstantRange &createForPosition(const IRPosition &IRP, |
||
| 4467 | Attributor &A); |
||
| 4468 | |||
| 4469 | /// Return an assumed range for the associated value a program point \p CtxI. |
||
| 4470 | /// If \p I is nullptr, simply return an assumed range. |
||
| 4471 | virtual ConstantRange |
||
| 4472 | getAssumedConstantRange(Attributor &A, |
||
| 4473 | const Instruction *CtxI = nullptr) const = 0; |
||
| 4474 | |||
| 4475 | /// Return a known range for the associated value at a program point \p CtxI. |
||
| 4476 | /// If \p I is nullptr, simply return a known range. |
||
| 4477 | virtual ConstantRange |
||
| 4478 | getKnownConstantRange(Attributor &A, |
||
| 4479 | const Instruction *CtxI = nullptr) const = 0; |
||
| 4480 | |||
| 4481 | /// Return an assumed constant for the associated value a program point \p |
||
| 4482 | /// CtxI. |
||
| 4483 | std::optional<Constant *> |
||
| 4484 | getAssumedConstant(Attributor &A, const Instruction *CtxI = nullptr) const { |
||
| 4485 | ConstantRange RangeV = getAssumedConstantRange(A, CtxI); |
||
| 4486 | if (auto *C = RangeV.getSingleElement()) { |
||
| 4487 | Type *Ty = getAssociatedValue().getType(); |
||
| 4488 | return cast_or_null<Constant>( |
||
| 4489 | AA::getWithType(*ConstantInt::get(Ty->getContext(), *C), *Ty)); |
||
| 4490 | } |
||
| 4491 | if (RangeV.isEmptySet()) |
||
| 4492 | return std::nullopt; |
||
| 4493 | return nullptr; |
||
| 4494 | } |
||
| 4495 | |||
| 4496 | /// See AbstractAttribute::getName() |
||
| 4497 | const std::string getName() const override { return "AAValueConstantRange"; } |
||
| 4498 | |||
| 4499 | /// See AbstractAttribute::getIdAddr() |
||
| 4500 | const char *getIdAddr() const override { return &ID; } |
||
| 4501 | |||
| 4502 | /// This function should return true if the type of the \p AA is |
||
| 4503 | /// AAValueConstantRange |
||
| 4504 | static bool classof(const AbstractAttribute *AA) { |
||
| 4505 | return (AA->getIdAddr() == &ID); |
||
| 4506 | } |
||
| 4507 | |||
| 4508 | /// Unique ID (due to the unique address) |
||
| 4509 | static const char ID; |
||
| 4510 | }; |
||
| 4511 | |||
| 4512 | /// A class for a set state. |
||
| 4513 | /// The assumed boolean state indicates whether the corresponding set is full |
||
| 4514 | /// set or not. If the assumed state is false, this is the worst state. The |
||
| 4515 | /// worst state (invalid state) of set of potential values is when the set |
||
| 4516 | /// contains every possible value (i.e. we cannot in any way limit the value |
||
| 4517 | /// that the target position can take). That never happens naturally, we only |
||
| 4518 | /// force it. As for the conditions under which we force it, see |
||
| 4519 | /// AAPotentialConstantValues. |
||
| 4520 | template <typename MemberTy> struct PotentialValuesState : AbstractState { |
||
| 4521 | using SetTy = SmallSetVector<MemberTy, 8>; |
||
| 4522 | |||
| 4523 | PotentialValuesState() : IsValidState(true), UndefIsContained(false) {} |
||
| 4524 | |||
| 4525 | PotentialValuesState(bool IsValid) |
||
| 4526 | : IsValidState(IsValid), UndefIsContained(false) {} |
||
| 4527 | |||
| 4528 | /// See AbstractState::isValidState(...) |
||
| 4529 | bool isValidState() const override { return IsValidState.isValidState(); } |
||
| 4530 | |||
| 4531 | /// See AbstractState::isAtFixpoint(...) |
||
| 4532 | bool isAtFixpoint() const override { return IsValidState.isAtFixpoint(); } |
||
| 4533 | |||
| 4534 | /// See AbstractState::indicatePessimisticFixpoint(...) |
||
| 4535 | ChangeStatus indicatePessimisticFixpoint() override { |
||
| 4536 | return IsValidState.indicatePessimisticFixpoint(); |
||
| 4537 | } |
||
| 4538 | |||
| 4539 | /// See AbstractState::indicateOptimisticFixpoint(...) |
||
| 4540 | ChangeStatus indicateOptimisticFixpoint() override { |
||
| 4541 | return IsValidState.indicateOptimisticFixpoint(); |
||
| 4542 | } |
||
| 4543 | |||
| 4544 | /// Return the assumed state |
||
| 4545 | PotentialValuesState &getAssumed() { return *this; } |
||
| 4546 | const PotentialValuesState &getAssumed() const { return *this; } |
||
| 4547 | |||
| 4548 | /// Return this set. We should check whether this set is valid or not by |
||
| 4549 | /// isValidState() before calling this function. |
||
| 4550 | const SetTy &getAssumedSet() const { |
||
| 4551 | assert(isValidState() && "This set shoud not be used when it is invalid!"); |
||
| 4552 | return Set; |
||
| 4553 | } |
||
| 4554 | |||
| 4555 | /// Returns whether this state contains an undef value or not. |
||
| 4556 | bool undefIsContained() const { |
||
| 4557 | assert(isValidState() && "This flag shoud not be used when it is invalid!"); |
||
| 4558 | return UndefIsContained; |
||
| 4559 | } |
||
| 4560 | |||
| 4561 | bool operator==(const PotentialValuesState &RHS) const { |
||
| 4562 | if (isValidState() != RHS.isValidState()) |
||
| 4563 | return false; |
||
| 4564 | if (!isValidState() && !RHS.isValidState()) |
||
| 4565 | return true; |
||
| 4566 | if (undefIsContained() != RHS.undefIsContained()) |
||
| 4567 | return false; |
||
| 4568 | return Set == RHS.getAssumedSet(); |
||
| 4569 | } |
||
| 4570 | |||
| 4571 | /// Maximum number of potential values to be tracked. |
||
| 4572 | /// This is set by -attributor-max-potential-values command line option |
||
| 4573 | static unsigned MaxPotentialValues; |
||
| 4574 | |||
| 4575 | /// Return empty set as the best state of potential values. |
||
| 4576 | static PotentialValuesState getBestState() { |
||
| 4577 | return PotentialValuesState(true); |
||
| 4578 | } |
||
| 4579 | |||
| 4580 | static PotentialValuesState getBestState(const PotentialValuesState &PVS) { |
||
| 4581 | return getBestState(); |
||
| 4582 | } |
||
| 4583 | |||
| 4584 | /// Return full set as the worst state of potential values. |
||
| 4585 | static PotentialValuesState getWorstState() { |
||
| 4586 | return PotentialValuesState(false); |
||
| 4587 | } |
||
| 4588 | |||
| 4589 | /// Union assumed set with the passed value. |
||
| 4590 | void unionAssumed(const MemberTy &C) { insert(C); } |
||
| 4591 | |||
| 4592 | /// Union assumed set with assumed set of the passed state \p PVS. |
||
| 4593 | void unionAssumed(const PotentialValuesState &PVS) { unionWith(PVS); } |
||
| 4594 | |||
| 4595 | /// Union assumed set with an undef value. |
||
