Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file defines the target-independent interfaces which should be |
||
| 10 | // implemented by each target which is using a TableGen based code generator. |
||
| 11 | // |
||
| 12 | //===----------------------------------------------------------------------===// |
||
| 13 | |||
| 14 | // Include all information about LLVM intrinsics. |
||
| 15 | include "llvm/IR/Intrinsics.td" |
||
| 16 | |||
| 17 | //===----------------------------------------------------------------------===// |
||
| 18 | // Register file description - These classes are used to fill in the target |
||
| 19 | // description classes. |
||
| 20 | |||
| 21 | class HwMode<string FS> { |
||
| 22 | // A string representing subtarget features that turn on this HW mode. |
||
| 23 | // For example, "+feat1,-feat2" will indicate that the mode is active |
||
| 24 | // when "feat1" is enabled and "feat2" is disabled at the same time. |
||
| 25 | // Any other features are not checked. |
||
| 26 | // When multiple modes are used, they should be mutually exclusive, |
||
| 27 | // otherwise the results are unpredictable. |
||
| 28 | string Features = FS; |
||
| 29 | } |
||
| 30 | |||
| 31 | // A special mode recognized by tablegen. This mode is considered active |
||
| 32 | // when no other mode is active. For targets that do not use specific hw |
||
| 33 | // modes, this is the only mode. |
||
| 34 | def DefaultMode : HwMode<"">; |
||
| 35 | |||
| 36 | // A class used to associate objects with HW modes. It is only intended to |
||
| 37 | // be used as a base class, where the derived class should contain a member |
||
| 38 | // "Objects", which is a list of the same length as the list of modes. |
||
| 39 | // The n-th element on the Objects list will be associated with the n-th |
||
| 40 | // element on the Modes list. |
||
| 41 | class HwModeSelect<list<HwMode> Ms> { |
||
| 42 | list<HwMode> Modes = Ms; |
||
| 43 | } |
||
| 44 | |||
| 45 | // A common class that implements a counterpart of ValueType, which is |
||
| 46 | // dependent on a HW mode. This class inherits from ValueType itself, |
||
| 47 | // which makes it possible to use objects of this class where ValueType |
||
| 48 | // objects could be used. This is specifically applicable to selection |
||
| 49 | // patterns. |
||
| 50 | class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts> |
||
| 51 | : HwModeSelect<Ms>, ValueType<0, 0> { |
||
| 52 | // The length of this list must be the same as the length of Ms. |
||
| 53 | list<ValueType> Objects = Ts; |
||
| 54 | } |
||
| 55 | |||
| 56 | // A class representing the register size, spill size and spill alignment |
||
| 57 | // in bits of a register. |
||
| 58 | class RegInfo<int RS, int SS, int SA> { |
||
| 59 | int RegSize = RS; // Register size in bits. |
||
| 60 | int SpillSize = SS; // Spill slot size in bits. |
||
| 61 | int SpillAlignment = SA; // Spill slot alignment in bits. |
||
| 62 | } |
||
| 63 | |||
| 64 | // The register size/alignment information, parameterized by a HW mode. |
||
| 65 | class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []> |
||
| 66 | : HwModeSelect<Ms> { |
||
| 67 | // The length of this list must be the same as the length of Ms. |
||
| 68 | list<RegInfo> Objects = Ts; |
||
| 69 | } |
||
| 70 | |||
| 71 | // SubRegIndex - Use instances of SubRegIndex to identify subregisters. |
||
| 72 | class SubRegIndex<int size, int offset = 0> { |
||
| 73 | string Namespace = ""; |
||
| 74 | |||
| 75 | // Size - Size (in bits) of the sub-registers represented by this index. |
||
| 76 | int Size = size; |
||
| 77 | |||
| 78 | // Offset - Offset of the first bit that is part of this sub-register index. |
||
| 79 | // Set it to -1 if the same index is used to represent sub-registers that can |
||
| 80 | // be at different offsets (for example when using an index to access an |
||
| 81 | // element in a register tuple). |
||
| 82 | int Offset = offset; |
||
| 83 | |||
| 84 | // ComposedOf - A list of two SubRegIndex instances, [A, B]. |
||
| 85 | // This indicates that this SubRegIndex is the result of composing A and B. |
||
| 86 | // See ComposedSubRegIndex. |
||
| 87 | list<SubRegIndex> ComposedOf = []; |
||
| 88 | |||
| 89 | // CoveringSubRegIndices - A list of two or more sub-register indexes that |
||
| 90 | // cover this sub-register. |
||
| 91 | // |
||
| 92 | // This field should normally be left blank as TableGen can infer it. |
||
| 93 | // |
||
| 94 | // TableGen automatically detects sub-registers that straddle the registers |
||
| 95 | // in the SubRegs field of a Register definition. For example: |
||
| 96 | // |
||
| 97 | // Q0 = dsub_0 -> D0, dsub_1 -> D1 |
||
| 98 | // Q1 = dsub_0 -> D2, dsub_1 -> D3 |
||
| 99 | // D1_D2 = dsub_0 -> D1, dsub_1 -> D2 |
||
| 100 | // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1 |
||
| 101 | // |
||
| 102 | // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given |
||
| 103 | // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with |
||
| 104 | // CoveringSubRegIndices = [dsub_1, dsub_2]. |
||
| 105 | list<SubRegIndex> CoveringSubRegIndices = []; |
||
| 106 | } |
||
| 107 | |||
| 108 | // ComposedSubRegIndex - A sub-register that is the result of composing A and B. |
||
| 109 | // Offset is set to the sum of A and B's Offsets. Size is set to B's Size. |
||
| 110 | class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B> |
||
| 111 | : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1, |
||
| 112 | !eq(B.Offset, -1): -1, |
||
| 113 | true: !add(A.Offset, B.Offset))> { |
||
| 114 | // See SubRegIndex. |
||
| 115 | let ComposedOf = [A, B]; |
||
| 116 | } |
||
| 117 | |||
| 118 | // RegAltNameIndex - The alternate name set to use for register operands of |
||
| 119 | // this register class when printing. |
||
| 120 | class RegAltNameIndex { |
||
| 121 | string Namespace = ""; |
||
| 122 | |||
| 123 | // A set to be used if the name for a register is not defined in this set. |
||
| 124 | // This allows creating name sets with only a few alternative names. |
||
| 125 | RegAltNameIndex FallbackRegAltNameIndex = ?; |
||
| 126 | } |
||
| 127 | def NoRegAltName : RegAltNameIndex; |
||
| 128 | |||
| 129 | // Register - You should define one instance of this class for each register |
||
| 130 | // in the target machine. String n will become the "name" of the register. |
||
| 131 | class Register<string n, list<string> altNames = []> { |
||
| 132 | string Namespace = ""; |
||
| 133 | string AsmName = n; |
||
| 134 | list<string> AltNames = altNames; |
||
| 135 | |||
| 136 | // Aliases - A list of registers that this register overlaps with. A read or |
||
| 137 | // modification of this register can potentially read or modify the aliased |
||
| 138 | // registers. |
||
| 139 | list<Register> Aliases = []; |
||
| 140 | |||
| 141 | // SubRegs - A list of registers that are parts of this register. Note these |
||
| 142 | // are "immediate" sub-registers and the registers within the list do not |
||
| 143 | // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX], |
||
| 144 | // not [AX, AH, AL]. |
||
| 145 | list<Register> SubRegs = []; |
||
| 146 | |||
| 147 | // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used |
||
| 148 | // to address it. Sub-sub-register indices are automatically inherited from |
||
| 149 | // SubRegs. |
||
| 150 | list<SubRegIndex> SubRegIndices = []; |
||
| 151 | |||
| 152 | // RegAltNameIndices - The alternate name indices which are valid for this |
||
| 153 | // register. |
||
| 154 | list<RegAltNameIndex> RegAltNameIndices = []; |
||
| 155 | |||
| 156 | // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. |
||
| 157 | // These values can be determined by locating the <target>.h file in the |
||
| 158 | // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
||
| 159 | // order of these names correspond to the enumeration used by gcc. A value of |
||
| 160 | // -1 indicates that the gcc number is undefined and -2 that register number |
||
| 161 | // is invalid for this mode/flavour. |
||
| 162 | list<int> DwarfNumbers = []; |
||
| 163 | |||
| 164 | // CostPerUse - Additional cost of instructions using this register compared |
||
| 165 | // to other registers in its class. The register allocator will try to |
||
| 166 | // minimize the number of instructions using a register with a CostPerUse. |
||
| 167 | // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where |
||
| 168 | // some registers require larger instruction encodings, by the RISC-V target, |
||
| 169 | // where some registers preclude using some C instructions. By making it a |
||
| 170 | // list, targets can have multiple cost models associated with each register |
||
| 171 | // and can choose one specific cost model per Machine Function by overriding |
||
| 172 | // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will |
||
| 173 | // finally have an equal number of cost values which is the max of costPerUse |
||
| 174 | // values specified. Any mismatch in the cost values for a register will be |
||
| 175 | // filled with zeros. Restricted the cost type to uint8_t in the |
||
| 176 | // generated table. It will considerably reduce the table size. |
||
| 177 | list<int> CostPerUse = [0]; |
||
| 178 | |||
| 179 | // CoveredBySubRegs - When this bit is set, the value of this register is |
||
| 180 | // completely determined by the value of its sub-registers. For example, the |
||
| 181 | // x86 register AX is covered by its sub-registers AL and AH, but EAX is not |
||
| 182 | // covered by its sub-register AX. |
||
| 183 | bit CoveredBySubRegs = false; |
||
| 184 | |||
| 185 | // HWEncoding - The target specific hardware encoding for this register. |
||
| 186 | bits<16> HWEncoding = 0; |
||
| 187 | |||
| 188 | bit isArtificial = false; |
||
| 189 | |||
| 190 | // isConstant - This register always holds a constant value (e.g. the zero |
||
| 191 | // register in architectures such as MIPS) |
||
| 192 | bit isConstant = false; |
||
| 193 | } |
||
| 194 | |||
| 195 | // RegisterWithSubRegs - This can be used to define instances of Register which |
||
| 196 | // need to specify sub-registers. |
||
| 197 | // List "subregs" specifies which registers are sub-registers to this one. This |
||
| 198 | // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc. |
||
| 199 | // This allows the code generator to be careful not to put two values with |
||
| 200 | // overlapping live ranges into registers which alias. |
||
| 201 | class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { |
||
| 202 | let SubRegs = subregs; |
||
| 203 | } |
||
| 204 | |||
| 205 | // DAGOperand - An empty base class that unifies RegisterClass's and other forms |
||
| 206 | // of Operand's that are legal as type qualifiers in DAG patterns. This should |
||
| 207 | // only ever be used for defining multiclasses that are polymorphic over both |
||
| 208 | // RegisterClass's and other Operand's. |
||
| 209 | class DAGOperand { |
||
| 210 | string OperandNamespace = "MCOI"; |
||
| 211 | string DecoderMethod = ""; |
||
| 212 | } |
||
| 213 | |||
| 214 | // RegisterClass - Now that all of the registers are defined, and aliases |
||
| 215 | // between registers are defined, specify which registers belong to which |
||
| 216 | // register classes. This also defines the default allocation order of |
||
| 217 | // registers by register allocators. |
||
| 218 | // |
||
| 219 | class RegisterClass<string namespace, list<ValueType> regTypes, int alignment, |
||
| 220 | dag regList, RegAltNameIndex idx = NoRegAltName> |
||
| 221 | : DAGOperand { |
||
| 222 | string Namespace = namespace; |
||
| 223 | |||
| 224 | // The register size/alignment information, parameterized by a HW mode. |
||
| 225 | RegInfoByHwMode RegInfos; |
||
| 226 | |||
| 227 | // RegType - Specify the list ValueType of the registers in this register |
||
| 228 | // class. Note that all registers in a register class must have the same |
||
| 229 | // ValueTypes. This is a list because some targets permit storing different |
||
| 230 | // types in same register, for example vector values with 128-bit total size, |
