Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the target independent instruction opcodes.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
// NOTE: NO INCLUDE GUARD DESIRED!
14
 
15
/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
16
///
17
#ifndef HANDLE_TARGET_OPCODE
18
#define HANDLE_TARGET_OPCODE(OPC, NUM)
19
#endif
20
 
21
/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
22
///
23
#ifndef HANDLE_TARGET_OPCODE_MARKER
24
#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
25
#endif
26
 
27
/// Every instruction defined here must also appear in Target.td.
28
///
29
HANDLE_TARGET_OPCODE(PHI)
30
HANDLE_TARGET_OPCODE(INLINEASM)
31
HANDLE_TARGET_OPCODE(INLINEASM_BR)
32
HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33
HANDLE_TARGET_OPCODE(EH_LABEL)
34
HANDLE_TARGET_OPCODE(GC_LABEL)
35
HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
 
37
/// KILL - This instruction is a noop that is used only to adjust the
38
/// liveness of registers. This can be useful when dealing with
39
/// sub-registers.
40
HANDLE_TARGET_OPCODE(KILL)
41
 
42
/// EXTRACT_SUBREG - This instruction takes two operands: a register
43
/// that has subregisters, and a subregister index. It returns the
44
/// extracted subregister value. This is commonly used to implement
45
/// truncation operations on target architectures which support it.
46
HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
 
48
/// INSERT_SUBREG - This instruction takes three operands: a register that
49
/// has subregisters, a register providing an insert value, and a
50
/// subregister index. It returns the value of the first register with the
51
/// value of the second register inserted. The first register is often
52
/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53
/// anyext operations on target architectures which support it.
54
HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
 
56
/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57
HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
 
59
/// SUBREG_TO_REG - Assert the value of bits in a super register.
60
/// The result of this instruction is the value of the second operand inserted
61
/// into the subregister specified by the third operand. All other bits are
62
/// assumed to be equal to the bits in the immediate integer constant in the
63
/// first operand. This instruction just communicates information; No code
64
/// should be generated.
65
/// This is typically used after an instruction where the write to a subregister
66
/// implicitly cleared the bits in the super registers.
67
HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
 
69
/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70
/// register-to-register copy into a specific register class. This is only
71
/// used between instruction selection and MachineInstr creation, before
72
/// virtual registers have been created for all the instructions, and it's
73
/// only needed in cases where the register classes implied by the
74
/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75
  HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
 
77
/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78
HANDLE_TARGET_OPCODE(DBG_VALUE)
79
 
80
/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic with a variadic
81
/// list of locations
82
HANDLE_TARGET_OPCODE(DBG_VALUE_LIST)
83
 
84
/// DBG_INSTR_REF - A mapping of llvm.dbg.value referring to the instruction
85
/// that defines the value, rather than a virtual register.
86
HANDLE_TARGET_OPCODE(DBG_INSTR_REF)
87
 
88
/// DBG_PHI - remainder of a PHI, identifies a program point where values
89
/// merge under control flow.
90
HANDLE_TARGET_OPCODE(DBG_PHI)
91
 
92
/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
93
HANDLE_TARGET_OPCODE(DBG_LABEL)
94
 
95
/// REG_SEQUENCE - This variadic instruction is used to form a register that
96
/// represents a consecutive sequence of sub-registers. It's used as a
97
/// register coalescing / allocation aid and must be eliminated before code
98
/// emission.
99
// In SDNode form, the first operand encodes the register class created by
100
// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
101
// pair.  Once it has been lowered to a MachineInstr, the regclass operand
102
// is no longer present.
103
/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
104
/// After register coalescing references of v1024 should be replace with
105
/// v1027:3, v1025 with v1027:4, etc.
106
  HANDLE_TARGET_OPCODE(REG_SEQUENCE)
107
 
108
/// COPY - Target-independent register copy. This instruction can also be
109
/// used to copy between subregisters of virtual registers.
110
  HANDLE_TARGET_OPCODE(COPY)
111
 
112
/// BUNDLE - This instruction represents an instruction bundle. Instructions
113
/// which immediately follow a BUNDLE instruction which are marked with
114
/// 'InsideBundle' flag are inside the bundle.
115
HANDLE_TARGET_OPCODE(BUNDLE)
116
 