| 4596 | void unionAssumedWithUndef() { unionWithUndef(); } |
||
| 4597 | |||
| 4598 | /// "Clamp" this state with \p PVS. |
||
| 4599 | PotentialValuesState operator^=(const PotentialValuesState &PVS) { |
||
| 4600 | IsValidState ^= PVS.IsValidState; |
||
| 4601 | unionAssumed(PVS); |
||
| 4602 | return *this; |
||
| 4603 | } |
||
| 4604 | |||
| 4605 | PotentialValuesState operator&=(const PotentialValuesState &PVS) { |
||
| 4606 | IsValidState &= PVS.IsValidState; |
||
| 4607 | unionAssumed(PVS); |
||
| 4608 | return *this; |
||
| 4609 | } |
||
| 4610 | |||
| 4611 | bool contains(const MemberTy &V) const { |
||
| 4612 | return !isValidState() ? true : Set.contains(V); |
||
| 4613 | } |
||
| 4614 | |||
| 4615 | protected: |
||
| 4616 | SetTy &getAssumedSet() { |
||
| 4617 | assert(isValidState() && "This set shoud not be used when it is invalid!"); |
||
| 4618 | return Set; |
||
| 4619 | } |
||
| 4620 | |||
| 4621 | private: |
||
| 4622 | /// Check the size of this set, and invalidate when the size is no |
||
| 4623 | /// less than \p MaxPotentialValues threshold. |
||
| 4624 | void checkAndInvalidate() { |
||
| 4625 | if (Set.size() >= MaxPotentialValues) |
||
| 4626 | indicatePessimisticFixpoint(); |
||
| 4627 | else |
||
| 4628 | reduceUndefValue(); |
||
| 4629 | } |
||
| 4630 | |||
| 4631 | /// If this state contains both undef and not undef, we can reduce |
||
| 4632 | /// undef to the not undef value. |
||
| 4633 | void reduceUndefValue() { UndefIsContained = UndefIsContained & Set.empty(); } |
||
| 4634 | |||
| 4635 | /// Insert an element into this set. |
||
| 4636 | void insert(const MemberTy &C) { |
||
| 4637 | if (!isValidState()) |
||
| 4638 | return; |
||
| 4639 | Set.insert(C); |
||
| 4640 | checkAndInvalidate(); |
||
| 4641 | } |
||
| 4642 | |||
| 4643 | /// Take union with R. |
||
| 4644 | void unionWith(const PotentialValuesState &R) { |
||
| 4645 | /// If this is a full set, do nothing. |
||
| 4646 | if (!isValidState()) |
||
| 4647 | return; |
||
| 4648 | /// If R is full set, change L to a full set. |
||
| 4649 | if (!R.isValidState()) { |
||
| 4650 | indicatePessimisticFixpoint(); |
||
| 4651 | return; |
||
| 4652 | } |
||
| 4653 | for (const MemberTy &C : R.Set) |
||
| 4654 | Set.insert(C); |
||
| 4655 | UndefIsContained |= R.undefIsContained(); |
||
| 4656 | checkAndInvalidate(); |
||
| 4657 | } |
||
| 4658 | |||
| 4659 | /// Take union with an undef value. |
||
| 4660 | void unionWithUndef() { |
||
| 4661 | UndefIsContained = true; |
||
| 4662 | reduceUndefValue(); |
||
| 4663 | } |
||
| 4664 | |||
| 4665 | /// Take intersection with R. |
||
| 4666 | void intersectWith(const PotentialValuesState &R) { |
||
| 4667 | /// If R is a full set, do nothing. |
||
| 4668 | if (!R.isValidState()) |
||
| 4669 | return; |
||
| 4670 | /// If this is a full set, change this to R. |
||
| 4671 | if (!isValidState()) { |
||
| 4672 | *this = R; |
||
| 4673 | return; |
||
| 4674 | } |
||
| 4675 | SetTy IntersectSet; |
||
| 4676 | for (const MemberTy &C : Set) { |
||
| 4677 | if (R.Set.count(C)) |
||
| 4678 | IntersectSet.insert(C); |
||
| 4679 | } |
||
| 4680 | Set = IntersectSet; |
||
| 4681 | UndefIsContained &= R.undefIsContained(); |
||
| 4682 | reduceUndefValue(); |
||
| 4683 | } |
||
| 4684 | |||
| 4685 | /// A helper state which indicate whether this state is valid or not. |
||
| 4686 | BooleanState IsValidState; |
||
| 4687 | |||
| 4688 | /// Container for potential values |
||
| 4689 | SetTy Set; |
||
| 4690 | |||
| 4691 | /// Flag for undef value |
||
| 4692 | bool UndefIsContained; |
||
| 4693 | }; |
||
| 4694 | |||
| 4695 | using PotentialConstantIntValuesState = PotentialValuesState<APInt>; |
||
| 4696 | using PotentialLLVMValuesState = |
||
| 4697 | PotentialValuesState<std::pair<AA::ValueAndContext, AA::ValueScope>>; |
||
| 4698 | |||
| 4699 | raw_ostream &operator<<(raw_ostream &OS, |
||
| 4700 | const PotentialConstantIntValuesState &R); |
||
| 4701 | raw_ostream &operator<<(raw_ostream &OS, const PotentialLLVMValuesState &R); |
||
| 4702 | |||
| 4703 | /// An abstract interface for potential values analysis. |
||
| 4704 | /// |
||
| 4705 | /// This AA collects potential values for each IR position. |
||
| 4706 | /// An assumed set of potential values is initialized with the empty set (the |
||
| 4707 | /// best state) and it will grow monotonically as we find more potential values |
||
| 4708 | /// for this position. |
||
| 4709 | /// The set might be forced to the worst state, that is, to contain every |
||
| 4710 | /// possible value for this position in 2 cases. |
||
| 4711 | /// 1. We surpassed the \p MaxPotentialValues threshold. This includes the |
||
| 4712 | /// case that this position is affected (e.g. because of an operation) by a |
||
| 4713 | /// Value that is in the worst state. |
||
| 4714 | /// 2. We tried to initialize on a Value that we cannot handle (e.g. an |
||
| 4715 | /// operator we do not currently handle). |
||
| 4716 | /// |
||
| 4717 | /// For non constant integers see AAPotentialValues. |
||
| 4718 | struct AAPotentialConstantValues |
||
| 4719 | : public StateWrapper<PotentialConstantIntValuesState, AbstractAttribute> { |
||
| 4720 | using Base = StateWrapper<PotentialConstantIntValuesState, AbstractAttribute>; |
||
| 4721 | AAPotentialConstantValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
||
| 4722 | |||
| 4723 | /// See AbstractAttribute::getState(...). |
||
| 4724 | PotentialConstantIntValuesState &getState() override { return *this; } |
||
| 4725 | const PotentialConstantIntValuesState &getState() const override { |
||
| 4726 | return *this; |
||
| 4727 | } |
||
| 4728 | |||
| 4729 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4730 | static AAPotentialConstantValues &createForPosition(const IRPosition &IRP, |
||
| 4731 | Attributor &A); |
||
| 4732 | |||
| 4733 | /// Return assumed constant for the associated value |
||
| 4734 | std::optional<Constant *> |
||
| 4735 | getAssumedConstant(Attributor &A, const Instruction *CtxI = nullptr) const { |
||
| 4736 | if (!isValidState()) |
||
| 4737 | return nullptr; |
||
| 4738 | if (getAssumedSet().size() == 1) { |
||
| 4739 | Type *Ty = getAssociatedValue().getType(); |
||
| 4740 | return cast_or_null<Constant>(AA::getWithType( |
||
| 4741 | *ConstantInt::get(Ty->getContext(), *(getAssumedSet().begin())), |
||