||
| 231 | // but different count/size of items, like SSE on x86. |
||
| 232 | // |
||
| 233 | list<ValueType> RegTypes = regTypes; |
||
| 234 | |||
| 235 | // Size - Specify the spill size in bits of the registers. A default value of |
||
| 236 | // zero lets tablegen pick an appropriate size. |
||
| 237 | int Size = 0; |
||
| 238 | |||
| 239 | // Alignment - Specify the alignment required of the registers when they are |
||
| 240 | // stored or loaded to memory. |
||
| 241 | // |
||
| 242 | int Alignment = alignment; |
||
| 243 | |||
| 244 | // CopyCost - This value is used to specify the cost of copying a value |
||
| 245 | // between two registers in this register class. The default value is one |
||
| 246 | // meaning it takes a single instruction to perform the copying. A negative |
||
| 247 | // value means copying is extremely expensive or impossible. |
||
| 248 | int CopyCost = 1; |
||
| 249 | |||
| 250 | // MemberList - Specify which registers are in this class. If the |
||
| 251 | // allocation_order_* method are not specified, this also defines the order of |
||
| 252 | // allocation used by the register allocator. |
||
| 253 | // |
||
| 254 | dag MemberList = regList; |
||
| 255 | |||
| 256 | // AltNameIndex - The alternate register name to use when printing operands |
||
| 257 | // of this register class. Every register in the register class must have |
||
| 258 | // a valid alternate name for the given index. |
||
| 259 | RegAltNameIndex altNameIndex = idx; |
||
| 260 | |||
| 261 | // isAllocatable - Specify that the register class can be used for virtual |
||
| 262 | // registers and register allocation. Some register classes are only used to |
||
| 263 | // model instruction operand constraints, and should have isAllocatable = 0. |
||
| 264 | bit isAllocatable = true; |
||
| 265 | |||
| 266 | // AltOrders - List of alternative allocation orders. The default order is |
||
| 267 | // MemberList itself, and that is good enough for most targets since the |
||
| 268 | // register allocators automatically remove reserved registers and move |
||
| 269 | // callee-saved registers to the end. |
||
| 270 | list<dag> AltOrders = []; |
||
| 271 | |||
| 272 | // AltOrderSelect - The body of a function that selects the allocation order |
||
| 273 | // to use in a given machine function. The code will be inserted in a |
||
| 274 | // function like this: |
||
| 275 | // |
||
| 276 | // static inline unsigned f(const MachineFunction &MF) { ... } |
||
| 277 | // |
||
| 278 | // The function should return 0 to select the default order defined by |
||
| 279 | // MemberList, 1 to select the first AltOrders entry and so on. |
||
| 280 | code AltOrderSelect = [{}]; |
||
| 281 | |||
| 282 | // Specify allocation priority for register allocators using a greedy |
||
| 283 | // heuristic. Classes with higher priority values are assigned first. This is |
||
| 284 | // useful as it is sometimes beneficial to assign registers to highly |
||
| 285 | // constrained classes first. The value has to be in the range [0,31]. |
||
| 286 | int AllocationPriority = 0; |
||
| 287 | |||
| 288 | // Force register class to use greedy's global heuristic for all |
||
| 289 | // registers in this class. This should more aggressively try to |
||
| 290 | // avoid spilling in pathological cases. |
||
| 291 | bit GlobalPriority = false; |
||
| 292 | |||
| 293 | // Generate register pressure set for this register class and any class |
||
| 294 | // synthesized from it. Set to 0 to inhibit unneeded pressure sets. |
||
| 295 | bit GeneratePressureSet = true; |
||
| 296 | |||
| 297 | // Weight override for register pressure calculation. This is the value |
||
| 298 | // TargetRegisterClass::getRegClassWeight() will return. The weight is in |
||
| 299 | // units of pressure for this register class. If unset tablegen will |
||
| 300 | // calculate a weight based on a number of register units in this register |
||
| 301 | // class registers. The weight is per register. |
||
| 302 | int Weight = ?; |
||
| 303 | |||
| 304 | // The diagnostic type to present when referencing this operand in a match |
||
| 305 | // failure error message. If this is empty, the default Match_InvalidOperand |
||
| 306 | // diagnostic type will be used. If this is "<name>", a Match_<name> enum |
||
| 307 | // value will be generated and used for this operand type. The target |
||
| 308 | // assembly parser is responsible for converting this into a user-facing |
||
| 309 | // diagnostic message. |
||
| 310 | string DiagnosticType = ""; |
||
| 311 | |||
| 312 | // A diagnostic message to emit when an invalid value is provided for this |
||
| 313 | // register class when it is being used an an assembly operand. If this is |
||
| 314 | // non-empty, an anonymous diagnostic type enum value will be generated, and |
||
| 315 | // the assembly matcher will provide a function to map from diagnostic types |
||
| 316 | // to message strings. |
||
| 317 | string DiagnosticString = ""; |
||
| 318 | |||
| 319 | // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass. |
||
| 320 | bits<8> TSFlags = 0; |
||
| 321 | |||
| 322 | // If set then consider this register class to be the base class for registers in |
||
| 323 | // its MemberList. The base class for registers present in multiple base register |
||
| 324 | // classes will be resolved in the order defined by this value, with lower values |
||
| 325 | // taking precedence over higher ones. Ties are resolved by enumeration order. |
||
| 326 | int BaseClassOrder = ?; |
||
| 327 | } |
||
| 328 | |||
| 329 | // The memberList in a RegisterClass is a dag of set operations. TableGen |
||
| 330 | // evaluates these set operations and expand them into register lists. These |
||
| 331 | // are the most common operation, see test/TableGen/SetTheory.td for more |
||
| 332 | // examples of what is possible: |
||
| 333 | // |
||
| 334 | // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a |
||
| 335 | // register class, or a sub-expression. This is also the way to simply list |
||
| 336 | // registers. |
||
| 337 | // |
||
| 338 | // (sub GPR, SP) - Set difference. Subtract the last arguments from the first. |
||
| 339 | // |
||
| 340 | // (and GPR, CSR) - Set intersection. All registers from the first set that are |
||
| 341 | // also in the second set. |
||
| 342 | // |
||
| 343 | // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of |
||
| 344 | // numbered registers. Takes an optional 4th operand which is a stride to use |
||
| 345 | // when generating the sequence. |
||
| 346 | // |
||
| 347 | // (shl GPR, 4) - Remove the first N elements. |
||
| 348 | // |
||
| 349 | // (trunc GPR, 4) - Truncate after the first N elements. |
||
| 350 | // |
||
| 351 | // (rotl GPR, 1) - Rotate N places to the left. |
||
| 352 | // |
||
| 353 | // (rotr GPR, 1) - Rotate N places to the right. |
||
| 354 | // |
||
| 355 | // (decimate GPR, 2) - Pick every N'th element, starting with the first. |
||
| 356 | // |
||
| 357 | // (interleave A, B, ...) - Interleave the elements from each argument list. |
||
| 358 | // |
||
| 359 | // All of these operators work on ordered sets, not lists. That means |
||
| 360 | // duplicates are removed from sub-expressions. |
||
| 361 | |||
| 362 | // Set operators. The rest is defined in TargetSelectionDAG.td. |
||
| 363 | def sequence; |
||
| 364 | def decimate; |
||
| 365 | def interleave; |
||
| 366 | |||
| 367 | // RegisterTuples - Automatically generate super-registers by forming tuples of |
||
| 368 | // sub-registers. This is useful for modeling register sequence constraints |
||
| 369 | // with pseudo-registers that are larger than the architectural registers. |
||
| 370 | // |
||
| 371 | // The sub-register lists are zipped together: |
||
| 372 | // |
||
| 373 | // def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>; |
||
| 374 | // |
||
| 375 | // Generates the same registers as: |
||
| 376 | // |
||
| 377 | // let SubRegIndices = [sube, subo] in { |
||
| 378 | // def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>; |
||
| 379 | // def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>; |
||
| 380 | // } |
||
| 381 | // |
||
| 382 | // The generated pseudo-registers inherit super-classes and fields from their |
||
| 383 | // first sub-register. Most fields from the Register class are inferred, and |
||
| 384 | // the AsmName and Dwarf numbers are cleared. |
||
| 385 | // |
||
| 386 | // RegisterTuples instances can be used in other set operations to form |
||
| 387 | // register classes and so on. This is the only way of using the generated |
||
| 388 | // registers. |
||
| 389 | // |
||
| 390 | // RegNames may be specified to supply asm names for the generated tuples. |
||
| 391 | // If used must have the same size as the list of produced registers. |
||
| 392 | class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs, |
||
| 393 | list<string> RegNames = []> { |
||
| 394 | // SubRegs - N lists of registers to be zipped up. Super-registers are |
||
| 395 | // synthesized from the first element of each SubRegs list, the second |
||
| 396 | // element and so on. |
||
| 397 | list<dag> SubRegs = Regs; |
||
| 398 | |||
| 399 | // SubRegIndices - N SubRegIndex instances. This provides the names of the |
||
| 400 | // sub-registers in the synthesized super-registers. |
||
| 401 | list<SubRegIndex> SubRegIndices = Indices; |
||
| 402 | |||
| 403 | // List of asm names for the generated tuple registers. |
||
| 404 | list<string> RegAsmNames = RegNames; |
||
| 405 | } |
||
| 406 | |||
| 407 | // RegisterCategory - This class is a list of RegisterClasses that belong to a |
||
| 408 | // general cateogry --- e.g. "general purpose" or "fixed" registers. This is |
||
| 409 | // useful for identifying registers in a generic way instead of having |
||
| 410 | // information about a specific target's registers. |
||
| 411 | class RegisterCategory<list<RegisterClass> classes> { |
||
| 412 | // Classes - A list of register classes that fall within the category. |
||
| 413 | list<RegisterClass> Classes = classes; |
||
| 414 | } |
||
| 415 | |||
| 416 | //===----------------------------------------------------------------------===// |
||
| 417 | // DwarfRegNum - This class provides a mapping of the llvm register enumeration |
||
| 418 | // to the register numbering used by gcc and gdb. These values are used by a |
||
| 419 | // debug information writer to describe where values may be located during |
||
| 420 | // execution. |
||
| 421 | class DwarfRegNum<list<int> Numbers> { |
||
| 422 | // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. |
||
| 423 | // These values can be determined by locating the <target>.h file in the |
||
| 424 | // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
||
| 425 | // order of these names correspond to the enumeration used by gcc. A value of |
||
| 426 | // -1 indicates that the gcc number is undefined and -2 that register number |
||
| 427 | // is invalid for this mode/flavour. |
||
| 428 | list<int> DwarfNumbers = Numbers; |
||
| 429 | } |
||
| 430 | |||
| 431 | // DwarfRegAlias - This class declares that a given register uses the same dwarf |
||
| 432 | // numbers as another one. This is useful for making it clear that the two |
||
| 433 | // registers do have the same number. It also lets us build a mapping |
||
| 434 | // from dwarf register number to llvm register. |
||
| 435 | class DwarfRegAlias<Register reg> { |
||
| 436 | Register DwarfAlias = reg; |
||
| 437 | } |
||
| 438 | |||
| 439 | //===----------------------------------------------------------------------===// |
||
| 440 | // Pull in the common support for MCPredicate (portable scheduling predicates). |
||
| 441 | // |
||
| 442 | include "llvm/Target/TargetInstrPredicate.td" |
||
| 443 | |||
| 444 | //===----------------------------------------------------------------------===// |
||
| 445 | // Pull in the common support for scheduling |
||
| 446 | // |
||
| 447 | include "llvm/Target/TargetSchedule.td" |
||
| 448 | |||
| 449 | class Predicate; // Forward def |
||
| 450 | |||