117
/// Lifetime markers.
118
HANDLE_TARGET_OPCODE(LIFETIME_START)
119
HANDLE_TARGET_OPCODE(LIFETIME_END)
120
 
121
/// Pseudo probe
122
HANDLE_TARGET_OPCODE(PSEUDO_PROBE)
123
 
124
/// Arithmetic fence.
125
HANDLE_TARGET_OPCODE(ARITH_FENCE)
126
 
127
/// A Stackmap instruction captures the location of live variables at its
128
/// position in the instruction stream. It is followed by a shadow of bytes
129
/// that must lie within the function and not contain another stackmap.
130
HANDLE_TARGET_OPCODE(STACKMAP)
131
 
132
/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
133
HANDLE_TARGET_OPCODE(FENTRY_CALL)
134
 
135
/// Patchable call instruction - this instruction represents a call to a
136
/// constant address, followed by a series of NOPs. It is intended to
137
/// support optimizations for dynamic languages (such as javascript) that
138
/// rewrite calls to runtimes with more efficient code sequences.
139
/// This also implies a stack map.
140
HANDLE_TARGET_OPCODE(PATCHPOINT)
141
 
142
/// This pseudo-instruction loads the stack guard value. Targets which need
143
/// to prevent the stack guard value or address from being spilled to the
144
/// stack should override TargetLowering::emitLoadStackGuardNode and
145
/// additionally expand this pseudo after register allocation.
146
HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
147
 
148
/// These are used to support call sites that must have the stack adjusted
149
/// before the call (e.g. to initialize an argument passed by value).
150
/// See llvm.call.preallocated.{setup,arg} in the LangRef for more details.
151
HANDLE_TARGET_OPCODE(PREALLOCATED_SETUP)
152
HANDLE_TARGET_OPCODE(PREALLOCATED_ARG)
153
 
154
/// Call instruction with associated vm state for deoptimization and list
155
/// of live pointers for relocation by the garbage collector.  It is
156
/// intended to support garbage collection with fully precise relocating
157
/// collectors and deoptimizations in either the callee or caller.
158
HANDLE_TARGET_OPCODE(STATEPOINT)
159
 
160
/// Instruction that records the offset of a local stack allocation passed to
161
/// llvm.localescape. It has two arguments: the symbol for the label and the
162
/// frame index of the local stack allocation.
163
HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
164
 
165
/// Wraps a machine instruction which can fault, bundled with associated
166
/// information on how to handle such a fault.
167
/// For example loading instruction that may page fault, bundled with associated
168
/// information on how to handle such a page fault.  It is intended to support
169
/// "zero cost" null checks in managed languages by allowing LLVM to fold
170
/// comparisons into existing memory operations.
171
HANDLE_TARGET_OPCODE(FAULTING_OP)
172
 
173
/// Wraps a machine instruction to add patchability constraints.  An
174
/// instruction wrapped in PATCHABLE_OP has to either have a minimum
175
/// size or be preceded with a nop of that size.  The first operand is
176
/// an immediate denoting the minimum size of the instruction, the
177
/// second operand is an immediate denoting the opcode of the original
178
/// instruction.  The rest of the operands are the operands of the
179
/// original instruction.
180
/// PATCHABLE_OP can be used as second operand to only insert a nop of
181
/// required size.
182
HANDLE_TARGET_OPCODE(PATCHABLE_OP)
183
 
184
/// This is a marker instruction which gets translated into a nop sled, useful
185
/// for inserting instrumentation instructions at runtime.
186
HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
187
 
188
/// Wraps a return instruction and its operands to enable adding nop sleds
189
/// either before or after the return. The nop sleds are useful for inserting
190
/// instrumentation instructions at runtime.
191
/// The patch here replaces the return instruction.
192
HANDLE_TARGET_OPCODE(PATCHABLE_RET)
193
 
194
/// This is a marker instruction which gets translated into a nop sled, useful
195
/// for inserting instrumentation instructions at runtime.
196
/// The patch here prepends the return instruction.
197
/// The same thing as in x86_64 is not possible for ARM because it has multiple
198
/// return instructions. Furthermore, CPU allows parametrized and even
199
/// conditional return instructions. In the current ARM implementation we are
200
/// making use of the fact that currently LLVM doesn't seem to generate
201
/// conditional return instructions.
202
/// On ARM, the same instruction can be used for popping multiple registers
203
/// from the stack and returning (it just pops pc register too), and LLVM
204
/// generates it sometimes. So we can't insert the sled between this stack
205
/// adjustment and the return without splitting the original instruction into 2
206
/// instructions. So on ARM, rather than jumping into the exit trampoline, we
207
/// call it, it does the tracing, preserves the stack and returns.
208
HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
209
 