| 4742 | *Ty)); |
||
| 4743 | } |
||
| 4744 | if (getAssumedSet().size() == 0) { |
||
| 4745 | if (undefIsContained()) |
||
| 4746 | return UndefValue::get(getAssociatedValue().getType()); |
||
| 4747 | return std::nullopt; |
||
| 4748 | } |
||
| 4749 | |||
| 4750 | return nullptr; |
||
| 4751 | } |
||
| 4752 | |||
| 4753 | /// See AbstractAttribute::getName() |
||
| 4754 | const std::string getName() const override { |
||
| 4755 | return "AAPotentialConstantValues"; |
||
| 4756 | } |
||
| 4757 | |||
| 4758 | /// See AbstractAttribute::getIdAddr() |
||
| 4759 | const char *getIdAddr() const override { return &ID; } |
||
| 4760 | |||
| 4761 | /// This function should return true if the type of the \p AA is |
||
| 4762 | /// AAPotentialConstantValues |
||
| 4763 | static bool classof(const AbstractAttribute *AA) { |
||
| 4764 | return (AA->getIdAddr() == &ID); |
||
| 4765 | } |
||
| 4766 | |||
| 4767 | /// Unique ID (due to the unique address) |
||
| 4768 | static const char ID; |
||
| 4769 | }; |
||
| 4770 | |||
| 4771 | struct AAPotentialValues |
||
| 4772 | : public StateWrapper<PotentialLLVMValuesState, AbstractAttribute> { |
||
| 4773 | using Base = StateWrapper<PotentialLLVMValuesState, AbstractAttribute>; |
||
| 4774 | AAPotentialValues(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
||
| 4775 | |||
| 4776 | /// See AbstractAttribute::getState(...). |
||
| 4777 | PotentialLLVMValuesState &getState() override { return *this; } |
||
| 4778 | const PotentialLLVMValuesState &getState() const override { return *this; } |
||
| 4779 | |||
| 4780 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4781 | static AAPotentialValues &createForPosition(const IRPosition &IRP, |
||
| 4782 | Attributor &A); |
||
| 4783 | |||
| 4784 | /// Extract the single value in \p Values if any. |
||
| 4785 | static Value *getSingleValue(Attributor &A, const AbstractAttribute &AA, |
||
| 4786 | const IRPosition &IRP, |
||
| 4787 | SmallVectorImpl<AA::ValueAndContext> &Values); |
||
| 4788 | |||
| 4789 | /// See AbstractAttribute::getName() |
||
| 4790 | const std::string getName() const override { return "AAPotentialValues"; } |
||
| 4791 | |||
| 4792 | /// See AbstractAttribute::getIdAddr() |
||
| 4793 | const char *getIdAddr() const override { return &ID; } |
||
| 4794 | |||
| 4795 | /// This function should return true if the type of the \p AA is |
||
| 4796 | /// AAPotentialValues |
||
| 4797 | static bool classof(const AbstractAttribute *AA) { |
||
| 4798 | return (AA->getIdAddr() == &ID); |
||
| 4799 | } |
||
| 4800 | |||
| 4801 | /// Unique ID (due to the unique address) |
||
| 4802 | static const char ID; |
||
| 4803 | |||
| 4804 | private: |
||
| 4805 | virtual bool |
||
| 4806 | getAssumedSimplifiedValues(Attributor &A, |
||
| 4807 | SmallVectorImpl<AA::ValueAndContext> &Values, |
||
| 4808 | AA::ValueScope) const = 0; |
||
| 4809 | |||
| 4810 | friend struct Attributor; |
||
| 4811 | }; |
||
| 4812 | |||
| 4813 | /// An abstract interface for all noundef attributes. |
||
| 4814 | struct AANoUndef |
||
| 4815 | : public IRAttribute<Attribute::NoUndef, |
||
| 4816 | StateWrapper<BooleanState, AbstractAttribute>> { |
||
| 4817 | AANoUndef(const IRPosition &IRP, Attributor &A) : IRAttribute(IRP) {} |
||
| 4818 | |||
| 4819 | /// Return true if we assume that the underlying value is noundef. |
||
| 4820 | bool isAssumedNoUndef() const { return getAssumed(); } |
||
| 4821 | |||
| 4822 | /// Return true if we know that underlying value is noundef. |
||
| 4823 | bool isKnownNoUndef() const { return getKnown(); } |
||
| 4824 | |||
| 4825 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4826 | static AANoUndef &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 4827 | |||
| 4828 | /// See AbstractAttribute::getName() |
||
| 4829 | const std::string getName() const override { return "AANoUndef"; } |
||
| 4830 | |||
| 4831 | /// See AbstractAttribute::getIdAddr() |
||
| 4832 | const char *getIdAddr() const override { return &ID; } |
||
| 4833 | |||
| 4834 | /// This function should return true if the type of the \p AA is AANoUndef |
||
| 4835 | static bool classof(const AbstractAttribute *AA) { |
||
| 4836 | return (AA->getIdAddr() == &ID); |
||
| 4837 | } |
||
| 4838 | |||
| 4839 | /// Unique ID (due to the unique address) |
||
| 4840 | static const char ID; |
||
| 4841 | }; |
||
| 4842 | |||
| 4843 | struct AACallGraphNode; |
||
| 4844 | struct AACallEdges; |
||
| 4845 | |||
| 4846 | /// An Iterator for call edges, creates AACallEdges attributes in a lazy way. |
||
| 4847 | /// This iterator becomes invalid if the underlying edge list changes. |
||
| 4848 | /// So This shouldn't outlive a iteration of Attributor. |
||
| 4849 | class AACallEdgeIterator |
||
| 4850 | : public iterator_adaptor_base<AACallEdgeIterator, |
||
| 4851 | SetVector<Function *>::iterator> { |
||
| 4852 | AACallEdgeIterator(Attributor &A, SetVector<Function *>::iterator Begin) |
||
| 4853 | : iterator_adaptor_base(Begin), A(A) {} |
||
| 4854 | |||
| 4855 | public: |
||
| 4856 | AACallGraphNode *operator*() const; |
||
| 4857 | |||
| 4858 | private: |
||
| 4859 | Attributor &A; |
||
| 4860 | friend AACallEdges; |
||
| 4861 | friend AttributorCallGraph; |
||
| 4862 | }; |
||
| 4863 | |||
| 4864 | struct AACallGraphNode { |
||
| 4865 | AACallGraphNode(Attributor &A) : A(A) {} |
||
| 4866 | virtual ~AACallGraphNode() = default; |
||
| 4867 | |||
| 4868 | virtual AACallEdgeIterator optimisticEdgesBegin() const = 0; |
||
| 4869 | virtual AACallEdgeIterator optimisticEdgesEnd() const = 0; |
||
| 4870 | |||
| 4871 | /// Iterator range for exploring the call graph. |
||
| 4872 | iterator_range<AACallEdgeIterator> optimisticEdgesRange() const { |
||
| 4873 | return iterator_range<AACallEdgeIterator>(optimisticEdgesBegin(), |
||
| 4874 | optimisticEdgesEnd()); |
||
| 4875 | } |
||
| 4876 | |||
| 4877 | protected: |
||
| 4878 | /// Reference to Attributor needed for GraphTraits implementation. |
||
| 4879 | Attributor &A; |
||
| 4880 | }; |
||
| 4881 | |||
| 4882 | /// An abstract state for querying live call edges. |
||
| 4883 | /// This interface uses the Attributor's optimistic liveness |
||
| 4884 | /// information to compute the edges that are alive. |
||
| 4885 | struct AACallEdges : public StateWrapper<BooleanState, AbstractAttribute>, |
||
| 4886 | AACallGraphNode { |