| 451 | class InstructionEncoding { |
||
| 452 | // Size of encoded instruction. |
||
| 453 | int Size; |
||
| 454 | |||
| 455 | // The "namespace" in which this instruction exists, on targets like ARM |
||
| 456 | // which multiple ISA namespaces exist. |
||
| 457 | string DecoderNamespace = ""; |
||
| 458 | |||
| 459 | // List of predicates which will be turned into isel matching code. |
||
| 460 | list<Predicate> Predicates = []; |
||
| 461 | |||
| 462 | string DecoderMethod = ""; |
||
| 463 | |||
| 464 | // Is the instruction decoder method able to completely determine if the |
||
| 465 | // given instruction is valid or not. If the TableGen definition of the |
||
| 466 | // instruction specifies bitpattern A??B where A and B are static bits, the |
||
| 467 | // hasCompleteDecoder flag says whether the decoder method fully handles the |
||
| 468 | // ?? space, i.e. if it is a final arbiter for the instruction validity. |
||
| 469 | // If not then the decoder attempts to continue decoding when the decoder |
||
| 470 | // method fails. |
||
| 471 | // |
||
| 472 | // This allows to handle situations where the encoding is not fully |
||
| 473 | // orthogonal. Example: |
||
| 474 | // * InstA with bitpattern 0b0000????, |
||
| 475 | // * InstB with bitpattern 0b000000?? but the associated decoder method |
||
| 476 | // DecodeInstB() returns Fail when ?? is 0b00 or 0b11. |
||
| 477 | // |
||
| 478 | // The decoder tries to decode a bitpattern that matches both InstA and |
||
| 479 | // InstB bitpatterns first as InstB (because it is the most specific |
||
| 480 | // encoding). In the default case (hasCompleteDecoder = 1), when |
||
| 481 | // DecodeInstB() returns Fail the bitpattern gets rejected. By setting |
||
| 482 | // hasCompleteDecoder = 0 in InstB, the decoder is informed that |
||
| 483 | // DecodeInstB() is not able to determine if all possible values of ?? are |
||
| 484 | // valid or not. If DecodeInstB() returns Fail the decoder will attempt to |
||
| 485 | // decode the bitpattern as InstA too. |
||
| 486 | bit hasCompleteDecoder = true; |
||
| 487 | } |
||
| 488 | |||
| 489 | // Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies |
||
| 490 | // an EncodingByHwMode, its Inst and Size members are ignored and Ts are used |
||
| 491 | // to encode and decode based on HwMode. |
||
| 492 | class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []> |
||
| 493 | : HwModeSelect<Ms> { |
||
| 494 | // The length of this list must be the same as the length of Ms. |
||
| 495 | list<InstructionEncoding> Objects = Ts; |
||
| 496 | } |
||
| 497 | |||
| 498 | //===----------------------------------------------------------------------===// |
||
| 499 | // Instruction set description - These classes correspond to the C++ classes in |
||
| 500 | // the Target/TargetInstrInfo.h file. |
||
| 501 | // |
||
| 502 | class Instruction : InstructionEncoding { |
||
| 503 | string Namespace = ""; |
||
| 504 | |||
| 505 | dag OutOperandList; // An dag containing the MI def operand list. |
||
| 506 | dag InOperandList; // An dag containing the MI use operand list. |
||
| 507 | string AsmString = ""; // The .s format to print the instruction with. |
||
| 508 | |||
| 509 | // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty, |
||
| 510 | // the Inst member of this Instruction is ignored. |
||
| 511 | EncodingByHwMode EncodingInfos; |
||
| 512 | |||
| 513 | // Pattern - Set to the DAG pattern for this instruction, if we know of one, |
||
| 514 | // otherwise, uninitialized. |
||
| 515 | list<dag> Pattern; |
||
| 516 | |||
| 517 | // The follow state will eventually be inferred automatically from the |
||
| 518 | // instruction pattern. |
||
| 519 | |||
| 520 | list<Register> Uses = []; // Default to using no non-operand registers |
||
| 521 | list<Register> Defs = []; // Default to modifying no non-operand registers |
||
| 522 | |||
| 523 | // Predicates - List of predicates which will be turned into isel matching |
||
| 524 | // code. |
||
| 525 | list<Predicate> Predicates = []; |
||
| 526 | |||
| 527 | // Size - Size of encoded instruction, or zero if the size cannot be determined |
||
| 528 | // from the opcode. |
||
| 529 | int Size = 0; |
||
| 530 | |||
| 531 | // Code size, for instruction selection. |
||
| 532 | // FIXME: What does this actually mean? |
||
| 533 | int CodeSize = 0; |
||
| 534 | |||
| 535 | // Added complexity passed onto matching pattern. |
||
| 536 | int AddedComplexity = 0; |
||
| 537 | |||
| 538 | // Indicates if this is a pre-isel opcode that should be |
||
| 539 | // legalized/regbankselected/selected. |
||
| 540 | bit isPreISelOpcode = false; |
||
| 541 | |||
| 542 | // These bits capture information about the high-level semantics of the |
||
| 543 | // instruction. |
||
| 544 | bit isReturn = false; // Is this instruction a return instruction? |
||
| 545 | bit isBranch = false; // Is this instruction a branch instruction? |
||
| 546 | bit isEHScopeReturn = false; // Does this instruction end an EH scope? |
||
| 547 | bit isIndirectBranch = false; // Is this instruction an indirect branch? |
||
| 548 | bit isCompare = false; // Is this instruction a comparison instruction? |
||
| 549 | bit isMoveImm = false; // Is this instruction a move immediate instruction? |
||
| 550 | bit isMoveReg = false; // Is this instruction a move register instruction? |
||
| 551 | bit isBitcast = false; // Is this instruction a bitcast instruction? |
||
| 552 | bit isSelect = false; // Is this instruction a select instruction? |
||
| 553 | bit isBarrier = false; // Can control flow fall through this instruction? |
||
| 554 | bit isCall = false; // Is this instruction a call instruction? |
||
| 555 | bit isAdd = false; // Is this instruction an add instruction? |
||
| 556 | bit isTrap = false; // Is this instruction a trap instruction? |
||
| 557 | bit canFoldAsLoad = false; // Can this be folded as a simple memory operand? |
||
| 558 | bit mayLoad = ?; // Is it possible for this inst to read memory? |
||
| 559 | bit mayStore = ?; // Is it possible for this inst to write memory? |
||
| 560 | bit mayRaiseFPException = false; // Can this raise a floating-point exception? |
||
| 561 | bit isConvertibleToThreeAddress = false; // Can this 2-addr instruction promote? |
||
| 562 | bit isCommutable = false; // Is this 3 operand instruction commutable? |
||
| 563 | bit isTerminator = false; // Is this part of the terminator for a basic block? |
||
| 564 | bit isReMaterializable = false; // Is this instruction re-materializable? |
||
| 565 | bit isPredicable = false; // 1 means this instruction is predicable |
||
| 566 | // even if it does not have any operand |
||
| 567 | // tablegen can identify as a predicate |
||
| 568 | bit isUnpredicable = false; // 1 means this instruction is not predicable |
||
| 569 | // even if it _does_ have a predicate operand |
||
| 570 | bit hasDelaySlot = false; // Does this instruction have an delay slot? |
||
| 571 | bit usesCustomInserter = false; // Pseudo instr needing special help. |
||
| 572 | bit hasPostISelHook = false; // To be *adjusted* after isel by target hook. |
||
| 573 | bit hasCtrlDep = false; // Does this instruction r/w ctrl-flow chains? |
||
| 574 | bit isNotDuplicable = false; // Is it unsafe to duplicate this instruction? |
||
| 575 | bit isConvergent = false; // Is this instruction convergent? |
||
| 576 | bit isAuthenticated = false; // Does this instruction authenticate a pointer? |
||
| 577 | bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction. |
||
| 578 | bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement? |
||
| 579 | bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement? |
||
| 580 | bit isRegSequence = false; // Is this instruction a kind of reg sequence? |
||
| 581 | // If so, make sure to override |
||
| 582 | // TargetInstrInfo::getRegSequenceLikeInputs. |
||
| 583 | bit isPseudo = false; // Is this instruction a pseudo-instruction? |
||
| 584 | // If so, won't have encoding information for |
||
| 585 | // the [MC]CodeEmitter stuff. |
||
| 586 | bit isMeta = false; // Is this instruction a meta-instruction? |
||
| 587 | // If so, won't produce any output in the form of |
||
| 588 | // executable instructions |
||
| 589 | bit isExtractSubreg = false; // Is this instruction a kind of extract subreg? |
||
| 590 | // If so, make sure to override |
||
| 591 | // TargetInstrInfo::getExtractSubregLikeInputs. |
||
| 592 | bit isInsertSubreg = false; // Is this instruction a kind of insert subreg? |
||
| 593 | // If so, make sure to override |
||
| 594 | // TargetInstrInfo::getInsertSubregLikeInputs. |
||
| 595 | bit variadicOpsAreDefs = false; // Are variadic operands definitions? |
||
| 596 | |||
| 597 | // Does the instruction have side effects that are not captured by any |
||
| 598 | // operands of the instruction or other flags? |
||
| 599 | bit hasSideEffects = ?; |
||
| 600 | |||
| 601 | // Is this instruction a "real" instruction (with a distinct machine |
||
| 602 | // encoding), or is it a pseudo instruction used for codegen modeling |
||
| 603 | // purposes. |
||
| 604 | // FIXME: For now this is distinct from isPseudo, above, as code-gen-only |
||
| 605 | // instructions can (and often do) still have encoding information |
||
| 606 | // associated with them. Once we've migrated all of them over to true |
||
| 607 | // pseudo-instructions that are lowered to real instructions prior to |
||
| 608 | // the printer/emitter, we can remove this attribute and just use isPseudo. |
||
| 609 | // |
||
| 610 | // The intended use is: |
||
| 611 | // isPseudo: Does not have encoding information and should be expanded, |
||
| 612 | // at the latest, during lowering to MCInst. |
||
| 613 | // |
||
| 614 | // isCodeGenOnly: Does have encoding information and can go through to the |
||
| 615 | // CodeEmitter unchanged, but duplicates a canonical instruction |
||
| 616 | // definition's encoding and should be ignored when constructing the |
||
| 617 | // assembler match tables. |
||
| 618 | bit isCodeGenOnly = false; |
||
| 619 | |||
| 620 | // Is this instruction a pseudo instruction for use by the assembler parser. |
||
| 621 | bit isAsmParserOnly = false; |
||
| 622 | |||
| 623 | // This instruction is not expected to be queried for scheduling latencies |
||
| 624 | // and therefore needs no scheduling information even for a complete |
||
| 625 | // scheduling model. |
||
| 626 | bit hasNoSchedulingInfo = false; |
||
| 627 | |||
| 628 | InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling. |
||
| 629 | |||
| 630 | // Scheduling information from TargetSchedule.td. |
||
| 631 | list<SchedReadWrite> SchedRW; |
||
| 632 | |||
| 633 | string Constraints = ""; // OperandConstraint, e.g. $src = $dst. |
||
| 634 | |||
| 635 | /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not |
||
| 636 | /// be encoded into the output machineinstr. |
||
| 637 | string DisableEncoding = ""; |
||
| 638 | |||
| 639 | string PostEncoderMethod = ""; |
||
| 640 | |||
| 641 | /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc. |
||
| 642 | bits<64> TSFlags = 0; |
||
| 643 | |||
| 644 | ///@name Assembler Parser Support |
||
| 645 | ///@{ |
||
| 646 | |||
| 647 | string AsmMatchConverter = ""; |
||
| 648 | |||
| 649 | /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a |
||
| 650 | /// two-operand matcher inst-alias for a three operand instruction. |
||
| 651 | /// For example, the arm instruction "add r3, r3, r5" can be written |
||
| 652 | /// as "add r3, r5". The constraint is of the same form as a tied-operand |
||
| 653 | /// constraint. For example, "$Rn = $Rd". |
||
| 654 | string TwoOperandAliasConstraint = ""; |
||
| 655 | |||
| 656 | /// Assembler variant name to use for this instruction. If specified then |
||
| 657 | /// instruction will be presented only in MatchTable for this variant. If |
||
| 658 | /// not specified then assembler variants will be determined based on |
||
| 659 | /// AsmString |
||
| 660 | string AsmVariantName = ""; |
||
| 661 | |||
| 662 | ///@} |
||
| 663 | |||
| 664 | /// UseNamedOperandTable - If set, the operand indices of this instruction |