210
/// Wraps a tail call instruction and its operands to enable adding nop sleds
211
/// either before or after the tail exit. We use this as a disambiguation from
212
/// PATCHABLE_RET which specifically only works for return instructions.
213
HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
214
 
215
/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
216
/// be patched to insert instrumentation instructions.
217
HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
218
 
219
/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
220
/// can be patched to insert instrumentation instructions.
221
HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
222
 
223
HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
224
 
225
// This is a fence with the singlethread scope. It represents a compiler memory
226
// barrier, but does not correspond to any generated instruction.
227
HANDLE_TARGET_OPCODE(MEMBARRIER)
228
 
229
/// The following generic opcodes are not supposed to appear after ISel.
230
/// This is something we might want to relax, but for now, this is convenient
231
/// to produce diagnostics.
232
 
233
/// Instructions which should not exist past instruction selection, but do not
234
/// generate code. These instructions only act as optimization hints.
235
HANDLE_TARGET_OPCODE(G_ASSERT_SEXT)
236
HANDLE_TARGET_OPCODE(G_ASSERT_ZEXT)
237
HANDLE_TARGET_OPCODE(G_ASSERT_ALIGN)
238
HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_START,
239
                            G_ASSERT_SEXT)
240
HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_END,
241
                            G_ASSERT_ALIGN)
242
 
243
/// Generic ADD instruction. This is an integer add.
244
HANDLE_TARGET_OPCODE(G_ADD)
245
HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
246
 
247
/// Generic SUB instruction. This is an integer sub.
248
HANDLE_TARGET_OPCODE(G_SUB)
249
 
250
// Generic multiply instruction.
251
HANDLE_TARGET_OPCODE(G_MUL)
252
 
253
// Generic signed division instruction.
254
HANDLE_TARGET_OPCODE(G_SDIV)
255
 
256
// Generic unsigned division instruction.
257
HANDLE_TARGET_OPCODE(G_UDIV)
258
 
259
// Generic signed remainder instruction.
260
HANDLE_TARGET_OPCODE(G_SREM)
261
 
262
// Generic unsigned remainder instruction.
263
HANDLE_TARGET_OPCODE(G_UREM)
264
 
265
// Generic signed divrem instruction.
266
HANDLE_TARGET_OPCODE(G_SDIVREM)
267
 
268
// Generic unsigned divrem instruction.
269
HANDLE_TARGET_OPCODE(G_UDIVREM)
270
 
271
/// Generic bitwise and instruction.
272
HANDLE_TARGET_OPCODE(G_AND)
273
 
274
/// Generic bitwise or instruction.
275
HANDLE_TARGET_OPCODE(G_OR)
276
 
277
/// Generic bitwise exclusive-or instruction.
278
HANDLE_TARGET_OPCODE(G_XOR)
279
 
280
 
281
HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
282
 
283
/// Generic PHI instruction with types.
284
HANDLE_TARGET_OPCODE(G_PHI)
285
 
286
/// Generic instruction to materialize the address of an alloca or other
287
/// stack-based object.
288
HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
289
 
290
/// Generic reference to global value.
291
HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
292
 
293
/// Generic instruction to extract blocks of bits from the register given
294
/// (typically a sub-register COPY after instruction selection).
295
HANDLE_TARGET_OPCODE(G_EXTRACT)
296
 
297
HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
298
 
299
/// Generic instruction to insert blocks of bits from the registers given into
300
/// the source.
301
HANDLE_TARGET_OPCODE(G_INSERT)
302
 
303
/// Generic instruction to paste a variable number of components together into a
304
/// larger register.
305
HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
306
 
307
/// Generic instruction to create a vector value from a number of scalar
308
/// components.
309
HANDLE_TARGET_OPCODE(G_BUILD_VECTOR)
310
 
311
/// Generic instruction to create a vector value from a number of scalar
312
/// components, which have types larger than the result vector elt type.
313
HANDLE_TARGET_OPCODE(G_BUILD_VECTOR_TRUNC)
314
 
315
/// Generic instruction to create a vector by concatenating multiple vectors.
316
HANDLE_TARGET_OPCODE(G_CONCAT_VECTORS)
317
 