||
| 4887 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
||
| 4888 | |||
| 4889 | AACallEdges(const IRPosition &IRP, Attributor &A) |
||
| 4890 | : Base(IRP), AACallGraphNode(A) {} |
||
| 4891 | |||
| 4892 | /// Get the optimistic edges. |
||
| 4893 | virtual const SetVector<Function *> &getOptimisticEdges() const = 0; |
||
| 4894 | |||
| 4895 | /// Is there any call with a unknown callee. |
||
| 4896 | virtual bool hasUnknownCallee() const = 0; |
||
| 4897 | |||
| 4898 | /// Is there any call with a unknown callee, excluding any inline asm. |
||
| 4899 | virtual bool hasNonAsmUnknownCallee() const = 0; |
||
| 4900 | |||
| 4901 | /// Iterator for exploring the call graph. |
||
| 4902 | AACallEdgeIterator optimisticEdgesBegin() const override { |
||
| 4903 | return AACallEdgeIterator(A, getOptimisticEdges().begin()); |
||
| 4904 | } |
||
| 4905 | |||
| 4906 | /// Iterator for exploring the call graph. |
||
| 4907 | AACallEdgeIterator optimisticEdgesEnd() const override { |
||
| 4908 | return AACallEdgeIterator(A, getOptimisticEdges().end()); |
||
| 4909 | } |
||
| 4910 | |||
| 4911 | /// Create an abstract attribute view for the position \p IRP. |
||
| 4912 | static AACallEdges &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 4913 | |||
| 4914 | /// See AbstractAttribute::getName() |
||
| 4915 | const std::string getName() const override { return "AACallEdges"; } |
||
| 4916 | |||
| 4917 | /// See AbstractAttribute::getIdAddr() |
||
| 4918 | const char *getIdAddr() const override { return &ID; } |
||
| 4919 | |||
| 4920 | /// This function should return true if the type of the \p AA is AACallEdges. |
||
| 4921 | static bool classof(const AbstractAttribute *AA) { |
||
| 4922 | return (AA->getIdAddr() == &ID); |
||
| 4923 | } |
||
| 4924 | |||
| 4925 | /// Unique ID (due to the unique address) |
||
| 4926 | static const char ID; |
||
| 4927 | }; |
||
| 4928 | |||
| 4929 | // Synthetic root node for the Attributor's internal call graph. |
||
| 4930 | struct AttributorCallGraph : public AACallGraphNode { |
||
| 4931 | AttributorCallGraph(Attributor &A) : AACallGraphNode(A) {} |
||
| 4932 | virtual ~AttributorCallGraph() = default; |
||
| 4933 | |||
| 4934 | AACallEdgeIterator optimisticEdgesBegin() const override { |
||
| 4935 | return AACallEdgeIterator(A, A.Functions.begin()); |
||
| 4936 | } |
||
| 4937 | |||
| 4938 | AACallEdgeIterator optimisticEdgesEnd() const override { |
||
| 4939 | return AACallEdgeIterator(A, A.Functions.end()); |
||
| 4940 | } |
||
| 4941 | |||
| 4942 | /// Force populate the entire call graph. |
||
| 4943 | void populateAll() const { |
||
| 4944 | for (const AACallGraphNode *AA : optimisticEdgesRange()) { |
||
| 4945 | // Nothing else to do here. |
||
| 4946 | (void)AA; |
||
| 4947 | } |
||
| 4948 | } |
||
| 4949 | |||
| 4950 | void print(); |
||
| 4951 | }; |
||
| 4952 | |||
| 4953 | template <> struct GraphTraits<AACallGraphNode *> { |
||
| 4954 | using NodeRef = AACallGraphNode *; |
||
| 4955 | using ChildIteratorType = AACallEdgeIterator; |
||
| 4956 | |||
| 4957 | static AACallEdgeIterator child_begin(AACallGraphNode *Node) { |
||
| 4958 | return Node->optimisticEdgesBegin(); |
||
| 4959 | } |
||
| 4960 | |||
| 4961 | static AACallEdgeIterator child_end(AACallGraphNode *Node) { |
||
| 4962 | return Node->optimisticEdgesEnd(); |
||
| 4963 | } |
||
| 4964 | }; |
||
| 4965 | |||
| 4966 | template <> |
||
| 4967 | struct GraphTraits<AttributorCallGraph *> |
||
| 4968 | : public GraphTraits<AACallGraphNode *> { |
||
| 4969 | using nodes_iterator = AACallEdgeIterator; |
||
| 4970 | |||
| 4971 | static AACallGraphNode *getEntryNode(AttributorCallGraph *G) { |
||
| 4972 | return static_cast<AACallGraphNode *>(G); |
||
| 4973 | } |
||
| 4974 | |||
| 4975 | static AACallEdgeIterator nodes_begin(const AttributorCallGraph *G) { |
||
| 4976 | return G->optimisticEdgesBegin(); |
||
| 4977 | } |
||
| 4978 | |||
| 4979 | static AACallEdgeIterator nodes_end(const AttributorCallGraph *G) { |
||
| 4980 | return G->optimisticEdgesEnd(); |
||
| 4981 | } |
||
| 4982 | }; |
||
| 4983 | |||
| 4984 | template <> |
||
| 4985 | struct DOTGraphTraits<AttributorCallGraph *> : public DefaultDOTGraphTraits { |
||
| 4986 | DOTGraphTraits(bool Simple = false) : DefaultDOTGraphTraits(Simple) {} |
||
| 4987 | |||
| 4988 | std::string getNodeLabel(const AACallGraphNode *Node, |
||
| 4989 | const AttributorCallGraph *Graph) { |
||
| 4990 | const AACallEdges *AACE = static_cast<const AACallEdges *>(Node); |
||
| 4991 | return AACE->getAssociatedFunction()->getName().str(); |
||
| 4992 | } |
||
| 4993 | |||
| 4994 | static bool isNodeHidden(const AACallGraphNode *Node, |
||
| 4995 | const AttributorCallGraph *Graph) { |
||
| 4996 | // Hide the synth root. |
||
| 4997 | return static_cast<const AACallGraphNode *>(Graph) == Node; |
||
| 4998 | } |
||
| 4999 | }; |
||
| 5000 | |||
| 5001 | struct AAExecutionDomain |
||
| 5002 | : public StateWrapper<BooleanState, AbstractAttribute> { |
||
| 5003 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
||
| 5004 | AAExecutionDomain(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
||
| 5005 | |||
| 5006 | /// Summary about the execution domain of a block or instruction. |
||
| 5007 | struct ExecutionDomainTy { |
||
| 5008 | using BarriersSetTy = SmallPtrSet<CallBase *, 2>; |
||
| 5009 | using AssumesSetTy = SmallPtrSet<AssumeInst *, 4>; |
||
| 5010 | |||
| 5011 | void addAssumeInst(Attributor &A, AssumeInst &AI) { |
||
| 5012 | EncounteredAssumes.insert(&AI); |
||
| 5013 | } |
||
| 5014 | |||
| 5015 | void addAlignedBarrier(Attributor &A, CallBase &CB) { |
||
| 5016 | AlignedBarriers.insert(&CB); |
||
| 5017 | } |
||
| 5018 | |||
| 5019 | void clearAssumeInstAndAlignedBarriers() { |
||
| 5020 | EncounteredAssumes.clear(); |
||
| 5021 | AlignedBarriers.clear(); |
||
| 5022 | } |
||
| 5023 | |||
| 5024 | bool IsExecutedByInitialThreadOnly = true; |
||
| 5025 | bool IsReachedFromAlignedBarrierOnly = true; |
||
| 5026 | bool IsReachingAlignedBarrierOnly = true; |
||
| 5027 | bool EncounteredNonLocalSideEffect = false; |
||
| 5028 | BarriersSetTy AlignedBarriers; |
||
| 5029 | AssumesSetTy EncounteredAssumes; |
||
| 5030 | }; |
||
| 5031 | |||
| 5032 | /// Create an abstract attribute view for the position \p IRP. |
||
| 5033 | static AAExecutionDomain &createForPosition(const IRPosition &IRP, |
