Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- TargetCallingConv.td - Target Calling Conventions ---*- tablegen -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the target-independent interfaces with which targets
10
// describe their calling conventions.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
class CCAction;
15
class CallingConv;
16
 
17
/// CCCustom - Calls a custom arg handling function.
18
class CCCustom<string fn> : CCAction {
19
  string FuncName = fn;
20
}
21
 
22
/// CCPredicateAction - Instances of this class check some predicate, then
23
/// delegate to another action if the predicate is true.
24
class CCPredicateAction<CCAction A> : CCAction {
25
  CCAction SubAction = A;
26
}
27
 
28
/// CCIfType - If the current argument is one of the specified types, apply
29
/// Action A.
30
class CCIfType<list<ValueType> vts, CCAction A> : CCPredicateAction<A> {
31
  list<ValueType> VTs = vts;
32
}
33
 
34
/// CCIf - If the predicate matches, apply A.
35
class CCIf<string predicate, CCAction A> : CCPredicateAction<A> {
36
  string Predicate = predicate;
37
}
38
 
39
/// CCIfByVal - If the current argument has ByVal parameter attribute, apply
40
/// Action A.
41
class CCIfByVal<CCAction A> : CCIf<"ArgFlags.isByVal()", A> {
42
}
43
 
44
/// CCIfPreallocated - If the current argument has Preallocated parameter attribute,
45
/// apply Action A.
46
class CCIfPreallocated<CCAction A> : CCIf<"ArgFlags.isPreallocated()", A> {
47
}
48
 
49
/// CCIfSwiftSelf - If the current argument has swiftself parameter attribute,
50
/// apply Action A.
51
class CCIfSwiftSelf<CCAction A> : CCIf<"ArgFlags.isSwiftSelf()", A> {
52
}
53
 
54
/// CCIfSwiftAsync - If the current argument has swiftasync parameter attribute,
55
/// apply Action A.
56
class CCIfSwiftAsync<CCAction A> : CCIf<"ArgFlags.isSwiftAsync()", A> {
57
}
58
 
59
/// CCIfSwiftError - If the current argument has swifterror parameter attribute,
60
/// apply Action A.
61
class CCIfSwiftError<CCAction A> : CCIf<"ArgFlags.isSwiftError()", A> {
62
}
63
 
64
/// CCIfCFGuardTarget - If the current argument has cfguardtarget parameter
65
/// attribute, apply Action A.
66
class CCIfCFGuardTarget<CCAction A> : CCIf<"ArgFlags.isCFGuardTarget()", A> {
67
}
68
 
69
/// CCIfConsecutiveRegs - If the current argument has InConsecutiveRegs
70
/// parameter attribute, apply Action A.
71
class CCIfConsecutiveRegs<CCAction A> : CCIf<"ArgFlags.isInConsecutiveRegs()", A> {
72
}
73
 
74
/// CCIfCC - Match if the current calling convention is 'CC'.
75
class CCIfCC<string CC, CCAction A>
76
  : CCIf<!strconcat("State.getCallingConv() == ", CC), A> {}
77
 
78
/// CCIfInReg - If this argument is marked with the 'inreg' attribute, apply
79
/// the specified action.
80
class CCIfInReg<CCAction A> : CCIf<"ArgFlags.isInReg()", A> {}
81
 
82
/// CCIfNest - If this argument is marked with the 'nest' attribute, apply
83
/// the specified action.
84
class CCIfNest<CCAction A> : CCIf<"ArgFlags.isNest()", A> {}
85
 
86
/// CCIfSplit - If this argument is marked with the 'split' attribute, apply
87
/// the specified action.
88
class CCIfSplit<CCAction A> : CCIf<"ArgFlags.isSplit()", A> {}
89
 
90
/// CCIfSRet - If this argument is marked with the 'sret' attribute, apply
91
/// the specified action.
92
class CCIfSRet<CCAction A> : CCIf<"ArgFlags.isSRet()", A> {}
93
 
94
/// CCIfVarArg - If the current function is vararg - apply the action
95
class CCIfVarArg<CCAction A> : CCIf<"State.isVarArg()", A> {}
96
 
97
/// CCIfNotVarArg - If the current function is not vararg - apply the action
98
class CCIfNotVarArg<CCAction A> : CCIf<"!State.isVarArg()", A> {}
99
 
100
/// CCIfPtrAddrSpace - If the top-level parent of the current argument has
101
/// pointer type in the specified address-space.
102
class CCIfPtrAddrSpace<int AS, CCAction A>
103
    : CCIf<"(ArgFlags.isPointer() && ArgFlags.getPointerAddrSpace() == " # AS # ")", A> {}
104
 
105
/// CCIfPtr - If the top-level parent of the current argument had
106
/// pointer type in some address-space.
107
class CCIfPtr<CCAction A> : CCIf<"ArgFlags.isPointer()", A> {}
108
 
109
/// CCAssignToReg - This action matches if there is a register in the specified
110
/// list that is still available.  If so, it assigns the value to the first
111
/// available register and succeeds.
112
class CCAssignToReg<list<Register> regList> : CCAction {
113
  list<Register> RegList = regList;
114
}
115
 