318
/// Generic pointer to int conversion.
319
HANDLE_TARGET_OPCODE(G_PTRTOINT)
320
 
321
/// Generic int to pointer conversion.
322
HANDLE_TARGET_OPCODE(G_INTTOPTR)
323
 
324
/// Generic bitcast. The source and destination types must be different, or a
325
/// COPY is the relevant instruction.
326
HANDLE_TARGET_OPCODE(G_BITCAST)
327
 
328
/// Generic freeze.
329
HANDLE_TARGET_OPCODE(G_FREEZE)
330
 
331
// INTRINSIC fptrunc_round intrinsic.
332
HANDLE_TARGET_OPCODE(G_INTRINSIC_FPTRUNC_ROUND)
333
 
334
/// INTRINSIC trunc intrinsic.
335
HANDLE_TARGET_OPCODE(G_INTRINSIC_TRUNC)
336
 
337
/// INTRINSIC round intrinsic.
338
HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUND)
339
 
340
/// INTRINSIC round to integer intrinsic.
341
HANDLE_TARGET_OPCODE(G_INTRINSIC_LRINT)
342
 
343
/// INTRINSIC roundeven intrinsic.
344
HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUNDEVEN)
345
 
346
/// INTRINSIC readcyclecounter
347
HANDLE_TARGET_OPCODE(G_READCYCLECOUNTER)
348
 
349
/// Generic load (including anyext load)
350
HANDLE_TARGET_OPCODE(G_LOAD)
351
 
352
/// Generic signext load
353
HANDLE_TARGET_OPCODE(G_SEXTLOAD)
354
 
355
/// Generic zeroext load
356
HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
357
 
358
/// Generic indexed load (including anyext load)
359
HANDLE_TARGET_OPCODE(G_INDEXED_LOAD)
360
 
361
/// Generic indexed signext load
362
HANDLE_TARGET_OPCODE(G_INDEXED_SEXTLOAD)
363
 
364
/// Generic indexed zeroext load
365
HANDLE_TARGET_OPCODE(G_INDEXED_ZEXTLOAD)
366
 
367
/// Generic store.
368
HANDLE_TARGET_OPCODE(G_STORE)
369
 
370
/// Generic indexed store.
371
HANDLE_TARGET_OPCODE(G_INDEXED_STORE)
372
 
373
/// Generic atomic cmpxchg with internal success check.
374
HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
375
 
376
/// Generic atomic cmpxchg.
377
HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
378
 
379
/// Generic atomicrmw.
380
HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
381
HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
382
HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
383
HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
384
HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
385
HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
386
HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
387
HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
388
HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
389
HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
390
HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
391
HANDLE_TARGET_OPCODE(G_ATOMICRMW_FADD)
392
HANDLE_TARGET_OPCODE(G_ATOMICRMW_FSUB)
393
HANDLE_TARGET_OPCODE(G_ATOMICRMW_FMAX)
394
HANDLE_TARGET_OPCODE(G_ATOMICRMW_FMIN)
395
HANDLE_TARGET_OPCODE(G_ATOMICRMW_UINC_WRAP)
396
HANDLE_TARGET_OPCODE(G_ATOMICRMW_UDEC_WRAP)
397
 
398
// Marker for start of Generic AtomicRMW opcodes
399
HANDLE_TARGET_OPCODE_MARKER(GENERIC_ATOMICRMW_OP_START, G_ATOMICRMW_XCHG)
400
 
401
// Marker for end of Generic AtomicRMW opcodes
402
HANDLE_TARGET_OPCODE_MARKER(GENERIC_ATOMICRMW_OP_END, G_ATOMICRMW_UDEC_WRAP)
403
 
404
// Generic atomic fence
405
HANDLE_TARGET_OPCODE(G_FENCE)
406
 
407
/// Generic conditional branch instruction.
408
HANDLE_TARGET_OPCODE(G_BRCOND)
409
 
410
/// Generic indirect branch instruction.
411
HANDLE_TARGET_OPCODE(G_BRINDIRECT)
412
 
413
/// Begin an invoke region marker.
414
HANDLE_TARGET_OPCODE(G_INVOKE_REGION_START)
415
 
416
/// Generic intrinsic use (without side effects).
417
HANDLE_TARGET_OPCODE(G_INTRINSIC)
418
 
419
/// Generic intrinsic use (with side effects).
420
HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
421
 