||
| 5034 | Attributor &A); |
||
| 5035 | |||
| 5036 | /// See AbstractAttribute::getName(). |
||
| 5037 | const std::string getName() const override { return "AAExecutionDomain"; } |
||
| 5038 | |||
| 5039 | /// See AbstractAttribute::getIdAddr(). |
||
| 5040 | const char *getIdAddr() const override { return &ID; } |
||
| 5041 | |||
| 5042 | /// Check if an instruction is executed only by the initial thread. |
||
| 5043 | bool isExecutedByInitialThreadOnly(const Instruction &I) const { |
||
| 5044 | return isExecutedByInitialThreadOnly(*I.getParent()); |
||
| 5045 | } |
||
| 5046 | |||
| 5047 | /// Check if a basic block is executed only by the initial thread. |
||
| 5048 | virtual bool isExecutedByInitialThreadOnly(const BasicBlock &) const = 0; |
||
| 5049 | |||
| 5050 | /// Check if the instruction \p I is executed in an aligned region, that is, |
||
| 5051 | /// the synchronizing effects before and after \p I are both aligned barriers. |
||
| 5052 | /// This effectively means all threads execute \p I together. |
||
| 5053 | virtual bool isExecutedInAlignedRegion(Attributor &A, |
||
| 5054 | const Instruction &I) const = 0; |
||
| 5055 | |||
| 5056 | virtual ExecutionDomainTy getExecutionDomain(const BasicBlock &) const = 0; |
||
| 5057 | virtual ExecutionDomainTy getExecutionDomain(const CallBase &) const = 0; |
||
| 5058 | virtual ExecutionDomainTy getFunctionExecutionDomain() const = 0; |
||
| 5059 | |||
| 5060 | /// This function should return true if the type of the \p AA is |
||
| 5061 | /// AAExecutionDomain. |
||
| 5062 | static bool classof(const AbstractAttribute *AA) { |
||
| 5063 | return (AA->getIdAddr() == &ID); |
||
| 5064 | } |
||
| 5065 | |||
| 5066 | /// Unique ID (due to the unique address) |
||
| 5067 | static const char ID; |
||
| 5068 | }; |
||
| 5069 | |||
| 5070 | /// An abstract Attribute for computing reachability between functions. |
||
| 5071 | struct AAInterFnReachability |
||
| 5072 | : public StateWrapper<BooleanState, AbstractAttribute> { |
||
| 5073 | using Base = StateWrapper<BooleanState, AbstractAttribute>; |
||
| 5074 | |||
| 5075 | AAInterFnReachability(const IRPosition &IRP, Attributor &A) : Base(IRP) {} |
||
| 5076 | |||
| 5077 | /// If the function represented by this possition can reach \p Fn. |
||
| 5078 | bool canReach(Attributor &A, const Function &Fn) const { |
||
| 5079 | Function *Scope = getAnchorScope(); |
||
| 5080 | if (!Scope || Scope->isDeclaration()) |
||
| 5081 | return true; |
||
| 5082 | return instructionCanReach(A, Scope->getEntryBlock().front(), Fn); |
||
| 5083 | } |
||
| 5084 | |||
| 5085 | /// Can \p Inst reach \p Fn. |
||
| 5086 | /// See also AA::isPotentiallyReachable. |
||
| 5087 | virtual bool instructionCanReach( |
||
| 5088 | Attributor &A, const Instruction &Inst, const Function &Fn, |
||
| 5089 | const AA::InstExclusionSetTy *ExclusionSet = nullptr, |
||
| 5090 | SmallPtrSet<const Function *, 16> *Visited = nullptr) const = 0; |
||
| 5091 | |||
| 5092 | /// Create an abstract attribute view for the position \p IRP. |
||
| 5093 | static AAInterFnReachability &createForPosition(const IRPosition &IRP, |
||
| 5094 | Attributor &A); |
||
| 5095 | |||
| 5096 | /// See AbstractAttribute::getName() |
||
| 5097 | const std::string getName() const override { return "AAInterFnReachability"; } |
||
| 5098 | |||
| 5099 | /// See AbstractAttribute::getIdAddr() |
||
| 5100 | const char *getIdAddr() const override { return &ID; } |
||
| 5101 | |||
| 5102 | /// This function should return true if the type of the \p AA is AACallEdges. |
||
| 5103 | static bool classof(const AbstractAttribute *AA) { |
||
| 5104 | return (AA->getIdAddr() == &ID); |
||
| 5105 | } |
||
| 5106 | |||
| 5107 | /// Unique ID (due to the unique address) |
||
| 5108 | static const char ID; |
||
| 5109 | }; |
||
| 5110 | |||
| 5111 | /// An abstract interface for struct information. |
||
| 5112 | struct AAPointerInfo : public AbstractAttribute { |
||
| 5113 | AAPointerInfo(const IRPosition &IRP) : AbstractAttribute(IRP) {} |
||
| 5114 | |||
| 5115 | enum AccessKind { |
||
| 5116 | // First two bits to distinguish may and must accesses. |
||
| 5117 | AK_MUST = 1 << 0, |
||
| 5118 | AK_MAY = 1 << 1, |
||
| 5119 | |||
| 5120 | // Then two bits for read and write. These are not exclusive. |
||
| 5121 | AK_R = 1 << 2, |
||
| 5122 | AK_W = 1 << 3, |
||
| 5123 | AK_RW = AK_R | AK_W, |
||
| 5124 | |||
| 5125 | // One special case for assumptions about memory content. These |
||
| 5126 | // are neither reads nor writes. They are however always modeled |
||
| 5127 | // as read to avoid using them for write removal. |
||
| 5128 | AK_ASSUMPTION = (1 << 4) | AK_MUST, |
||
| 5129 | |||
| 5130 | // Helper for easy access. |
||
| 5131 | AK_MAY_READ = AK_MAY | AK_R, |
||
| 5132 | AK_MAY_WRITE = AK_MAY | AK_W, |
||
| 5133 | AK_MAY_READ_WRITE = AK_MAY | AK_R | AK_W, |
||
| 5134 | AK_MUST_READ = AK_MUST | AK_R, |
||
| 5135 | AK_MUST_WRITE = AK_MUST | AK_W, |
||
| 5136 | AK_MUST_READ_WRITE = AK_MUST | AK_R | AK_W, |
||
| 5137 | }; |
||
| 5138 | |||
| 5139 | /// A container for a list of ranges. |
||
| 5140 | struct RangeList { |
||
| 5141 | // The set of ranges rarely contains more than one element, and is unlikely |
||
| 5142 | // to contain more than say four elements. So we find the middle-ground with |
||
| 5143 | // a sorted vector. This avoids hard-coding a rarely used number like "four" |
||
| 5144 | // into every instance of a SmallSet. |
||
| 5145 | using RangeTy = AA::RangeTy; |
||
| 5146 | using VecTy = SmallVector<RangeTy>; |
||
| 5147 | using iterator = VecTy::iterator; |
||
| 5148 | using const_iterator = VecTy::const_iterator; |
||
| 5149 | VecTy Ranges; |
||
| 5150 | |||
| 5151 | RangeList(const RangeTy &R) { Ranges.push_back(R); } |
||
| 5152 | RangeList(ArrayRef<int64_t> Offsets, int64_t Size) { |
||
| 5153 | Ranges.reserve(Offsets.size()); |
||
| 5154 | for (unsigned i = 0, e = Offsets.size(); i != e; ++i) { |
||
| 5155 | assert(((i + 1 == e) || Offsets[i] < Offsets[i + 1]) && |
||
| 5156 | "Expected strictly ascending offsets."); |
||
| 5157 | Ranges.emplace_back(Offsets[i], Size); |
||
| 5158 | } |
||
| 5159 | } |
||
| 5160 | RangeList() = default; |
||
| 5161 | |||
| 5162 | iterator begin() { return Ranges.begin(); } |
||
| 5163 | iterator end() { return Ranges.end(); } |