116
/// CCAssignToRegWithShadow - Same as CCAssignToReg, but with list of registers
117
/// which became shadowed, when some register is used.
118
class CCAssignToRegWithShadow<list<Register> regList,
119
                              list<Register> shadowList> : CCAction {
120
  list<Register> RegList = regList;
121
  list<Register> ShadowRegList = shadowList;
122
}
123
 
124
/// CCAssignToStack - This action always matches: it assigns the value to a
125
/// stack slot of the specified size and alignment on the stack.  If size is
126
/// zero then the ABI size is used; if align is zero then the ABI alignment
127
/// is used - these may depend on the target or subtarget.
128
class CCAssignToStack<int size, int align> : CCAction {
129
  int Size = size;
130
  int Align = align;
131
}
132
 
133
/// CCAssignToStackWithShadow - Same as CCAssignToStack, but with a list of
134
/// registers to be shadowed. Note that, unlike CCAssignToRegWithShadow, this
135
/// shadows ALL of the registers in shadowList.
136
class CCAssignToStackWithShadow<int size,
137
                                int align,
138
                                list<Register> shadowList> : CCAction {
139
  int Size = size;
140
  int Align = align;
141
  list<Register> ShadowRegList = shadowList;
142
}
143
 
144
/// CCAssignToRegAndStack - Same as CCAssignToReg, but also allocates a stack
145
/// slot, when some register is used. Basically, it works like:
146
/// CCIf<CCAssignToReg<regList>, CCAssignToStack<size, align>>.
147
class CCAssignToRegAndStack<list<Register> regList, int size, int align>
148
    : CCAssignToReg<regList> {
149
  int Size = size;
150
  int Align = align;
151
}
152
 
153
/// CCPassByVal - This action always matches: it assigns the value to a stack
154
/// slot to implement ByVal aggregate parameter passing. Size and alignment
155
/// specify the minimum size and alignment for the stack slot.
156
class CCPassByVal<int size, int align> : CCAction {
157
  int Size = size;
158
  int Align = align;
159
}
160
 
161
/// CCPromoteToType - If applied, this promotes the specified current value to
162
/// the specified type.
163
class CCPromoteToType<ValueType destTy> : CCAction {
164
  ValueType DestTy = destTy;
165
}
166
 
167
/// CCPromoteToUpperBitsInType - If applied, this promotes the specified current
168
/// value to the specified type and shifts the value into the upper bits.
169
class CCPromoteToUpperBitsInType<ValueType destTy> : CCAction {
170
  ValueType DestTy = destTy;
171
}
172
 
173
/// CCBitConvertToType - If applied, this bitconverts the specified current
174
/// value to the specified type.
175
class CCBitConvertToType<ValueType destTy> : CCAction {
176
  ValueType DestTy = destTy;
177
}
178
 
179
/// CCTruncToType - If applied, this truncates the specified current value to
180
/// the specified type.
181
class CCTruncToType<ValueType destTy> : CCAction {
182
  ValueType DestTy = destTy;
183
}
184
 
185
/// CCPassIndirect - If applied, this stores the value to stack and passes the pointer
186
/// as normal argument.
187
class CCPassIndirect<ValueType destTy> : CCAction {
188
  ValueType DestTy = destTy;
189
}
190
 
191
/// CCDelegateTo - This action invokes the specified sub-calling-convention.  It
192
/// is successful if the specified CC matches.
193
class CCDelegateTo<CallingConv cc> : CCAction {
194
  CallingConv CC = cc;
195
}
196
 
197
/// CallingConv - An instance of this is used to define each calling convention
198
/// that the target supports.
199
class CallingConv<list<CCAction> actions> {
200
  list<CCAction> Actions = actions;
201
 
202
  /// If true, this calling convention will be emitted as externally visible in
203
  /// the llvm namespaces instead of as a static function.
204
  bit Entry = false;
205
 
206
  bit Custom = false;
207
}
208
 
209
/// CustomCallingConv - An instance of this is used to declare calling
210
/// conventions that are implemented using a custom function of the same name.
211
class CustomCallingConv : CallingConv<[]> {
212
  let Custom = true;
213
}
214
 
215
/// CalleeSavedRegs - A list of callee saved registers for a given calling
216
/// convention.  The order of registers is used by PrologEpilogInsertion when
217
/// allocation stack slots for saved registers.
218
///
219
/// For each CalleeSavedRegs def, TableGen will emit a FOO_SaveList array for
220
/// returning from getCalleeSavedRegs(), and a FOO_RegMask bit mask suitable for
221
/// returning from getCallPreservedMask().
222
class CalleeSavedRegs<dag saves> {
223
  dag SaveList = saves;
224
 
225
  // Registers that are also preserved across function calls, but should not be
226
  // included in the generated FOO_SaveList array. These registers will be
227
  // included in the FOO_RegMask bit mask. This can be used for registers that
228
  // are saved automatically, like the SPARC register windows.
229
  dag OtherPreserved;
230
}