||
| 665 | /// can be queried via the getNamedOperandIdx() function which is generated |
||
| 666 | /// by TableGen. |
||
| 667 | bit UseNamedOperandTable = false; |
||
| 668 | |||
| 669 | /// Should generate helper functions that help you to map a logical operand's |
||
| 670 | /// index to the underlying MIOperand's index. |
||
| 671 | /// In most architectures logical operand indicies are equal to |
||
| 672 | /// MIOperand indicies, but for some CISC architectures, a logical operand |
||
| 673 | /// might be consist of multiple MIOperand (e.g. a logical operand that |
||
| 674 | /// uses complex address mode). |
||
| 675 | bit UseLogicalOperandMappings = false; |
||
| 676 | |||
| 677 | /// Should FastISel ignore this instruction. For certain ISAs, they have |
||
| 678 | /// instructions which map to the same ISD Opcode, value type operands and |
||
| 679 | /// instruction selection predicates. FastISel cannot handle such cases, but |
||
| 680 | /// SelectionDAG can. |
||
| 681 | bit FastISelShouldIgnore = false; |
||
| 682 | |||
| 683 | /// HasPositionOrder: Indicate tablegen to sort the instructions by record |
||
| 684 | /// ID, so that instruction that is defined earlier can be sorted earlier |
||
| 685 | /// in the assembly matching table. |
||
| 686 | bit HasPositionOrder = false; |
||
| 687 | } |
||
| 688 | |||
| 689 | /// Defines a Pat match between compressed and uncompressed instruction. |
||
| 690 | /// The relationship and helper function generation are handled by |
||
| 691 | /// CompressInstEmitter backend. |
||
| 692 | class CompressPat<dag input, dag output, list<Predicate> predicates = []> { |
||
| 693 | /// Uncompressed instruction description. |
||
| 694 | dag Input = input; |
||
| 695 | /// Compressed instruction description. |
||
| 696 | dag Output = output; |
||
| 697 | /// Predicates that must be true for this to match. |
||
| 698 | list<Predicate> Predicates = predicates; |
||
| 699 | /// Duplicate match when tied operand is just different. |
||
| 700 | bit isCompressOnly = false; |
||
| 701 | } |
||
| 702 | |||
| 703 | /// Defines an additional encoding that disassembles to the given instruction |
||
| 704 | /// Like Instruction, the Inst and SoftFail fields are omitted to allow targets |
||
| 705 | // to specify their size. |
||
| 706 | class AdditionalEncoding<Instruction I> : InstructionEncoding { |
||
| 707 | Instruction AliasOf = I; |
||
| 708 | } |
||
| 709 | |||
| 710 | /// PseudoInstExpansion - Expansion information for a pseudo-instruction. |
||
| 711 | /// Which instruction it expands to and how the operands map from the |
||
| 712 | /// pseudo. |
||
| 713 | class PseudoInstExpansion<dag Result> { |
||
| 714 | dag ResultInst = Result; // The instruction to generate. |
||
| 715 | bit isPseudo = true; |
||
| 716 | } |
||
| 717 | |||
| 718 | /// Predicates - These are extra conditionals which are turned into instruction |
||
| 719 | /// selector matching code. Currently each predicate is just a string. |
||
| 720 | class Predicate<string cond> { |
||
| 721 | string CondString = cond; |
||
| 722 | |||
| 723 | /// AssemblerMatcherPredicate - If this feature can be used by the assembler |
||
| 724 | /// matcher, this is true. Targets should set this by inheriting their |
||
| 725 | /// feature from the AssemblerPredicate class in addition to Predicate. |
||
| 726 | bit AssemblerMatcherPredicate = false; |
||
| 727 | |||
| 728 | /// AssemblerCondDag - Set of subtarget features being tested used |
||
| 729 | /// as alternative condition string used for assembler matcher. Must be used |
||
| 730 | /// with (all_of) to indicate that all features must be present, or (any_of) |
||
| 731 | /// to indicate that at least one must be. The required lack of presence of |
||
| 732 | /// a feature can be tested using a (not) node including the feature. |
||
| 733 | /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0". |
||
| 734 | /// "(all_of (not ModeThumb))" is translated to |
||
| 735 | /// "(Bits & ModeThumb) == 0". |
||
| 736 | /// "(all_of ModeThumb, FeatureThumb2)" is translated to |
||
| 737 | /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0". |
||
| 738 | /// "(any_of ModeTumb, FeatureThumb2)" is translated to |
||
| 739 | /// "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0". |
||
| 740 | /// all_of and any_of cannot be combined in a single dag, instead multiple |
||
| 741 | /// predicates can be placed onto Instruction definitions. |
||
| 742 | dag AssemblerCondDag; |
||
| 743 | |||
| 744 | /// PredicateName - User-level name to use for the predicate. Mainly for use |
||
| 745 | /// in diagnostics such as missing feature errors in the asm matcher. |
||
| 746 | string PredicateName = ""; |
||
| 747 | |||
| 748 | /// Setting this to '1' indicates that the predicate must be recomputed on |
||
| 749 | /// every function change. Most predicates can leave this at '0'. |
||
| 750 | /// |
||
| 751 | /// Ignored by SelectionDAG, it always recomputes the predicate on every use. |
||
| 752 | bit RecomputePerFunction = false; |
||
| 753 | } |
||
| 754 | |||
| 755 | /// NoHonorSignDependentRounding - This predicate is true if support for |
||
| 756 | /// sign-dependent-rounding is not enabled. |
||
| 757 | def NoHonorSignDependentRounding |
||
| 758 | : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">; |
||
| 759 | |||
| 760 | class Requires<list<Predicate> preds> { |
||
| 761 | list<Predicate> Predicates = preds; |
||
| 762 | } |
||
| 763 | |||
| 764 | /// ops definition - This is just a simple marker used to identify the operand |
||
| 765 | /// list for an instruction. outs and ins are identical both syntactically and |
||
| 766 | /// semantically; they are used to define def operands and use operands to |
||
| 767 | /// improve readability. This should be used like this: |
||
| 768 | /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar. |
||
| 769 | def ops; |
||
| 770 | def outs; |
||
| 771 | def ins; |
||
| 772 | |||
| 773 | /// variable_ops definition - Mark this instruction as taking a variable number |
||
| 774 | /// of operands. |
||
| 775 | def variable_ops; |
||
| 776 | |||
| 777 | /// variable-length instruction encoding utilities. |
||
| 778 | /// The `ascend` operator should be used like this: |
||
| 779 | /// (ascend 0b0010, 0b1101) |
||
| 780 | /// Which represent a seqence of encoding fragments placing from LSB to MSB. |
||
| 781 | /// Thus, in this case the final encoding will be 0b1101_0010. |
||
| 782 | /// The arguments for `ascend` can either be `bits` or another DAG. |
||
| 783 | def ascend; |
||
| 784 | /// In addition, we can use `descend` to describe an encoding that places |
||
| 785 | /// its arguments (i.e. encoding fragments) from MSB to LSB. For instance: |
||
| 786 | /// (descend 0b0010, 0b1101) |
||
| 787 | /// This results in an encoding of 0b0010_1101. |
||
| 788 | def descend; |
||
| 789 | /// The `operand` operator should be used like this: |
||
| 790 | /// (operand "$src", 4) |
||
| 791 | /// Which represents a 4-bit encoding for an instruction operand named `$src`. |
||
| 792 | def operand; |
||
| 793 | /// Similar to `operand`, we can reference only part of the operand's encoding: |
||
| 794 | /// (slice "$src", 6, 8) |
||
| 795 | /// (slice "$src", 8, 6) |
||
| 796 | /// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand |
||
| 797 | /// `$src`. |
||
| 798 | def slice; |
||
| 799 | /// You can use `encoder` or `decoder` to specify a custom encoder or decoder |
||
| 800 | /// function for a specific `operand` or `slice` directive. For example: |
||
| 801 | /// (operand "$src", 4, (encoder "encodeMyImm")) |
||
| 802 | /// (slice "$src", 8, 6, (encoder "encodeMyReg")) |
||
| 803 | /// (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm")) |
||
| 804 | /// The ordering of `encoder` and `decoder` in the same `operand` or `slice` |
||
| 805 | /// doesn't matter. |
||
| 806 | /// Note that currently we cannot assign different decoders in the same |
||
| 807 | /// (instruction) operand. |
||
| 808 | def encoder; |
||
| 809 | def decoder; |
||
| 810 | |||
| 811 | /// PointerLikeRegClass - Values that are designed to have pointer width are |
||
| 812 | /// derived from this. TableGen treats the register class as having a symbolic |
||
| 813 | /// type that it doesn't know, and resolves the actual regclass to use by using |
||
| 814 | /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time. |
||
| 815 | class PointerLikeRegClass<int Kind> { |
||
| 816 | int RegClassKind = Kind; |
||
| 817 | } |
||
| 818 | |||
| 819 | |||
| 820 | /// ptr_rc definition - Mark this operand as being a pointer value whose |
||
| 821 | /// register class is resolved dynamically via a callback to TargetInstrInfo. |
||
| 822 | /// FIXME: We should probably change this to a class which contain a list of |
||
| 823 | /// flags. But currently we have but one flag. |
||
| 824 | def ptr_rc : PointerLikeRegClass<0>; |
||
| 825 | |||
| 826 | /// unknown definition - Mark this operand as being of unknown type, causing |
||
| 827 | /// it to be resolved by inference in the context it is used. |
||
| 828 | class unknown_class; |
||
| 829 | def unknown : unknown_class; |
||
| 830 | |||
| 831 | /// AsmOperandClass - Representation for the kinds of operands which the target |
||
| 832 | /// specific parser can create and the assembly matcher may need to distinguish. |
||
| 833 | /// |
||
| 834 | /// Operand classes are used to define the order in which instructions are |
||
| 835 | /// matched, to ensure that the instruction which gets matched for any |
||
| 836 | /// particular list of operands is deterministic. |
||
| 837 | /// |
||
| 838 | /// The target specific parser must be able to classify a parsed operand into a |
||
| 839 | /// unique class which does not partially overlap with any other classes. It can |
||
| 840 | /// match a subset of some other class, in which case the super class field |
||
| 841 | /// should be defined. |
||
| 842 | class AsmOperandClass { |
||
| 843 | /// The name to use for this class, which should be usable as an enum value. |
||
| 844 | string Name = ?; |
||
| 845 | |||
| 846 | /// The super classes of this operand. |
||
| 847 | list<AsmOperandClass> SuperClasses = []; |
||
| 848 | |||
| 849 | /// The name of the method on the target specific operand to call to test |
||
| 850 | /// whether the operand is an instance of this class. If not set, this will |
||
| 851 | /// default to "isFoo", where Foo is the AsmOperandClass name. The method |
||
| 852 | /// signature should be: |
||
| 853 | /// bool isFoo() const; |
||
| 854 | string PredicateMethod = ?; |
||
| 855 | |||
| 856 | /// The name of the method on the target specific operand to call to add the |
||
| 857 | /// target specific operand to an MCInst. If not set, this will default to |
||
| 858 | /// "addFooOperands", where Foo is the AsmOperandClass name. The method |
||
| 859 | /// signature should be: |
||
| 860 | /// void addFooOperands(MCInst &Inst, unsigned N) const; |
||
| 861 | string RenderMethod = ?; |
||
| 862 | |||
| 863 | /// The name of the method on the target specific operand to call to custom |
||
| 864 | /// handle the operand parsing. This is useful when the operands do not relate |
||
| 865 | /// to immediates or registers and are very instruction specific (as flags to |
||
| 866 | /// set in a processor register, coprocessor number, ...). |
||
| 867 | string ParserMethod = ?; |
||
| 868 | |||
| 869 | // The diagnostic type to present when referencing this operand in a |
||
| 870 | // match failure error message. By default, use a generic "invalid operand" |
||
| 871 | // diagnostic. The target AsmParser maps these codes to text. |
||
| 872 | string DiagnosticType = ""; |
||
| 873 | |||
| 874 | /// A diagnostic message to emit when an invalid value is provided for this |
||
| 875 | /// operand. |
||
| 876 | string DiagnosticString = ""; |
||
| 877 | |||
| 878 | /// Set to 1 if this operand is optional and not always required. Typically, |
||
| 879 | /// the AsmParser will emit an error when it finishes parsing an |
||