422
/// Generic extension allowing rubbish in high bits.
423
HANDLE_TARGET_OPCODE(G_ANYEXT)
424
 
425
/// Generic instruction to discard the high bits of a register. This differs
426
/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
427
/// each element individually, G_EXTRACT will typically discard the high
428
/// elements of the vector.
429
HANDLE_TARGET_OPCODE(G_TRUNC)
430
 
431
/// Generic integer constant.
432
HANDLE_TARGET_OPCODE(G_CONSTANT)
433
 
434
/// Generic floating constant.
435
HANDLE_TARGET_OPCODE(G_FCONSTANT)
436
 
437
/// Generic va_start instruction. Stores to its one pointer operand.
438
HANDLE_TARGET_OPCODE(G_VASTART)
439
 
440
/// Generic va_start instruction. Stores to its one pointer operand.
441
HANDLE_TARGET_OPCODE(G_VAARG)
442
 
443
// Generic sign extend
444
HANDLE_TARGET_OPCODE(G_SEXT)
445
HANDLE_TARGET_OPCODE(G_SEXT_INREG)
446
 
447
// Generic zero extend
448
HANDLE_TARGET_OPCODE(G_ZEXT)
449
 
450
// Generic left-shift
451
HANDLE_TARGET_OPCODE(G_SHL)
452
 
453
// Generic logical right-shift
454
HANDLE_TARGET_OPCODE(G_LSHR)
455
 
456
// Generic arithmetic right-shift
457
HANDLE_TARGET_OPCODE(G_ASHR)
458
 
459
// Generic funnel left shift
460
HANDLE_TARGET_OPCODE(G_FSHL)
461
 
462
// Generic funnel right shift
463
HANDLE_TARGET_OPCODE(G_FSHR)
464
 
465
// Generic right rotate
466
HANDLE_TARGET_OPCODE(G_ROTR)
467
 
468
// Generic left rotate
469
HANDLE_TARGET_OPCODE(G_ROTL)
470
 
471
/// Generic integer-base comparison, also applicable to vectors of integers.
472
HANDLE_TARGET_OPCODE(G_ICMP)
473
 
474
/// Generic floating-point comparison, also applicable to vectors.
475
HANDLE_TARGET_OPCODE(G_FCMP)
476
 
477
/// Generic select.
478
HANDLE_TARGET_OPCODE(G_SELECT)
479
 
480
/// Generic unsigned add instruction, consuming the normal operands and
481
/// producing the result and a carry flag.
482
HANDLE_TARGET_OPCODE(G_UADDO)
483
 
484
/// Generic unsigned add instruction, consuming the normal operands plus a carry
485
/// flag, and similarly producing the result and a carry flag.
486
HANDLE_TARGET_OPCODE(G_UADDE)
487
 
488
/// Generic unsigned sub instruction, consuming the normal operands and
489
/// producing the result and a carry flag.
490
HANDLE_TARGET_OPCODE(G_USUBO)
491
 
492
/// Generic unsigned subtract instruction, consuming the normal operands plus a
493
/// carry flag, and similarly producing the result and a carry flag.
494
HANDLE_TARGET_OPCODE(G_USUBE)
495
 
496
/// Generic signed add instruction, producing the result and a signed overflow
497
/// flag.
498
HANDLE_TARGET_OPCODE(G_SADDO)
499
 
500
/// Generic signed add instruction, consuming the normal operands plus a carry
501
/// flag, and similarly producing the result and a carry flag.
502
HANDLE_TARGET_OPCODE(G_SADDE)
503
 
504
/// Generic signed subtract instruction, producing the result and a signed
505
/// overflow flag.
506
HANDLE_TARGET_OPCODE(G_SSUBO)
507
 
508
/// Generic signed sub instruction, consuming the normal operands plus a carry
509
/// flag, and similarly producing the result and a carry flag.
510
HANDLE_TARGET_OPCODE(G_SSUBE)
511
 
512
/// Generic unsigned multiply instruction, producing the result and a signed
513
/// overflow flag.
514
HANDLE_TARGET_OPCODE(G_UMULO)
515
 
516
/// Generic signed multiply instruction, producing the result and a signed
517
/// overflow flag.
518
HANDLE_TARGET_OPCODE(G_SMULO)
519
 
520
// Multiply two numbers at twice the incoming bit width (unsigned) and return
521
// the high half of the result.
522
HANDLE_TARGET_OPCODE(G_UMULH)
523
 