||
| 5164 | const_iterator begin() const { return Ranges.begin(); } |
||
| 5165 | const_iterator end() const { return Ranges.end(); } |
||
| 5166 | |||
| 5167 | // Helpers required for std::set_difference |
||
| 5168 | using value_type = RangeTy; |
||
| 5169 | void push_back(const RangeTy &R) { |
||
| 5170 | assert((Ranges.empty() || RangeTy::OffsetLessThan(Ranges.back(), R)) && |
||
| 5171 | "Ensure the last element is the greatest."); |
||
| 5172 | Ranges.push_back(R); |
||
| 5173 | } |
||
| 5174 | |||
| 5175 | /// Copy ranges from \p L that are not in \p R, into \p D. |
||
| 5176 | static void set_difference(const RangeList &L, const RangeList &R, |
||
| 5177 | RangeList &D) { |
||
| 5178 | std::set_difference(L.begin(), L.end(), R.begin(), R.end(), |
||
| 5179 | std::back_inserter(D), RangeTy::OffsetLessThan); |
||
| 5180 | } |
||
| 5181 | |||
| 5182 | unsigned size() const { return Ranges.size(); } |
||
| 5183 | |||
| 5184 | bool operator==(const RangeList &OI) const { return Ranges == OI.Ranges; } |
||
| 5185 | |||
| 5186 | /// Merge the ranges in \p RHS into the current ranges. |
||
| 5187 | /// - Merging a list of unknown ranges makes the current list unknown. |
||
| 5188 | /// - Ranges with the same offset are merged according to RangeTy::operator& |
||
| 5189 | /// \return true if the current RangeList changed. |
||
| 5190 | bool merge(const RangeList &RHS) { |
||
| 5191 | if (isUnknown()) |
||
| 5192 | return false; |
||
| 5193 | if (RHS.isUnknown()) { |
||
| 5194 | setUnknown(); |
||
| 5195 | return true; |
||
| 5196 | } |
||
| 5197 | |||
| 5198 | if (Ranges.empty()) { |
||
| 5199 | Ranges = RHS.Ranges; |
||
| 5200 | return true; |
||
| 5201 | } |
||
| 5202 | |||
| 5203 | bool Changed = false; |
||
| 5204 | auto LPos = Ranges.begin(); |
||
| 5205 | for (auto &R : RHS.Ranges) { |
||
| 5206 | auto Result = insert(LPos, R); |
||
| 5207 | if (isUnknown()) |
||
| 5208 | return true; |
||
| 5209 | LPos = Result.first; |
||
| 5210 | Changed |= Result.second; |
||
| 5211 | } |
||
| 5212 | return Changed; |
||
| 5213 | } |
||
| 5214 | |||
| 5215 | /// Insert \p R at the given iterator \p Pos, and merge if necessary. |
||
| 5216 | /// |
||
| 5217 | /// This assumes that all ranges before \p Pos are OffsetLessThan \p R, and |
||
| 5218 | /// then maintains the sorted order for the suffix list. |
||
| 5219 | /// |
||
| 5220 | /// \return The place of insertion and true iff anything changed. |
||
| 5221 | std::pair<iterator, bool> insert(iterator Pos, const RangeTy &R) { |
||
| 5222 | if (isUnknown()) |
||
| 5223 | return std::make_pair(Ranges.begin(), false); |
||
| 5224 | if (R.offsetOrSizeAreUnknown()) { |
||
| 5225 | return std::make_pair(setUnknown(), true); |
||
| 5226 | } |
||
| 5227 | |||
| 5228 | // Maintain this as a sorted vector of unique entries. |
||
| 5229 | auto LB = std::lower_bound(Pos, Ranges.end(), R, RangeTy::OffsetLessThan); |
||
| 5230 | if (LB == Ranges.end() || LB->Offset != R.Offset) |
||
| 5231 | return std::make_pair(Ranges.insert(LB, R), true); |
||
| 5232 | bool Changed = *LB != R; |
||
| 5233 | *LB &= R; |
||
| 5234 | if (LB->offsetOrSizeAreUnknown()) |
||
| 5235 | return std::make_pair(setUnknown(), true); |
||
| 5236 | return std::make_pair(LB, Changed); |
||
| 5237 | } |
||
| 5238 | |||
| 5239 | /// Insert the given range \p R, maintaining sorted order. |
||
| 5240 | /// |
||
| 5241 | /// \return The place of insertion and true iff anything changed. |
||
| 5242 | std::pair<iterator, bool> insert(const RangeTy &R) { |
||
| 5243 | return insert(Ranges.begin(), R); |
||
| 5244 | } |
||
| 5245 | |||
| 5246 | /// Add the increment \p Inc to the offset of every range. |
||
| 5247 | void addToAllOffsets(int64_t Inc) { |
||
| 5248 | assert(!isUnassigned() && |
||
| 5249 | "Cannot increment if the offset is not yet computed!"); |
||
| 5250 | if (isUnknown()) |
||
| 5251 | return; |
||
| 5252 | for (auto &R : Ranges) { |
||
| 5253 | R.Offset += Inc; |
||
| 5254 | } |
||
| 5255 | } |
||
| 5256 | |||
| 5257 | /// Return true iff there is exactly one range and it is known. |
||
| 5258 | bool isUnique() const { |
||
| 5259 | return Ranges.size() == 1 && !Ranges.front().offsetOrSizeAreUnknown(); |
||
| 5260 | } |
||
| 5261 | |||
| 5262 | /// Return the unique range, assuming it exists. |
||
| 5263 | const RangeTy &getUnique() const { |
||
| 5264 | assert(isUnique() && "No unique range to return!"); |
||
| 5265 | return Ranges.front(); |
||
| 5266 | } |
||
| 5267 | |||
| 5268 | /// Return true iff the list contains an unknown range. |
||
| 5269 | bool isUnknown() const { |
||
| 5270 | if (isUnassigned()) |
||
| 5271 | return false; |
||
| 5272 | if (Ranges.front().offsetOrSizeAreUnknown()) { |
||
| 5273 | assert(Ranges.size() == 1 && "Unknown is a singleton range."); |
||
| 5274 | return true; |
||
| 5275 | } |
||
| 5276 | return false; |
||
| 5277 | } |
||
| 5278 | |||
| 5279 | /// Discard all ranges and insert a single unknown range. |
||
| 5280 | iterator setUnknown() { |
||
| 5281 | Ranges.clear(); |
||
| 5282 | Ranges.push_back(RangeTy::getUnknown()); |
||
| 5283 | return Ranges.begin(); |
||
| 5284 | } |
||
| 5285 | |||
| 5286 | /// Return true if no ranges have been inserted. |
||
| 5287 | bool isUnassigned() const { return Ranges.size() == 0; } |
||
| 5288 | }; |
||
| 5289 | |||
| 5290 | /// An access description. |
||
| 5291 | struct Access { |
||
| 5292 | Access(Instruction *I, int64_t Offset, int64_t Size, |
||
| 5293 | std::optional<Value *> Content, AccessKind Kind, Type *Ty) |
||
| 5294 | : LocalI(I), RemoteI(I), Content(Content), Ranges(Offset, Size), |
||
| 5295 | Kind(Kind), Ty(Ty) { |
||
| 5296 | verify(); |
||
| 5297 | } |
||
| 5298 | Access(Instruction *LocalI, Instruction *RemoteI, const RangeList &Ranges, |
||
| 5299 | std::optional<Value *> Content, AccessKind K, Type *Ty) |
||
| 5300 | : LocalI(LocalI), RemoteI(RemoteI), Content(Content), Ranges(Ranges), |
||
| 5301 | Kind(K), Ty(Ty) { |
||
| 5302 | if (Ranges.size() > 1) { |
||
| 5303 | Kind = AccessKind(Kind | AK_MAY); |
||
| 5304 | Kind = AccessKind(Kind & ~AK_MUST); |
||
| 5305 | } |
||
| 5306 | verify(); |
||
| 5307 | } |
||
| 5308 | Access(Instruction *LocalI, Instruction *RemoteI, int64_t Offset, |
||
| 5309 | int64_t Size, std::optional<Value *> Content, AccessKind Kind, |
||
| 5310 | Type *Ty) |