| 880 | /// instruction if it hasn't matched all the operands yet. However, this |
||
| 881 | /// error will be suppressed if all of the remaining unmatched operands are |
||
| 882 | /// marked as IsOptional. |
||
| 883 | /// |
||
| 884 | /// Optional arguments must be at the end of the operand list. |
||
| 885 | bit IsOptional = false; |
||
| 886 | |||
| 887 | /// The name of the method on the target specific asm parser that returns the |
||
| 888 | /// default operand for this optional operand. This method is only used if |
||
| 889 | /// IsOptional == 1. If not set, this will default to "defaultFooOperands", |
||
| 890 | /// where Foo is the AsmOperandClass name. The method signature should be: |
||
| 891 | /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const; |
||
| 892 | string DefaultMethod = ?; |
||
| 893 | } |
||
| 894 | |||
| 895 | def ImmAsmOperand : AsmOperandClass { |
||
| 896 | let Name = "Imm"; |
||
| 897 | } |
||
| 898 | |||
| 899 | /// Operand Types - These provide the built-in operand types that may be used |
||
| 900 | /// by a target. Targets can optionally provide their own operand types as |
||
| 901 | /// needed, though this should not be needed for RISC targets. |
||
| 902 | class Operand<ValueType ty> : DAGOperand { |
||
| 903 | ValueType Type = ty; |
||
| 904 | string PrintMethod = "printOperand"; |
||
| 905 | string EncoderMethod = ""; |
||
| 906 | bit hasCompleteDecoder = true; |
||
| 907 | string OperandType = "OPERAND_UNKNOWN"; |
||
| 908 | dag MIOperandInfo = (ops); |
||
| 909 | |||
| 910 | // MCOperandPredicate - Optionally, a code fragment operating on |
||
| 911 | // const MCOperand &MCOp, and returning a bool, to indicate if |
||
| 912 | // the value of MCOp is valid for the specific subclass of Operand |
||
| 913 | code MCOperandPredicate; |
||
| 914 | |||
| 915 | // ParserMatchClass - The "match class" that operands of this type fit |
||
| 916 | // in. Match classes are used to define the order in which instructions are |
||
| 917 | // match, to ensure that which instructions gets matched is deterministic. |
||
| 918 | // |
||
| 919 | // The target specific parser must be able to classify an parsed operand into |
||
| 920 | // a unique class, which does not partially overlap with any other classes. It |
||
| 921 | // can match a subset of some other class, in which case the AsmOperandClass |
||
| 922 | // should declare the other operand as one of its super classes. |
||
| 923 | AsmOperandClass ParserMatchClass = ImmAsmOperand; |
||
| 924 | } |
||
| 925 | |||
| 926 | class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> |
||
| 927 | : DAGOperand { |
||
| 928 | // RegClass - The register class of the operand. |
||
| 929 | RegisterClass RegClass = regclass; |
||
| 930 | // PrintMethod - The target method to call to print register operands of |
||
| 931 | // this type. The method normally will just use an alt-name index to look |
||
| 932 | // up the name to print. Default to the generic printOperand(). |
||
| 933 | string PrintMethod = pm; |
||
| 934 | |||
| 935 | // EncoderMethod - The target method name to call to encode this register |
||
| 936 | // operand. |
||
| 937 | string EncoderMethod = ""; |
||
| 938 | |||
| 939 | // ParserMatchClass - The "match class" that operands of this type fit |
||
| 940 | // in. Match classes are used to define the order in which instructions are |
||
| 941 | // match, to ensure that which instructions gets matched is deterministic. |
||
| 942 | // |
||
| 943 | // The target specific parser must be able to classify an parsed operand into |
||
| 944 | // a unique class, which does not partially overlap with any other classes. It |
||
| 945 | // can match a subset of some other class, in which case the AsmOperandClass |
||
| 946 | // should declare the other operand as one of its super classes. |
||
| 947 | AsmOperandClass ParserMatchClass; |
||
| 948 | |||
| 949 | string OperandType = "OPERAND_REGISTER"; |
||
| 950 | |||
| 951 | // When referenced in the result of a CodeGen pattern, GlobalISel will |
||
| 952 | // normally copy the matched operand to the result. When this is set, it will |
||
| 953 | // emit a special copy that will replace zero-immediates with the specified |
||
| 954 | // zero-register. |
||
| 955 | Register GIZeroRegister = ?; |
||
| 956 | } |
||
| 957 | |||
| 958 | let OperandType = "OPERAND_IMMEDIATE" in { |
||
| 959 | def i1imm : Operand<i1>; |
||
| 960 | def i8imm : Operand<i8>; |
||
| 961 | def i16imm : Operand<i16>; |
||
| 962 | def i32imm : Operand<i32>; |
||
| 963 | def i64imm : Operand<i64>; |
||
| 964 | |||
| 965 | def f32imm : Operand<f32>; |
||
| 966 | def f64imm : Operand<f64>; |
||
| 967 | } |
||
| 968 | |||
| 969 | // Register operands for generic instructions don't have an MVT, but do have |
||
| 970 | // constraints linking the operands (e.g. all operands of a G_ADD must |
||
| 971 | // have the same LLT). |
||
| 972 | class TypedOperand<string Ty> : Operand<untyped> { |
||
| 973 | let OperandType = Ty; |
||
| 974 | bit IsPointer = false; |
||
| 975 | bit IsImmediate = false; |
||
| 976 | } |
||
| 977 | |||
| 978 | def type0 : TypedOperand<"OPERAND_GENERIC_0">; |
||
| 979 | def type1 : TypedOperand<"OPERAND_GENERIC_1">; |
||
| 980 | def type2 : TypedOperand<"OPERAND_GENERIC_2">; |
||
| 981 | def type3 : TypedOperand<"OPERAND_GENERIC_3">; |
||
| 982 | def type4 : TypedOperand<"OPERAND_GENERIC_4">; |
||
| 983 | def type5 : TypedOperand<"OPERAND_GENERIC_5">; |
||
| 984 | |||
| 985 | let IsPointer = true in { |
||
| 986 | def ptype0 : TypedOperand<"OPERAND_GENERIC_0">; |
||
| 987 | def ptype1 : TypedOperand<"OPERAND_GENERIC_1">; |
||
| 988 | def ptype2 : TypedOperand<"OPERAND_GENERIC_2">; |
||
| 989 | def ptype3 : TypedOperand<"OPERAND_GENERIC_3">; |
||
| 990 | def ptype4 : TypedOperand<"OPERAND_GENERIC_4">; |
||
| 991 | def ptype5 : TypedOperand<"OPERAND_GENERIC_5">; |
||
| 992 | } |
||
| 993 | |||
| 994 | // untyped_imm is for operands where isImm() will be true. It currently has no |
||
| 995 | // special behaviour and is only used for clarity. |
||
| 996 | def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> { |
||
| 997 | let IsImmediate = true; |
||
| 998 | } |
||
| 999 | |||
| 1000 | /// zero_reg definition - Special node to stand for the zero register. |
||
| 1001 | /// |
||
| 1002 | def zero_reg; |
||
| 1003 | |||
| 1004 | /// undef_tied_input - Special node to indicate an input register tied |
||
| 1005 | /// to an output which defaults to IMPLICIT_DEF. |
||
| 1006 | def undef_tied_input; |
||
| 1007 | |||
| 1008 | /// All operands which the MC layer classifies as predicates should inherit from |
||
| 1009 | /// this class in some manner. This is already handled for the most commonly |
||
| 1010 | /// used PredicateOperand, but may be useful in other circumstances. |
||
| 1011 | class PredicateOp; |
||
| 1012 | |||
| 1013 | /// OperandWithDefaultOps - This Operand class can be used as the parent class |
||
| 1014 | /// for an Operand that needs to be initialized with a default value if |
||
| 1015 | /// no value is supplied in a pattern. This class can be used to simplify the |
||
| 1016 | /// pattern definitions for instructions that have target specific flags |
||
| 1017 | /// encoded as immediate operands. |
||
| 1018 | class OperandWithDefaultOps<ValueType ty, dag defaultops> |
||
| 1019 | : Operand<ty> { |
||
| 1020 | dag DefaultOps = defaultops; |
||
| 1021 | } |
||
| 1022 | |||
| 1023 | /// PredicateOperand - This can be used to define a predicate operand for an |
||
| 1024 | /// instruction. OpTypes specifies the MIOperandInfo for the operand, and |
||
| 1025 | /// AlwaysVal specifies the value of this predicate when set to "always |
||
| 1026 | /// execute". |
||
| 1027 | class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal> |
||
| 1028 | : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp { |
||
| 1029 | let MIOperandInfo = OpTypes; |
||
| 1030 | } |
||
| 1031 | |||
| 1032 | /// OptionalDefOperand - This is used to define a optional definition operand |
||
| 1033 | /// for an instruction. DefaultOps is the register the operand represents if |
||
| 1034 | /// none is supplied, e.g. zero_reg. |
||
| 1035 | class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops> |
||
| 1036 | : OperandWithDefaultOps<ty, defaultops> { |
||
| 1037 | let MIOperandInfo = OpTypes; |
||
| 1038 | } |
||
| 1039 | |||
| 1040 | |||
| 1041 | // InstrInfo - This class should only be instantiated once to provide parameters |
||
| 1042 | // which are global to the target machine. |
||
| 1043 | // |
||
| 1044 | class InstrInfo { |
||
| 1045 | // Target can specify its instructions in either big or little-endian formats. |
||
| 1046 | // For instance, while both Sparc and PowerPC are big-endian platforms, the |
||
| 1047 | // Sparc manual specifies its instructions in the format [31..0] (big), while |
||
| 1048 | // PowerPC specifies them using the format [0..31] (little). |
||
| 1049 | bit isLittleEndianEncoding = false; |
||
| 1050 | |||
| 1051 | // The instruction properties mayLoad, mayStore, and hasSideEffects are unset |
||
| 1052 | // by default, and TableGen will infer their value from the instruction |
||
| 1053 | // pattern when possible. |
||
| 1054 | // |
||
| 1055 | // Normally, TableGen will issue an error if it can't infer the value of a |
||
| 1056 | // property that hasn't been set explicitly. When guessInstructionProperties |
||
| 1057 | // is set, it will guess a safe value instead. |
||
| 1058 | // |
||
| 1059 | // This option is a temporary migration help. It will go away. |
||
| 1060 | bit guessInstructionProperties = true; |
||
| 1061 | |||
| 1062 | // TableGen's instruction encoder generator has support for matching operands |
||
| 1063 | // to bit-field variables both by name and by position. Support for matching |
||
| 1064 | // by position is DEPRECATED, and WILL BE REMOVED. Positional matching is |
||
| 1065 | // confusing to use, and makes it very easy to accidentally write buggy |
||
| 1066 | // instruction definitions. |
||
| 1067 | // |
||
| 1068 | // In previous versions of LLVM, the ability to match operands by position was |
||
| 1069 | // enabled unconditionally. It is now controllable by this option -- and |
||
| 1070 | // disabled by default. The previous behavior can be restored by setting this |
||
| 1071 | // option to true. |
||
| 1072 | // |
||
| 1073 | // This option is temporary, and will go away once all in-tree targets have |
||
| 1074 | // migrated. |
||
| 1075 | // |
||
| 1076 | // TODO: clean up and remove these options. |
||
| 1077 | bit useDeprecatedPositionallyEncodedOperands = false; |
||
| 1078 | |||
| 1079 | // If positional encoding rules are used for the encoder generator, they may |
||
| 1080 | // also need to be used by the decoder generator -- if so, enable this |
||
| 1081 | // variable. |
||
| 1082 | // |
||
| 1083 | // This option is a no-op unless useDeprecatedPositionallyEncodedOperands is |
||
| 1084 | // true. |
||
| 1085 | // |
||
| 1086 | // This option is temporary, and will go away once all in-tree targets have |
||
| 1087 | // migrated. |
||
| 1088 | bit decodePositionallyEncodedOperands = false; |
||
| 1089 | |||
| 1090 | // When set, this indicates that there will be no overlap between those |
||
| 1091 | // operands that are matched by ordering (positional operands) and those |
||
| 1092 | // matched by name. |
||
| 1093 | // |
||
| 1094 | // This is a no-op unless useDeprecatedPositionallyEncodedOperands is true |
||
| 1095 | // (though it does modify the "would've used positional operand XXX" error.) |
||
| 1096 | // |
||
| 1097 | // This option is temporary, and will go away once all in-tree targets have |
||
| 1098 | // migrated. |
||
| 1099 | bit noNamedPositionallyEncodedOperands = false; |
||
| 1100 | } |
||
| 1101 | |||
| 1102 | // Standard Pseudo Instructions. |
||
| 1103 | // This list must match TargetOpcodes.def. |
||
| 1104 | // Only these instructions are allowed in the TargetOpcode namespace. |
||
| 1105 | // Ensure mayLoad and mayStore have a default value, so as not to break |
||
| 1106 | // targets that set guessInstructionProperties=0. Any local definition of |