524
// Multiply two numbers at twice the incoming bit width (signed) and return
525
// the high half of the result.
526
HANDLE_TARGET_OPCODE(G_SMULH)
527
 
528
/// Generic saturating unsigned addition.
529
HANDLE_TARGET_OPCODE(G_UADDSAT)
530
 
531
/// Generic saturating signed addition.
532
HANDLE_TARGET_OPCODE(G_SADDSAT)
533
 
534
/// Generic saturating unsigned subtraction.
535
HANDLE_TARGET_OPCODE(G_USUBSAT)
536
 
537
/// Generic saturating signed subtraction.
538
HANDLE_TARGET_OPCODE(G_SSUBSAT)
539
 
540
/// Generic saturating unsigned left shift.
541
HANDLE_TARGET_OPCODE(G_USHLSAT)
542
 
543
/// Generic saturating signed left shift.
544
HANDLE_TARGET_OPCODE(G_SSHLSAT)
545
 
546
// Perform signed fixed point multiplication
547
HANDLE_TARGET_OPCODE(G_SMULFIX)
548
 
549
// Perform unsigned fixed point multiplication
550
HANDLE_TARGET_OPCODE(G_UMULFIX)
551
 
552
// Perform signed, saturating fixed point multiplication
553
HANDLE_TARGET_OPCODE(G_SMULFIXSAT)
554
 
555
// Perform unsigned, saturating fixed point multiplication
556
HANDLE_TARGET_OPCODE(G_UMULFIXSAT)
557
 
558
// Perform signed fixed point division
559
HANDLE_TARGET_OPCODE(G_SDIVFIX)
560
 
561
// Perform unsigned fixed point division
562
HANDLE_TARGET_OPCODE(G_UDIVFIX)
563
 
564
// Perform signed, saturating fixed point division
565
HANDLE_TARGET_OPCODE(G_SDIVFIXSAT)
566
 
567
// Perform unsigned, saturating fixed point division
568
HANDLE_TARGET_OPCODE(G_UDIVFIXSAT)
569
 
570
/// Generic FP addition.
571
HANDLE_TARGET_OPCODE(G_FADD)
572
 
573
/// Generic FP subtraction.
574
HANDLE_TARGET_OPCODE(G_FSUB)
575
 
576
/// Generic FP multiplication.
577
HANDLE_TARGET_OPCODE(G_FMUL)
578
 
579
/// Generic FMA multiplication. Behaves like llvm fma intrinsic
580
HANDLE_TARGET_OPCODE(G_FMA)
581
 
582
/// Generic FP multiply and add. Behaves as separate fmul and fadd.
583
HANDLE_TARGET_OPCODE(G_FMAD)
584
 
585
/// Generic FP division.
586
HANDLE_TARGET_OPCODE(G_FDIV)
587
 
588
/// Generic FP remainder.
589
HANDLE_TARGET_OPCODE(G_FREM)
590
 
591
/// Generic FP exponentiation.
592
HANDLE_TARGET_OPCODE(G_FPOW)
593
 
594
/// Generic FP exponentiation, with an integer exponent.
595
HANDLE_TARGET_OPCODE(G_FPOWI)
596
 
597
/// Generic base-e exponential of a value.
598
HANDLE_TARGET_OPCODE(G_FEXP)
599
 
600
/// Generic base-2 exponential of a value.
601
HANDLE_TARGET_OPCODE(G_FEXP2)
602
 
603
/// Floating point base-e logarithm of a value.
604
HANDLE_TARGET_OPCODE(G_FLOG)
605
 
606
/// Floating point base-2 logarithm of a value.
607
HANDLE_TARGET_OPCODE(G_FLOG2)
608
 
609
/// Floating point base-10 logarithm of a value.
610
HANDLE_TARGET_OPCODE(G_FLOG10)
611
 
612
/// Generic FP negation.
613
HANDLE_TARGET_OPCODE(G_FNEG)
614
 
615
/// Generic FP extension.
616
HANDLE_TARGET_OPCODE(G_FPEXT)
617
 
618
/// Generic float to signed-int conversion
619
HANDLE_TARGET_OPCODE(G_FPTRUNC)
620
 
621
/// Generic float to signed-int conversion
622
HANDLE_TARGET_OPCODE(G_FPTOSI)
623
 
624
/// Generic float to unsigned-int conversion
625
HANDLE_TARGET_OPCODE(G_FPTOUI)
626
 