||
| 5311 | : LocalI(LocalI), RemoteI(RemoteI), Content(Content), |
||
| 5312 | Ranges(Offset, Size), Kind(Kind), Ty(Ty) { |
||
| 5313 | verify(); |
||
| 5314 | } |
||
| 5315 | Access(const Access &Other) = default; |
||
| 5316 | |||
| 5317 | Access &operator=(const Access &Other) = default; |
||
| 5318 | bool operator==(const Access &R) const { |
||
| 5319 | return LocalI == R.LocalI && RemoteI == R.RemoteI && Ranges == R.Ranges && |
||
| 5320 | Content == R.Content && Kind == R.Kind; |
||
| 5321 | } |
||
| 5322 | bool operator!=(const Access &R) const { return !(*this == R); } |
||
| 5323 | |||
| 5324 | Access &operator&=(const Access &R) { |
||
| 5325 | assert(RemoteI == R.RemoteI && "Expected same instruction!"); |
||
| 5326 | assert(LocalI == R.LocalI && "Expected same instruction!"); |
||
| 5327 | |||
| 5328 | // Note that every Access object corresponds to a unique Value, and only |
||
| 5329 | // accesses to the same Value are merged. Hence we assume that all ranges |
||
| 5330 | // are the same size. If ranges can be different size, then the contents |
||
| 5331 | // must be dropped. |
||
| 5332 | Ranges.merge(R.Ranges); |
||
| 5333 | Content = |
||
| 5334 | AA::combineOptionalValuesInAAValueLatice(Content, R.Content, Ty); |
||
| 5335 | |||
| 5336 | // Combine the access kind, which results in a bitwise union. |
||
| 5337 | // If there is more than one range, then this must be a MAY. |
||
| 5338 | // If we combine a may and a must access we clear the must bit. |
||
| 5339 | Kind = AccessKind(Kind | R.Kind); |
||
| 5340 | if ((Kind & AK_MAY) || Ranges.size() > 1) { |
||
| 5341 | Kind = AccessKind(Kind | AK_MAY); |
||
| 5342 | Kind = AccessKind(Kind & ~AK_MUST); |
||
| 5343 | } |
||
| 5344 | verify(); |
||
| 5345 | return *this; |
||
| 5346 | } |
||
| 5347 | |||
| 5348 | void verify() { |
||
| 5349 | assert(isMustAccess() + isMayAccess() == 1 && |
||
| 5350 | "Expect must or may access, not both."); |
||
| 5351 | assert(isAssumption() + isWrite() <= 1 && |
||
| 5352 | "Expect assumption access or write access, never both."); |
||
| 5353 | assert((isMayAccess() || Ranges.size() == 1) && |
||
| 5354 | "Cannot be a must access if there are multiple ranges."); |
||
| 5355 | } |
||
| 5356 | |||
| 5357 | /// Return the access kind. |
||
| 5358 | AccessKind getKind() const { return Kind; } |
||
| 5359 | |||
| 5360 | /// Return true if this is a read access. |
||
| 5361 | bool isRead() const { return Kind & AK_R; } |
||
| 5362 | |||
| 5363 | /// Return true if this is a write access. |
||
| 5364 | bool isWrite() const { return Kind & AK_W; } |
||
| 5365 | |||
| 5366 | /// Return true if this is a write access. |
||
| 5367 | bool isWriteOrAssumption() const { return isWrite() || isAssumption(); } |
||
| 5368 | |||
| 5369 | /// Return true if this is an assumption access. |
||
| 5370 | bool isAssumption() const { return Kind == AK_ASSUMPTION; } |
||
| 5371 | |||
| 5372 | bool isMustAccess() const { |
||
| 5373 | bool MustAccess = Kind & AK_MUST; |
||
| 5374 | assert((!MustAccess || Ranges.size() < 2) && |
||
| 5375 | "Cannot be a must access if there are multiple ranges."); |
||
| 5376 | return MustAccess; |
||
| 5377 | } |
||
| 5378 | |||
| 5379 | bool isMayAccess() const { |
||
| 5380 | bool MayAccess = Kind & AK_MAY; |
||
| 5381 | assert((MayAccess || Ranges.size() < 2) && |
||
| 5382 | "Cannot be a must access if there are multiple ranges."); |
||
| 5383 | return MayAccess; |
||
| 5384 | } |
||
| 5385 | |||
| 5386 | /// Return the instruction that causes the access with respect to the local |
||
| 5387 | /// scope of the associated attribute. |
||
| 5388 | Instruction *getLocalInst() const { return LocalI; } |
||
| 5389 | |||
| 5390 | /// Return the actual instruction that causes the access. |
||
| 5391 | Instruction *getRemoteInst() const { return RemoteI; } |
||
| 5392 | |||
| 5393 | /// Return true if the value written is not known yet. |
||
| 5394 | bool isWrittenValueYetUndetermined() const { return !Content; } |
||
| 5395 | |||
| 5396 | /// Return true if the value written cannot be determined at all. |
||
| 5397 | bool isWrittenValueUnknown() const { |
||
| 5398 | return Content.has_value() && !*Content; |
||
| 5399 | } |
||
| 5400 | |||
| 5401 | /// Set the value written to nullptr, i.e., unknown. |
||
| 5402 | void setWrittenValueUnknown() { Content = nullptr; } |
||
| 5403 | |||
| 5404 | /// Return the type associated with the access, if known. |
||
| 5405 | Type *getType() const { return Ty; } |
||
| 5406 | |||
| 5407 | /// Return the value writen, if any. |
||
| 5408 | Value *getWrittenValue() const { |
||
| 5409 | assert(!isWrittenValueYetUndetermined() && |
||
| 5410 | "Value needs to be determined before accessing it."); |
||
| 5411 | return *Content; |
||
| 5412 | } |
||
| 5413 | |||
| 5414 | /// Return the written value which can be `llvm::null` if it is not yet |
||
| 5415 | /// determined. |
||
| 5416 | std::optional<Value *> getContent() const { return Content; } |
||
| 5417 | |||
| 5418 | bool hasUniqueRange() const { return Ranges.isUnique(); } |
||
| 5419 | const AA::RangeTy &getUniqueRange() const { return Ranges.getUnique(); } |
||
| 5420 | |||
| 5421 | /// Add a range accessed by this Access. |
||
| 5422 | /// |
||
| 5423 | /// If there are multiple ranges, then this is a "may access". |
||
| 5424 | void addRange(int64_t Offset, int64_t Size) { |
||
| 5425 | Ranges.insert({Offset, Size}); |
||
| 5426 | if (!hasUniqueRange()) { |
||
| 5427 | Kind = AccessKind(Kind | AK_MAY); |
||
| 5428 | Kind = AccessKind(Kind & ~AK_MUST); |
||
| 5429 | } |
||
| 5430 | } |
||
| 5431 | |||
| 5432 | const RangeList &getRanges() const { return Ranges; } |
||
| 5433 | |||
| 5434 | using const_iterator = RangeList::const_iterator; |
||
| 5435 | const_iterator begin() const { return Ranges.begin(); } |
||
| 5436 | const_iterator end() const { return Ranges.end(); } |
||
| 5437 | |||
| 5438 | private: |
||
| 5439 | /// The instruction responsible for the access with respect to the local |
||
| 5440 | /// scope of the associated attribute. |
||
| 5441 | Instruction *LocalI; |
||
| 5442 | |||
| 5443 | /// The instruction responsible for the access. |
||
| 5444 | Instruction *RemoteI; |
||
| 5445 | |||
| 5446 | /// The value written, if any. `llvm::none` means "not known yet", `nullptr` |
||