||
| 1107 | // mayLoad/mayStore takes precedence over these default values. |
||
| 1108 | class StandardPseudoInstruction : Instruction { |
||
| 1109 | let mayLoad = false; |
||
| 1110 | let mayStore = false; |
||
| 1111 | let isCodeGenOnly = true; |
||
| 1112 | let isPseudo = true; |
||
| 1113 | let hasNoSchedulingInfo = true; |
||
| 1114 | let Namespace = "TargetOpcode"; |
||
| 1115 | } |
||
| 1116 | def PHI : StandardPseudoInstruction { |
||
| 1117 | let OutOperandList = (outs unknown:$dst); |
||
| 1118 | let InOperandList = (ins variable_ops); |
||
| 1119 | let AsmString = "PHINODE"; |
||
| 1120 | let hasSideEffects = false; |
||
| 1121 | } |
||
| 1122 | def INLINEASM : StandardPseudoInstruction { |
||
| 1123 | let OutOperandList = (outs); |
||
| 1124 | let InOperandList = (ins variable_ops); |
||
| 1125 | let AsmString = ""; |
||
| 1126 | let hasSideEffects = false; // Note side effect is encoded in an operand. |
||
| 1127 | } |
||
| 1128 | def INLINEASM_BR : StandardPseudoInstruction { |
||
| 1129 | let OutOperandList = (outs); |
||
| 1130 | let InOperandList = (ins variable_ops); |
||
| 1131 | let AsmString = ""; |
||
| 1132 | // Unlike INLINEASM, this is always treated as having side-effects. |
||
| 1133 | let hasSideEffects = true; |
||
| 1134 | // Despite potentially branching, this instruction is intentionally _not_ |
||
| 1135 | // marked as a terminator or a branch. |
||
| 1136 | } |
||
| 1137 | def CFI_INSTRUCTION : StandardPseudoInstruction { |
||
| 1138 | let OutOperandList = (outs); |
||
| 1139 | let InOperandList = (ins i32imm:$id); |
||
| 1140 | let AsmString = ""; |
||
| 1141 | let hasCtrlDep = true; |
||
| 1142 | let hasSideEffects = false; |
||
| 1143 | let isNotDuplicable = true; |
||
| 1144 | let isMeta = true; |
||
| 1145 | } |
||
| 1146 | def EH_LABEL : StandardPseudoInstruction { |
||
| 1147 | let OutOperandList = (outs); |
||
| 1148 | let InOperandList = (ins i32imm:$id); |
||
| 1149 | let AsmString = ""; |
||
| 1150 | let hasCtrlDep = true; |
||
| 1151 | let hasSideEffects = false; |
||
| 1152 | let isNotDuplicable = true; |
||
| 1153 | let isMeta = true; |
||
| 1154 | } |
||
| 1155 | def GC_LABEL : StandardPseudoInstruction { |
||
| 1156 | let OutOperandList = (outs); |
||
| 1157 | let InOperandList = (ins i32imm:$id); |
||
| 1158 | let AsmString = ""; |
||
| 1159 | let hasCtrlDep = true; |
||
| 1160 | let hasSideEffects = false; |
||
| 1161 | let isNotDuplicable = true; |
||
| 1162 | let isMeta = true; |
||
| 1163 | } |
||
| 1164 | def ANNOTATION_LABEL : StandardPseudoInstruction { |
||
| 1165 | let OutOperandList = (outs); |
||
| 1166 | let InOperandList = (ins i32imm:$id); |
||
| 1167 | let AsmString = ""; |
||
| 1168 | let hasCtrlDep = true; |
||
| 1169 | let hasSideEffects = false; |
||
| 1170 | let isNotDuplicable = true; |
||
| 1171 | } |
||
| 1172 | def KILL : StandardPseudoInstruction { |
||
| 1173 | let OutOperandList = (outs); |
||
| 1174 | let InOperandList = (ins variable_ops); |
||
| 1175 | let AsmString = ""; |
||
| 1176 | let hasSideEffects = false; |
||
| 1177 | let isMeta = true; |
||
| 1178 | } |
||
| 1179 | def EXTRACT_SUBREG : StandardPseudoInstruction { |
||
| 1180 | let OutOperandList = (outs unknown:$dst); |
||
| 1181 | let InOperandList = (ins unknown:$supersrc, i32imm:$subidx); |
||
| 1182 | let AsmString = ""; |
||
| 1183 | let hasSideEffects = false; |
||
| 1184 | } |
||
| 1185 | def INSERT_SUBREG : StandardPseudoInstruction { |
||
| 1186 | let OutOperandList = (outs unknown:$dst); |
||
| 1187 | let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx); |
||
| 1188 | let AsmString = ""; |
||
| 1189 | let hasSideEffects = false; |
||
| 1190 | let Constraints = "$supersrc = $dst"; |
||
| 1191 | } |
||
| 1192 | def IMPLICIT_DEF : StandardPseudoInstruction { |
||
| 1193 | let OutOperandList = (outs unknown:$dst); |
||
| 1194 | let InOperandList = (ins); |
||
| 1195 | let AsmString = ""; |
||
| 1196 | let hasSideEffects = false; |
||
| 1197 | let isReMaterializable = true; |
||
| 1198 | let isAsCheapAsAMove = true; |
||
| 1199 | let isMeta = true; |
||
| 1200 | } |
||
| 1201 | def SUBREG_TO_REG : StandardPseudoInstruction { |
||
| 1202 | let OutOperandList = (outs unknown:$dst); |
||
| 1203 | let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx); |
||
| 1204 | let AsmString = ""; |
||
| 1205 | let hasSideEffects = false; |
||
| 1206 | } |
||
| 1207 | def COPY_TO_REGCLASS : StandardPseudoInstruction { |
||
| 1208 | let OutOperandList = (outs unknown:$dst); |
||
| 1209 | let InOperandList = (ins unknown:$src, i32imm:$regclass); |
||
| 1210 | let AsmString = ""; |
||
| 1211 | let hasSideEffects = false; |
||
| 1212 | let isAsCheapAsAMove = true; |
||
| 1213 | } |
||
| 1214 | def DBG_VALUE : StandardPseudoInstruction { |
||
| 1215 | let OutOperandList = (outs); |
||
| 1216 | let InOperandList = (ins variable_ops); |
||
| 1217 | let AsmString = "DBG_VALUE"; |
||
| 1218 | let hasSideEffects = false; |
||
| 1219 | let isMeta = true; |
||
| 1220 | } |
||
| 1221 | def DBG_VALUE_LIST : StandardPseudoInstruction { |
||
| 1222 | let OutOperandList = (outs); |
||
| 1223 | let InOperandList = (ins variable_ops); |
||
| 1224 | let AsmString = "DBG_VALUE_LIST"; |
||
| 1225 | let hasSideEffects = 0; |
||
| 1226 | let isMeta = true; |
||
| 1227 | } |
||
| 1228 | def DBG_INSTR_REF : StandardPseudoInstruction { |
||
| 1229 | let OutOperandList = (outs); |
||
| 1230 | let InOperandList = (ins variable_ops); |
||
| 1231 | let AsmString = "DBG_INSTR_REF"; |
||
| 1232 | let hasSideEffects = false; |
||
| 1233 | let isMeta = true; |
||
| 1234 | } |
||
| 1235 | def DBG_PHI : StandardPseudoInstruction { |
||
| 1236 | let OutOperandList = (outs); |
||
| 1237 | let InOperandList = (ins variable_ops); |
||
| 1238 | let AsmString = "DBG_PHI"; |
||
| 1239 | let hasSideEffects = 0; |
||
| 1240 | let isMeta = true; |
||
| 1241 | } |
||
| 1242 | def DBG_LABEL : StandardPseudoInstruction { |
||
| 1243 | let OutOperandList = (outs); |
||
| 1244 | let InOperandList = (ins unknown:$label); |
||
| 1245 | let AsmString = "DBG_LABEL"; |
||
| 1246 | let hasSideEffects = false; |
||
| 1247 | let isMeta = true; |
||
| 1248 | } |
||
| 1249 | def REG_SEQUENCE : StandardPseudoInstruction { |
||
| 1250 | let OutOperandList = (outs unknown:$dst); |
||
| 1251 | let InOperandList = (ins unknown:$supersrc, variable_ops); |
||
| 1252 | let AsmString = ""; |
||
| 1253 | let hasSideEffects = false; |
||
| 1254 | let isAsCheapAsAMove = true; |
||
| 1255 | } |
||
| 1256 | def COPY : StandardPseudoInstruction { |
||
| 1257 | let OutOperandList = (outs unknown:$dst); |
||
| 1258 | let InOperandList = (ins unknown:$src); |
||
| 1259 | let AsmString = ""; |
||
| 1260 | let hasSideEffects = false; |
||
| 1261 | let isAsCheapAsAMove = true; |
||
| 1262 | let hasNoSchedulingInfo = false; |
||
| 1263 | } |
||
| 1264 | def BUNDLE : StandardPseudoInstruction { |
||
| 1265 | let OutOperandList = (outs); |
||
| 1266 | let InOperandList = (ins variable_ops); |
||
| 1267 | let AsmString = "BUNDLE"; |
||
| 1268 | let hasSideEffects = false; |
||
| 1269 | } |
||
| 1270 | def LIFETIME_START : StandardPseudoInstruction { |
||
| 1271 | let OutOperandList = (outs); |
||
| 1272 | let InOperandList = (ins i32imm:$id); |
||
| 1273 | let AsmString = "LIFETIME_START"; |
||
| 1274 | let hasSideEffects = false; |
||
| 1275 | let isMeta = true; |
||
| 1276 | } |
||
| 1277 | def LIFETIME_END : StandardPseudoInstruction { |
||
| 1278 | let OutOperandList = (outs); |
||
| 1279 | let InOperandList = (ins i32imm:$id); |
||
| 1280 | let AsmString = "LIFETIME_END"; |
||
| 1281 | let hasSideEffects = false; |
||
| 1282 | let isMeta = true; |
||
| 1283 | } |
||
| 1284 | def PSEUDO_PROBE : StandardPseudoInstruction { |
||
| 1285 | let OutOperandList = (outs); |
||
| 1286 | let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr); |
||
| 1287 | let AsmString = "PSEUDO_PROBE"; |
||
| 1288 | let hasSideEffects = 1; |
||
| 1289 | let isMeta = true; |
||
| 1290 | } |
||
| 1291 | def ARITH_FENCE : StandardPseudoInstruction { |
||
| 1292 | let OutOperandList = (outs unknown:$dst); |
||
| 1293 | let InOperandList = (ins unknown:$src); |
||
| 1294 | let AsmString = ""; |
||
| 1295 | let hasSideEffects = false; |
||
| 1296 | let Constraints = "$src = $dst"; |
||
| 1297 | let isMeta = true; |
||
| 1298 | } |
||
| 1299 | |||
| 1300 | def STACKMAP : StandardPseudoInstruction { |
||
| 1301 | let OutOperandList = (outs); |
||
| 1302 | let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops); |
||
| 1303 | let hasSideEffects = true; |
||
| 1304 | let isCall = true; |
||
| 1305 | let mayLoad = true; |
||
| 1306 | let usesCustomInserter = true; |
||
| 1307 | } |
||
| 1308 | def PATCHPOINT : StandardPseudoInstruction { |
||
| 1309 | let OutOperandList = (outs unknown:$dst); |
||
| 1310 | let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee, |
||
| 1311 | i32imm:$nargs, i32imm:$cc, variable_ops); |
||
| 1312 | let hasSideEffects = true; |
||
| 1313 | let isCall = true; |
||
| 1314 | let mayLoad = true; |
||
| 1315 | let usesCustomInserter = true; |
||
| 1316 | } |
||
| 1317 | def STATEPOINT : StandardPseudoInstruction { |
||
| 1318 | let OutOperandList = (outs variable_ops); |
||
| 1319 | let InOperandList = (ins variable_ops); |
||
| 1320 | let usesCustomInserter = true; |
||
| 1321 | let mayLoad = true; |
||
| 1322 | let mayStore = true; |
||
| 1323 | let hasSideEffects = true; |
||
| 1324 | let isCall = true; |
||
| 1325 | } |
||
| 1326 | def LOAD_STACK_GUARD : StandardPseudoInstruction { |
||
| 1327 | let OutOperandList = (outs ptr_rc:$dst); |
||
| 1328 | let InOperandList = (ins); |
||
| 1329 | let mayLoad = true; |
||
| 1330 | bit isReMaterializable = true; |
||
| 1331 | let hasSideEffects = false; |
||
| 1332 | bit isPseudo = true; |
||
| 1333 | } |
||
| 1334 | def PREALLOCATED_SETUP : StandardPseudoInstruction { |
||
| 1335 | let OutOperandList = (outs); |
||
| 1336 | let InOperandList = (ins i32imm:$a); |
||
| 1337 | let usesCustomInserter = true; |
||
| 1338 | let hasSideEffects = true; |
||
| 1339 | } |
||
| 1340 | def PREALLOCATED_ARG : StandardPseudoInstruction { |
||
| 1341 | let OutOperandList = (outs ptr_rc:$loc); |
||
| 1342 | let InOperandList = (ins i32imm:$a, i32imm:$b); |
||
| 1343 | let usesCustomInserter = true; |
||
| 1344 | let hasSideEffects = true; |
||
| 1345 | } |
||
| 1346 | def LOCAL_ESCAPE : StandardPseudoInstruction { |
||
| 1347 | // This instruction is really just a label. It has to be part of the chain so |
||
| 1348 | // that it doesn't get dropped from the DAG, but it produces nothing and has |
||
| 1349 | // no side effects. |
||
| 1350 | let OutOperandList = (outs); |
||
| 1351 | let InOperandList = (ins ptr_rc:$symbol, i32imm:$id); |
||
| 1352 | let hasSideEffects = false; |
||
| 1353 | let hasCtrlDep = true; |
||
| 1354 | } |
||
| 1355 | def FAULTING_OP : StandardPseudoInstruction { |
||
| 1356 | let OutOperandList = (outs unknown:$dst); |
||
| 1357 | let InOperandList = (ins variable_ops); |
||
| 1358 | let usesCustomInserter = true; |
||
| 1359 | let hasSideEffects = true; |
||
| 1360 | let mayLoad = true; |
||
| 1361 | let mayStore = true; |
||
| 1362 | let isTerminator = true; |
||
| 1363 | let isBranch = true; |
||
| 1364 | } |
||
| 1365 | def PATCHABLE_OP : StandardPseudoInstruction { |
||
| 1366 | let OutOperandList = (outs); |
||
| 1367 | let InOperandList = (ins variable_ops); |
||
| 1368 | let usesCustomInserter = true; |
||
| 1369 | let mayLoad = true; |
||
| 1370 | let mayStore = true; |
||
| 1371 | let hasSideEffects = true; |
||
| 1372 | } |
||
| 1373 | def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction { |
||
| 1374 | let OutOperandList = (outs); |
||
| 1375 | let InOperandList = (ins); |
||
| 1376 | let AsmString = "# XRay Function Enter."; |
||
| 1377 | let usesCustomInserter = true; |
||
| 1378 | let hasSideEffects = true; |
||
| 1379 | } |
||
| 1380 | def PATCHABLE_RET : StandardPseudoInstruction { |
||
| 1381 | let OutOperandList = (outs); |
||
| 1382 | let InOperandList = (ins variable_ops); |
||
| 1383 | let AsmString = "# XRay Function Patchable RET."; |
||
