Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- Automaton.td ----------------------------------------*- tablegen -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines the key top-level classes needed to produce a reasonably |
||
10 | // generic finite-state automaton. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | // Define a record inheriting from GenericAutomaton to generate a reasonably |
||
15 | // generic finite-state automaton over a set of actions and states. |
||
16 | // |
||
17 | // This automaton is defined by: |
||
18 | // 1) a state space (explicit, always bits<32>). |
||
19 | // 2) a set of input symbols (actions, explicit) and |
||
20 | // 3) a transition function from state + action -> state. |
||
21 | // |
||
22 | // A theoretical automaton is defined by <Q, S, d, q0, F>: |
||
23 | // Q: A set of possible states. |
||
24 | // S: (sigma) The input alphabet. |
||
25 | // d: (delta) The transition function f(q in Q, s in S) -> q' in Q. |
||
26 | // F: The set of final (accepting) states. |
||
27 | // |
||
28 | // Because generating all possible states is tedious, we instead define the |
||
29 | // transition function only and crawl all reachable states starting from the |
||
30 | // initial state with all inputs under all transitions until termination. |
||
31 | // |
||
32 | // We define F = S, that is, all valid states are accepting. |
||
33 | // |
||
34 | // To ensure the generation of the automaton terminates, the state transitions |
||
35 | // are defined as a lattice (meaning every transitioned-to state is more |
||
36 | // specific than the transitioned-from state, for some definition of specificity). |
||
37 | // Concretely a transition may set one or more bits in the state that were |
||
38 | // previously zero to one. If any bit was not zero, the transition is invalid. |
||
39 | // |
||
40 | // Instead of defining all possible states (which would be cumbersome), the user |
||
41 | // provides a set of possible Transitions from state A, consuming an input |
||
42 | // symbol A to state B. The Transition object transforms state A to state B and |
||
43 | // acts as a predicate. This means the state space can be discovered by crawling |
||
44 | // all the possible transitions until none are valid. |
||
45 | // |
||
46 | // This automaton is considered to be nondeterministic, meaning that multiple |
||
47 | // transitions can occur from any (state, action) pair. The generated automaton |
||
48 | // is determinized, meaning that is executes in O(k) time where k is the input |
||
49 | // sequence length. |
||
50 | // |
||
51 | // In addition to a generated automaton that determines if a sequence of inputs |
||
52 | // is accepted or not, a table is emitted that allows determining a plausible |
||
53 | // sequence of states traversed to accept that input. |
||
54 | class GenericAutomaton { |
||
55 | // Name of a class that inherits from Transition. All records inheriting from |
||
56 | // this class will be considered when constructing the automaton. |
||
57 | string TransitionClass; |
||
58 | |||
59 | // Names of fields within TransitionClass that define the action symbol. This |
||
60 | // defines the action as an N-tuple. |
||
61 | // |
||
62 | // Each symbol field can be of class, int, string or code type. |
||
63 | // If the type of a field is a class, the Record's name is used verbatim |
||
64 | // in C++ and the class name is used as the C++ type name. |
||
65 | // If the type of a field is a string, code or int, that is also used |
||
66 | // verbatim in C++. |
||
67 | // |
||
68 | // To override the C++ type name for field F, define a field called TypeOf_F. |
||
69 | // This should be a string that will be used verbatim in C++. |
||
70 | // |
||
71 | // As an example, to define a 2-tuple with an enum and a string, one might: |
||
72 | // def MyTransition : Transition { |
||
73 | // MyEnum S1; |
||
74 | // int S2; |
||
75 | // } |
||
76 | // def MyAutomaton : GenericAutomaton }{ |
||
77 | // let TransitionClass = "Transition"; |
||
78 | // let SymbolFields = ["S1", "S2"]; |
||
79 | // let TypeOf_S1 = "MyEnumInCxxKind"; |
||
80 | // } |
||
81 | list<string> SymbolFields; |
||
82 | } |
||
83 | |||
84 | // All transitions inherit from Transition. |
||
85 | class Transition { |
||
86 | // A transition S' = T(S) is valid if, for every set bit in NewState, the |
||
87 | // corresponding bit in S is clear. That is: |
||
88 | // def T(S): |
||
89 | // S' = S | NewState |
||
90 | // return S' if S' != S else Failure |
||
91 | // |
||
92 | // The automaton generator uses this property to crawl the set of possible |
||
93 | // transitions from a starting state of 0b0. |
||
94 | bits<32> NewState; |
||
95 | } |