| 5447 | /// cannot be determined. |
||
| 5448 | std::optional<Value *> Content; |
||
| 5449 | |||
| 5450 | /// Set of potential ranges accessed from the base pointer. |
||
| 5451 | RangeList Ranges; |
||
| 5452 | |||
| 5453 | /// The access kind, e.g., READ, as bitset (could be more than one). |
||
| 5454 | AccessKind Kind; |
||
| 5455 | |||
| 5456 | /// The type of the content, thus the type read/written, can be null if not |
||
| 5457 | /// available. |
||
| 5458 | Type *Ty; |
||
| 5459 | }; |
||
| 5460 | |||
| 5461 | /// Create an abstract attribute view for the position \p IRP. |
||
| 5462 | static AAPointerInfo &createForPosition(const IRPosition &IRP, Attributor &A); |
||
| 5463 | |||
| 5464 | /// See AbstractAttribute::getName() |
||
| 5465 | const std::string getName() const override { return "AAPointerInfo"; } |
||
| 5466 | |||
| 5467 | /// See AbstractAttribute::getIdAddr() |
||
| 5468 | const char *getIdAddr() const override { return &ID; } |
||
| 5469 | |||
| 5470 | /// Call \p CB on all accesses that might interfere with \p Range and return |
||
| 5471 | /// true if all such accesses were known and the callback returned true for |
||
| 5472 | /// all of them, false otherwise. An access interferes with an offset-size |
||
| 5473 | /// pair if it might read or write that memory region. |
||
| 5474 | virtual bool forallInterferingAccesses( |
||
| 5475 | AA::RangeTy Range, function_ref<bool(const Access &, bool)> CB) const = 0; |
||
| 5476 | |||
| 5477 | /// Call \p CB on all accesses that might interfere with \p I and |
||
| 5478 | /// return true if all such accesses were known and the callback returned true |
||
| 5479 | /// for all of them, false otherwise. In contrast to forallInterferingAccesses |
||
| 5480 | /// this function will perform reasoning to exclude write accesses that cannot |
||
| 5481 | /// affect the load even if they on the surface look as if they would. The |
||
| 5482 | /// flag \p HasBeenWrittenTo will be set to true if we know that \p I does not |
||
| 5483 | /// read the intial value of the underlying memory. |
||
| 5484 | virtual bool forallInterferingAccesses( |
||
| 5485 | Attributor &A, const AbstractAttribute &QueryingAA, Instruction &I, |
||
| 5486 | function_ref<bool(const Access &, bool)> CB, bool &HasBeenWrittenTo, |
||
| 5487 | AA::RangeTy &Range) const = 0; |
||
| 5488 | |||
| 5489 | /// This function should return true if the type of the \p AA is AAPointerInfo |
||
| 5490 | static bool classof(const AbstractAttribute *AA) { |
||
| 5491 | return (AA->getIdAddr() == &ID); |
||
| 5492 | } |
||
| 5493 | |||
| 5494 | /// Unique ID (due to the unique address) |
||
| 5495 | static const char ID; |
||
| 5496 | }; |
||
| 5497 | |||
| 5498 | /// An abstract attribute for getting assumption information. |
||
| 5499 | struct AAAssumptionInfo |
||
| 5500 | : public StateWrapper<SetState<StringRef>, AbstractAttribute, |
||
| 5501 | DenseSet<StringRef>> { |
||
| 5502 | using Base = |
||
| 5503 | StateWrapper<SetState<StringRef>, AbstractAttribute, DenseSet<StringRef>>; |
||
| 5504 | |||
| 5505 | AAAssumptionInfo(const IRPosition &IRP, Attributor &A, |
||
| 5506 | const DenseSet<StringRef> &Known) |
||
| 5507 | : Base(IRP, Known) {} |
||
| 5508 | |||
| 5509 | /// Returns true if the assumption set contains the assumption \p Assumption. |
||
| 5510 | virtual bool hasAssumption(const StringRef Assumption) const = 0; |
||
| 5511 | |||
| 5512 | /// Create an abstract attribute view for the position \p IRP. |
||
| 5513 | static AAAssumptionInfo &createForPosition(const IRPosition &IRP, |
||
| 5514 | Attributor &A); |
||
| 5515 | |||
| 5516 | /// See AbstractAttribute::getName() |
||
| 5517 | const std::string getName() const override { return "AAAssumptionInfo"; } |
||
| 5518 | |||
| 5519 | /// See AbstractAttribute::getIdAddr() |
||
| 5520 | const char *getIdAddr() const override { return &ID; } |
||
| 5521 | |||
| 5522 | /// This function should return true if the type of the \p AA is |
||
| 5523 | /// AAAssumptionInfo |
||
| 5524 | static bool classof(const AbstractAttribute *AA) { |
||
| 5525 | return (AA->getIdAddr() == &ID); |
||
| 5526 | } |
||
| 5527 | |||
| 5528 | /// Unique ID (due to the unique address) |
||
| 5529 | static const char ID; |
||
| 5530 | }; |
||
| 5531 | |||
| 5532 | /// An abstract attribute for getting all assumption underlying objects. |
||
| 5533 | struct AAUnderlyingObjects : AbstractAttribute { |
||
| 5534 | AAUnderlyingObjects(const IRPosition &IRP) : AbstractAttribute(IRP) {} |
||
| 5535 | |||
| 5536 | /// Create an abstract attribute biew for the position \p IRP. |
||
| 5537 | static AAUnderlyingObjects &createForPosition(const IRPosition &IRP, |
||
| 5538 | Attributor &A); |
||
| 5539 | |||
| 5540 | /// See AbstractAttribute::getName() |
||
| 5541 | const std::string getName() const override { return "AAUnderlyingObjects"; } |
||
| 5542 | |||
| 5543 | /// See AbstractAttribute::getIdAddr() |
||
| 5544 | const char *getIdAddr() const override { return &ID; } |
||
| 5545 | |||
| 5546 | /// This function should return true if the type of the \p AA is |
||
| 5547 | /// AAUnderlyingObjects. |
||
| 5548 | static bool classof(const AbstractAttribute *AA) { |
||
| 5549 | return (AA->getIdAddr() == &ID); |
||
| 5550 | } |
||
| 5551 | |||
| 5552 | /// Unique ID (due to the unique address) |
||
| 5553 | static const char ID; |
||
| 5554 | |||
| 5555 | /// Check \p Pred on all underlying objects in \p Scope collected so far. |
||
| 5556 | /// |
||
| 5557 | /// This method will evaluate \p Pred on all underlying objects in \p Scope |
||
| 5558 | /// collected so far and return true if \p Pred holds on all of them. |
||
| 5559 | virtual bool |
||
| 5560 | forallUnderlyingObjects(function_ref<bool(Value &)> Pred, |
||
| 5561 | AA::ValueScope Scope = AA::Interprocedural) const = 0; |
||
| 5562 | }; |
||
| 5563 | |||
| 5564 | raw_ostream &operator<<(raw_ostream &, const AAPointerInfo::Access &); |
||
| 5565 | |||
| 5566 | /// Run options, used by the pass manager. |
||
| 5567 | enum AttributorRunOption { |
||
| 5568 | NONE = 0, |
||
| 5569 | MODULE = 1 << 0, |
||
| 5570 | CGSCC = 1 << 1, |
||
| 5571 | ALL = MODULE | CGSCC |
||
| 5572 | }; |
||
| 5573 | |||
| 5574 | } // end namespace llvm |
||
| 5575 | |||
| 5576 | #endif // LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H |