| 1384 | let usesCustomInserter = true; |
||
| 1385 | let hasSideEffects = true; |
||
| 1386 | let isTerminator = true; |
||
| 1387 | let isReturn = true; |
||
| 1388 | } |
||
| 1389 | def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction { |
||
| 1390 | let OutOperandList = (outs); |
||
| 1391 | let InOperandList = (ins); |
||
| 1392 | let AsmString = "# XRay Function Exit."; |
||
| 1393 | let usesCustomInserter = true; |
||
| 1394 | let hasSideEffects = true; |
||
| 1395 | let isReturn = false; // Original return instruction will follow |
||
| 1396 | } |
||
| 1397 | def PATCHABLE_TAIL_CALL : StandardPseudoInstruction { |
||
| 1398 | let OutOperandList = (outs); |
||
| 1399 | let InOperandList = (ins variable_ops); |
||
| 1400 | let AsmString = "# XRay Tail Call Exit."; |
||
| 1401 | let usesCustomInserter = true; |
||
| 1402 | let hasSideEffects = true; |
||
| 1403 | let isReturn = true; |
||
| 1404 | } |
||
| 1405 | def PATCHABLE_EVENT_CALL : StandardPseudoInstruction { |
||
| 1406 | let OutOperandList = (outs); |
||
| 1407 | let InOperandList = (ins ptr_rc:$event, unknown:$size); |
||
| 1408 | let AsmString = "# XRay Custom Event Log."; |
||
| 1409 | let usesCustomInserter = true; |
||
| 1410 | let isCall = true; |
||
| 1411 | let mayLoad = true; |
||
| 1412 | let mayStore = true; |
||
| 1413 | let hasSideEffects = true; |
||
| 1414 | } |
||
| 1415 | def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction { |
||
| 1416 | let OutOperandList = (outs); |
||
| 1417 | let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size); |
||
| 1418 | let AsmString = "# XRay Typed Event Log."; |
||
| 1419 | let usesCustomInserter = true; |
||
| 1420 | let isCall = true; |
||
| 1421 | let mayLoad = true; |
||
| 1422 | let mayStore = true; |
||
| 1423 | let hasSideEffects = true; |
||
| 1424 | } |
||
| 1425 | def FENTRY_CALL : StandardPseudoInstruction { |
||
| 1426 | let OutOperandList = (outs); |
||
| 1427 | let InOperandList = (ins); |
||
| 1428 | let AsmString = "# FEntry call"; |
||
| 1429 | let usesCustomInserter = true; |
||
| 1430 | let isCall = true; |
||
| 1431 | let mayLoad = true; |
||
| 1432 | let mayStore = true; |
||
| 1433 | let hasSideEffects = true; |
||
| 1434 | } |
||
| 1435 | def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction { |
||
| 1436 | let OutOperandList = (outs); |
||
| 1437 | let InOperandList = (ins variable_ops); |
||
| 1438 | let AsmString = ""; |
||
| 1439 | let hasSideEffects = true; |
||
| 1440 | } |
||
| 1441 | def MEMBARRIER : StandardPseudoInstruction { |
||
| 1442 | let OutOperandList = (outs); |
||
| 1443 | let InOperandList = (ins); |
||
| 1444 | let AsmString = ""; |
||
| 1445 | let hasSideEffects = true; |
||
| 1446 | let Size = 0; |
||
| 1447 | let isMeta = true; |
||
| 1448 | } |
||
| 1449 | |||
| 1450 | // Generic opcodes used in GlobalISel. |
||
| 1451 | include "llvm/Target/GenericOpcodes.td" |
||
| 1452 | |||
| 1453 | //===----------------------------------------------------------------------===// |
||
| 1454 | // AsmParser - This class can be implemented by targets that wish to implement |
||
| 1455 | // .s file parsing. |
||
| 1456 | // |
||
| 1457 | // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel |
||
| 1458 | // syntax on X86 for example). |
||
| 1459 | // |
||
| 1460 | class AsmParser { |
||
| 1461 | // AsmParserClassName - This specifies the suffix to use for the asmparser |
||
| 1462 | // class. Generated AsmParser classes are always prefixed with the target |
||
| 1463 | // name. |
||
| 1464 | string AsmParserClassName = "AsmParser"; |
||
| 1465 | |||
| 1466 | // AsmParserInstCleanup - If non-empty, this is the name of a custom member |
||
| 1467 | // function of the AsmParser class to call on every matched instruction. |
||
| 1468 | // This can be used to perform target specific instruction post-processing. |
||
| 1469 | string AsmParserInstCleanup = ""; |
||
| 1470 | |||
| 1471 | // ShouldEmitMatchRegisterName - Set to false if the target needs a hand |
||
| 1472 | // written register name matcher |
||
| 1473 | bit ShouldEmitMatchRegisterName = true; |
||
| 1474 | |||
| 1475 | // Set to true if the target needs a generated 'alternative register name' |
||
| 1476 | // matcher. |
||
| 1477 | // |
||
| 1478 | // This generates a function which can be used to lookup registers from |
||
| 1479 | // their aliases. This function will fail when called on targets where |
||
| 1480 | // several registers share the same alias (i.e. not a 1:1 mapping). |
||
| 1481 | bit ShouldEmitMatchRegisterAltName = false; |
||
| 1482 | |||
| 1483 | // Set to true if MatchRegisterName and MatchRegisterAltName functions |
||
| 1484 | // should be generated even if there are duplicate register names. The |
||
| 1485 | // target is responsible for coercing aliased registers as necessary |
||
| 1486 | // (e.g. in validateTargetOperandClass), and there are no guarantees about |
||
| 1487 | // which numeric register identifier will be returned in the case of |
||
| 1488 | // multiple matches. |
||
| 1489 | bit AllowDuplicateRegisterNames = false; |
||
| 1490 | |||
| 1491 | // HasMnemonicFirst - Set to false if target instructions don't always |
||
| 1492 | // start with a mnemonic as the first token. |
||
| 1493 | bit HasMnemonicFirst = true; |
||
| 1494 | |||
| 1495 | // ReportMultipleNearMisses - |
||
| 1496 | // When 0, the assembly matcher reports an error for one encoding or operand |
||
| 1497 | // that did not match the parsed instruction. |
||
| 1498 | // When 1, the assembly matcher returns a list of encodings that were close |
||
| 1499 | // to matching the parsed instruction, so to allow more detailed error |
||
| 1500 | // messages. |
||
| 1501 | bit ReportMultipleNearMisses = false; |
||
| 1502 | |||
| 1503 | // OperandParserMethod - If non-empty, this is the name of a custom |
||
| 1504 | // member function of the AsmParser class to call for every instruction |
||
| 1505 | // operand to be parsed. |
||
| 1506 | string OperandParserMethod = ""; |
||
| 1507 | |||
| 1508 | // CallCustomParserForAllOperands - Set to true if the custom parser |
||
| 1509 | // method shall be called for all operands as opposed to only those |
||
| 1510 | // that have their own specified custom parsers. |
||
| 1511 | bit CallCustomParserForAllOperands = false; |
||
| 1512 | } |
||
| 1513 | def DefaultAsmParser : AsmParser; |
||
| 1514 | |||
| 1515 | //===----------------------------------------------------------------------===// |
||
| 1516 | // AsmParserVariant - Subtargets can have multiple different assembly parsers |
||
| 1517 | // (e.g. AT&T vs Intel syntax on X86 for example). This class can be |
||
| 1518 | // implemented by targets to describe such variants. |
||
| 1519 | // |
||
| 1520 | class AsmParserVariant { |
||
| 1521 | // Variant - AsmParsers can be of multiple different variants. Variants are |
||
| 1522 | // used to support targets that need to parse multiple formats for the |
||
| 1523 | // assembly language. |
||
| 1524 | int Variant = 0; |
||
| 1525 | |||
| 1526 | // Name - The AsmParser variant name (e.g., AT&T vs Intel). |
||
| 1527 | string Name = ""; |
||
| 1528 | |||
| 1529 | // CommentDelimiter - If given, the delimiter string used to recognize |
||
| 1530 | // comments which are hard coded in the .td assembler strings for individual |
||
| 1531 | // instructions. |
||
| 1532 | string CommentDelimiter = ""; |
||
| 1533 | |||
| 1534 | // RegisterPrefix - If given, the token prefix which indicates a register |
||
| 1535 | // token. This is used by the matcher to automatically recognize hard coded |
||
| 1536 | // register tokens as constrained registers, instead of tokens, for the |
||
| 1537 | // purposes of matching. |
||
| 1538 | string RegisterPrefix = ""; |
||
| 1539 | |||
| 1540 | // TokenizingCharacters - Characters that are standalone tokens |
||
| 1541 | string TokenizingCharacters = "[]*!"; |
||
| 1542 | |||
| 1543 | // SeparatorCharacters - Characters that are not tokens |
||
| 1544 | string SeparatorCharacters = " \t,"; |
||
| 1545 | |||
| 1546 | // BreakCharacters - Characters that start new identifiers |
||
| 1547 | string BreakCharacters = ""; |
||
| 1548 | } |
||
| 1549 | def DefaultAsmParserVariant : AsmParserVariant; |
||
| 1550 | |||
| 1551 | // Operators for combining SubtargetFeatures in AssemblerPredicates |
||
| 1552 | def any_of; |
||
| 1553 | def all_of; |
||
| 1554 | |||
| 1555 | /// AssemblerPredicate - This is a Predicate that can be used when the assembler |
||
| 1556 | /// matches instructions and aliases. |
||
| 1557 | class AssemblerPredicate<dag cond, string name = ""> { |
||
| 1558 | bit AssemblerMatcherPredicate = true; |
||
| 1559 | dag AssemblerCondDag = cond; |
||
| 1560 | string PredicateName = name; |
||
| 1561 | } |
||
| 1562 | |||
| 1563 | /// TokenAlias - This class allows targets to define assembler token |
||
| 1564 | /// operand aliases. That is, a token literal operand which is equivalent |
||
| 1565 | /// to another, canonical, token literal. For example, ARM allows: |
||
| 1566 | /// vmov.u32 s4, #0 -> vmov.i32, #0 |
||
| 1567 | /// 'u32' is a more specific designator for the 32-bit integer type specifier |
||
| 1568 | /// and is legal for any instruction which accepts 'i32' as a datatype suffix. |
||
| 1569 | /// def : TokenAlias<".u32", ".i32">; |
||
| 1570 | /// |
||
| 1571 | /// This works by marking the match class of 'From' as a subclass of the |
||
| 1572 | /// match class of 'To'. |
||
| 1573 | class TokenAlias<string From, string To> { |
||
| 1574 | string FromToken = From; |
||
| 1575 | string ToToken = To; |
||
| 1576 | } |
||
| 1577 | |||
| 1578 | /// MnemonicAlias - This class allows targets to define assembler mnemonic |
||
| 1579 | /// aliases. This should be used when all forms of one mnemonic are accepted |
||
| 1580 | /// with a different mnemonic. For example, X86 allows: |
||
| 1581 | /// sal %al, 1 -> shl %al, 1 |
||
| 1582 | /// sal %ax, %cl -> shl %ax, %cl |
||
| 1583 | /// sal %eax, %cl -> shl %eax, %cl |
||
| 1584 | /// etc. Though "sal" is accepted with many forms, all of them are directly |
||
| 1585 | /// translated to a shl, so it can be handled with (in the case of X86, it |
||
| 1586 | /// actually has one for each suffix as well): |
||
| 1587 | /// def : MnemonicAlias<"sal", "shl">; |
||
| 1588 | /// |
||
| 1589 | /// Mnemonic aliases are mapped before any other translation in the match phase, |
||
| 1590 | /// and do allow Requires predicates, e.g.: |
||
| 1591 | /// |
||
| 1592 | /// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>; |
||
| 1593 | /// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>; |
||
| 1594 | /// |
||
| 1595 | /// Mnemonic aliases can also be constrained to specific variants, e.g.: |
||
| 1596 | /// |
||
| 1597 | /// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>; |
||
| 1598 | /// |
||
| 1599 | /// If no variant (e.g., "att" or "intel") is specified then the alias is |
||
| 1600 | /// applied unconditionally. |
||
| 1601 | class MnemonicAlias<string From, string To, string VariantName = ""> { |
||
| 1602 | string FromMnemonic = From; |
||
| 1603 | string ToMnemonic = To; |
||
| 1604 | string AsmVariantName = VariantName; |
||
| 1605 | |||
| 1606 | // Predicates - Predicates that must be true for this remapping to happen. |
||
| 1607 | list<Predicate> Predicates = []; |
||
| 1608 | } |
||
| 1609 | |||
| 1610 | /// InstAlias - This defines an alternate assembly syntax that is allowed to |
||
| 1611 | /// match an instruction that has a different (more canonical) assembly |
||
| 1612 | /// representation. |
||
| 1613 | class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> { |
||
| 1614 | string AsmString = Asm; // The .s format to match the instruction with. |
||
| 1615 | dag ResultInst = Result; // The MCInst to generate. |
||
| 1616 | |||
| 1617 | // This determines which order the InstPrinter detects aliases for |
||
| 1618 | // printing. A larger value makes the alias more likely to be |
||
| 1619 | // emitted. The Instruction's own definition is notionally 0.5, so 0 |
||
| 1620 | // disables printing and 1 enables it if there are no conflicting aliases. |
||
| 1621 | int EmitPriority = Emit; |
||
| 1622 | |||
| 1623 | // Predicates - Predicates that must be true for this to match. |
||
| 1624 | list<Predicate> Predicates = []; |
||
| 1625 | |||
| 1626 | // If the instruction specified in Result has defined an AsmMatchConverter |
||
| 1627 | // then setting this to 1 will cause the alias to use the AsmMatchConverter |
||
| 1628 | // function when converting the OperandVector into an MCInst instead of the |
||
| 1629 | // function that is generated by the dag Result. |
||
| 1630 | // Setting this to 0 will cause the alias to ignore the Result instruction's |
||
| 1631 | // defined AsmMatchConverter and instead use the function generated by the |
||
| 1632 | // dag Result. |
||
| 1633 | bit UseInstAsmMatchConverter = true; |
||
| 1634 | |||
| 1635 | // Assembler variant name to use for this alias. If not specified then |
||
| 1636 | // assembler variants will be determined based on AsmString |
||
| 1637 | string AsmVariantName = VariantName; |
||
| 1638 | } |
||
| 1639 | |||
| 1640 | //===----------------------------------------------------------------------===// |
||
| 1641 | // AsmWriter - This class can be implemented by targets that need to customize |
||
| 1642 | // the format of the .s file writer. |
||
| 1643 | // |
||
| 1644 | // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax |
||
| 1645 | // on X86 for example). |
||
| 1646 | // |
||
| 1647 | class AsmWriter { |
||
| 1648 | // AsmWriterClassName - This specifies the suffix to use for the asmwriter |
||
| 1649 | // class. Generated AsmWriter classes are always prefixed with the target |
||
| 1650 | // name. |
||
| 1651 | string AsmWriterClassName = "InstPrinter"; |
||
| 1652 | |||
| 1653 | // PassSubtarget - Determines whether MCSubtargetInfo should be passed to |
||
| 1654 | // the various print methods. |
||
| 1655 | // FIXME: Remove after all ports are updated. |
||
| 1656 | int PassSubtarget = 0; |
||
| 1657 | |||
| 1658 | // Variant - AsmWriters can be of multiple different variants. Variants are |
||
| 1659 | // used to support targets that need to emit assembly code in ways that are |
||
| 1660 | // mostly the same for different targets, but have minor differences in |
||
| 1661 | // syntax. If the asmstring contains {|} characters in them, this integer |
||
| 1662 | // will specify which alternative to use. For example "{x|y|z}" with Variant |
||
| 1663 | // == 1, will expand to "y". |
||
| 1664 | int Variant = 0; |
||
| 1665 | } |
||
| 1666 | def DefaultAsmWriter : AsmWriter; |
||
| 1667 | |||
| 1668 | |||
| 1669 | //===----------------------------------------------------------------------===// |
||
| 1670 | // Target - This class contains the "global" target information |
||
| 1671 | // |
||
| 1672 | class Target { |
||
| 1673 | // InstructionSet - Instruction set description for this target. |
||
| 1674 | InstrInfo InstructionSet; |
||
| 1675 | |||
| 1676 | // AssemblyParsers - The AsmParser instances available for this target. |
||
| 1677 | list<AsmParser> AssemblyParsers = [DefaultAsmParser]; |
||
| 1678 | |||
| 1679 | /// AssemblyParserVariants - The AsmParserVariant instances available for |
||
| 1680 | /// this target. |
||
| 1681 | list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant]; |
||
| 1682 | |||
| 1683 | // AssemblyWriters - The AsmWriter instances available for this target. |
||
| 1684 | list<AsmWriter> AssemblyWriters = [DefaultAsmWriter]; |
||
| 1685 | |||
| 1686 | // AllowRegisterRenaming - Controls whether this target allows |
||
| 1687 | // post-register-allocation renaming of registers. This is done by |
||
| 1688 | // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1 |
||
| 1689 | // for all opcodes if this flag is set to 0. |
||
| 1690 | int AllowRegisterRenaming = 0; |
||
| 1691 | } |
||
| 1692 | |||
| 1693 | //===----------------------------------------------------------------------===// |
||
| 1694 | // SubtargetFeature - A characteristic of the chip set. |
||
| 1695 | // |
||
| 1696 | class SubtargetFeature<string n, string a, string v, string d, |
||
| 1697 | list<SubtargetFeature> i = []> { |
||
| 1698 | // Name - Feature name. Used by command line (-mattr=) to determine the |
||
| 1699 | // appropriate target chip. |
||
| 1700 | // |
||
| 1701 | string Name = n; |
||
| 1702 | |||
| 1703 | // Attribute - Attribute to be set by feature. |
||
| 1704 | // |
||
| 1705 | string Attribute = a; |
||
| 1706 | |||
| 1707 | // Value - Value the attribute to be set to by feature. |
||
| 1708 | // |
||
| 1709 | string Value = v; |
||
| 1710 | |||
| 1711 | // Desc - Feature description. Used by command line (-mattr=) to display help |
||
| 1712 | // information. |
||
| 1713 | // |
||
| 1714 | string Desc = d; |
||
| 1715 | |||
| 1716 | // Implies - Features that this feature implies are present. If one of those |
||
| 1717 | // features isn't set, then this one shouldn't be set either. |
||
| 1718 | // |
||
| 1719 | list<SubtargetFeature> Implies = i; |
||
| 1720 | } |
||
| 1721 | |||
| 1722 | /// Specifies a Subtarget feature that this instruction is deprecated on. |
||
| 1723 | class Deprecated<SubtargetFeature dep> { |
||
| 1724 | SubtargetFeature DeprecatedFeatureMask = dep; |
||
| 1725 | } |
||
| 1726 | |||
| 1727 | /// A custom predicate used to determine if an instruction is |
||
| 1728 | /// deprecated or not. |
||
| 1729 | class ComplexDeprecationPredicate<string dep> { |
||
| 1730 | string ComplexDeprecationPredicate = dep; |
||
| 1731 | } |
||
| 1732 | |||
| 1733 | //===----------------------------------------------------------------------===// |
||
| 1734 | // Processor chip sets - These values represent each of the chip sets supported |
||
| 1735 | // by the scheduler. Each Processor definition requires corresponding |
||
| 1736 | // instruction itineraries. |
||
| 1737 | // |
||
| 1738 | class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f, |
||
| 1739 | list<SubtargetFeature> tunef = []> { |
||
| 1740 | // Name - Chip set name. Used by command line (-mcpu=) to determine the |
||
| 1741 | // appropriate target chip. |
||
| 1742 | // |
||
| 1743 | string Name = n; |
||
| 1744 | |||
| 1745 | // SchedModel - The machine model for scheduling and instruction cost. |
||
| 1746 | // |
||
| 1747 | SchedMachineModel SchedModel = NoSchedModel; |
||
| 1748 | |||
| 1749 | // ProcItin - The scheduling information for the target processor. |
||
| 1750 | // |
||
| 1751 | ProcessorItineraries ProcItin = pi; |
||
| 1752 | |||
| 1753 | // Features - list of |
||
| 1754 | list<SubtargetFeature> Features = f; |
||
| 1755 | |||
| 1756 | // TuneFeatures - list of features for tuning for this CPU. If the target |
||
| 1757 | // supports -mtune, this should contain the list of features used to make |
||
| 1758 | // microarchitectural optimization decisions for a given processor. While |
||
| 1759 | // Features should contain the architectural features for the processor. |
||
| 1760 | list<SubtargetFeature> TuneFeatures = tunef; |
||
| 1761 | } |
||
| 1762 | |||
| 1763 | // ProcessorModel allows subtargets to specify the more general |
||
| 1764 | // SchedMachineModel instead if a ProcessorItinerary. Subtargets will |
||
| 1765 | // gradually move to this newer form. |
||
| 1766 | // |
||
| 1767 | // Although this class always passes NoItineraries to the Processor |
||
| 1768 | // class, the SchedMachineModel may still define valid Itineraries. |
||
| 1769 | class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f, |
||
| 1770 | list<SubtargetFeature> tunef = []> |
||
| 1771 | : Processor<n, NoItineraries, f, tunef> { |
||
| 1772 | let SchedModel = m; |
||
| 1773 | } |
||
| 1774 | |||
| 1775 | //===----------------------------------------------------------------------===// |
||
| 1776 | // InstrMapping - This class is used to create mapping tables to relate |
||
| 1777 | // instructions with each other based on the values specified in RowFields, |
||
| 1778 | // ColFields, KeyCol and ValueCols. |
||
| 1779 | // |
||
| 1780 | class InstrMapping { |
||
| 1781 | // FilterClass - Used to limit search space only to the instructions that |
||
| 1782 | // define the relationship modeled by this InstrMapping record. |
||
| 1783 | string FilterClass; |
||
| 1784 | |||
| 1785 | // RowFields - List of fields/attributes that should be same for all the |
||
| 1786 | // instructions in a row of the relation table. Think of this as a set of |
||
| 1787 | // properties shared by all the instructions related by this relationship |
||
| 1788 | // model and is used to categorize instructions into subgroups. For instance, |
||
| 1789 | // if we want to define a relation that maps 'Add' instruction to its |
||
| 1790 | // predicated forms, we can define RowFields like this: |
||
| 1791 | // |
||
| 1792 | // let RowFields = BaseOp |
||
| 1793 | // All add instruction predicated/non-predicated will have to set their BaseOp |
||
| 1794 | // to the same value. |
||
| 1795 | // |
||
| 1796 | // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' } |
||
| 1797 | // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' } |
||
| 1798 | // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' } |
||
| 1799 | list<string> RowFields = []; |
||
| 1800 | |||
| 1801 | // List of fields/attributes that are same for all the instructions |
||
| 1802 | // in a column of the relation table. |
||
| 1803 | // Ex: let ColFields = 'predSense' -- It means that the columns are arranged |
||
| 1804 | // based on the 'predSense' values. All the instruction in a specific |
||
| 1805 | // column have the same value and it is fixed for the column according |
||
| 1806 | // to the values set in 'ValueCols'. |
||
| 1807 | list<string> ColFields = []; |
||
| 1808 | |||
| 1809 | // Values for the fields/attributes listed in 'ColFields'. |
||
| 1810 | // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction |
||
| 1811 | // that models this relation) should be non-predicated. |
||
| 1812 | // In the example above, 'Add' is the key instruction. |
||
| 1813 | list<string> KeyCol = []; |
||
| 1814 | |||
| 1815 | // List of values for the fields/attributes listed in 'ColFields', one for |
||
| 1816 | // each column in the relation table. |
||
| 1817 | // |
||
| 1818 | // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the |
||
| 1819 | // table. First column requires all the instructions to have predSense |
||
| 1820 | // set to 'true' and second column requires it to be 'false'. |
||
| 1821 | list<list<string> > ValueCols = []; |
||
| 1822 | } |
||
| 1823 | |||
| 1824 | //===----------------------------------------------------------------------===// |
||
| 1825 | // Pull in the common support for calling conventions. |
||
| 1826 | // |
||
| 1827 | include "llvm/Target/TargetCallingConv.td" |
||
| 1828 | |||
| 1829 | //===----------------------------------------------------------------------===// |
||
| 1830 | // Pull in the common support for DAG isel generation. |
||
| 1831 | // |
||
| 1832 | include "llvm/Target/TargetSelectionDAG.td" |
||
| 1833 | |||
| 1834 | //===----------------------------------------------------------------------===// |
||
| 1835 | // Pull in the common support for Global ISel register bank info generation. |
||
| 1836 | // |
||
| 1837 | include "llvm/Target/GlobalISel/RegisterBank.td" |
||
| 1838 | |||
| 1839 | //===----------------------------------------------------------------------===// |
||
| 1840 | // Pull in the common support for DAG isel generation. |
||
| 1841 | // |
||
| 1842 | include "llvm/Target/GlobalISel/Target.td" |
||
| 1843 | |||
| 1844 | //===----------------------------------------------------------------------===// |
||
| 1845 | // Pull in the common support for the Global ISel DAG-based selector generation. |
||
| 1846 | // |
||
| 1847 | include "llvm/Target/GlobalISel/SelectionDAGCompat.td" |
||
| 1848 | |||
| 1849 | //===----------------------------------------------------------------------===// |
||
| 1850 | // Pull in the common support for Pfm Counters generation. |
||
| 1851 | // |
||
| 1852 | include "llvm/Target/TargetPfmCounters.td" |