627
/// Generic signed-int to float conversion
628
HANDLE_TARGET_OPCODE(G_SITOFP)
629
 
630
/// Generic unsigned-int to float conversion
631
HANDLE_TARGET_OPCODE(G_UITOFP)
632
 
633
/// Generic FP absolute value.
634
HANDLE_TARGET_OPCODE(G_FABS)
635
 
636
/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This does
637
/// not require that X and Y have the same type, just that they are both
638
/// floating point. X and the result must have the same type.  FCOPYSIGN(f32,
639
/// f64) is allowed.
640
HANDLE_TARGET_OPCODE(G_FCOPYSIGN)
641
 
642
/// Generic test for floating-point class.
643
HANDLE_TARGET_OPCODE(G_IS_FPCLASS)
644
 
645
/// Generic FP canonicalize value.
646
HANDLE_TARGET_OPCODE(G_FCANONICALIZE)
647
 
648
/// FP min/max matching libm's fmin/fmax
649
HANDLE_TARGET_OPCODE(G_FMINNUM)
650
HANDLE_TARGET_OPCODE(G_FMAXNUM)
651
 
652
/// FP min/max matching IEEE-754 2008's minnum/maxnum semantics.
653
HANDLE_TARGET_OPCODE(G_FMINNUM_IEEE)
654
HANDLE_TARGET_OPCODE(G_FMAXNUM_IEEE)
655
 
656
/// FP min/max matching IEEE-754 2018 draft semantics.
657
HANDLE_TARGET_OPCODE(G_FMINIMUM)
658
HANDLE_TARGET_OPCODE(G_FMAXIMUM)
659
 
660
/// Generic pointer offset
661
HANDLE_TARGET_OPCODE(G_PTR_ADD)
662
 
663
/// Clear the specified bits in a pointer.
664
HANDLE_TARGET_OPCODE(G_PTRMASK)
665
 
666
/// Generic signed integer minimum.
667
HANDLE_TARGET_OPCODE(G_SMIN)
668
 
669
/// Generic signed integer maximum.
670
HANDLE_TARGET_OPCODE(G_SMAX)
671
 
672
/// Generic unsigned integer maximum.
673
HANDLE_TARGET_OPCODE(G_UMIN)
674
 
675
/// Generic unsigned integer maximum.
676
HANDLE_TARGET_OPCODE(G_UMAX)
677
 
678
/// Generic integer absolute value.
679
HANDLE_TARGET_OPCODE(G_ABS)
680
 
681
HANDLE_TARGET_OPCODE(G_LROUND)
682
HANDLE_TARGET_OPCODE(G_LLROUND)
683
 
684
/// Generic BRANCH instruction. This is an unconditional branch.
685
HANDLE_TARGET_OPCODE(G_BR)
686
 
687
/// Generic branch to jump table entry.
688
HANDLE_TARGET_OPCODE(G_BRJT)
689
 
690
/// Generic insertelement.
691
HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
692
 
693
/// Generic extractelement.
694
HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
695
 
696
/// Generic shufflevector.
697
HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
698
 
699
/// Generic count trailing zeroes.
700
HANDLE_TARGET_OPCODE(G_CTTZ)
701
 
702
/// Same as above, undefined for zero inputs.
703
HANDLE_TARGET_OPCODE(G_CTTZ_ZERO_UNDEF)
704
 
705
/// Generic count leading zeroes.
706
HANDLE_TARGET_OPCODE(G_CTLZ)
707
 
708
/// Same as above, undefined for zero inputs.
709
HANDLE_TARGET_OPCODE(G_CTLZ_ZERO_UNDEF)
710
 
711
/// Generic count bits.
712
HANDLE_TARGET_OPCODE(G_CTPOP)
713
 
714
/// Generic byte swap.
715
HANDLE_TARGET_OPCODE(G_BSWAP)
716
 
717
/// Generic bit reverse.
718
HANDLE_TARGET_OPCODE(G_BITREVERSE)
719
 
720
/// Floating point ceil.
721
HANDLE_TARGET_OPCODE(G_FCEIL)
722
 
723
/// Floating point cosine.
724
HANDLE_TARGET_OPCODE(G_FCOS)
725
 
726
/// Floating point sine.
727
HANDLE_TARGET_OPCODE(G_FSIN)
728
 
729
/// Floating point square root.
730
HANDLE_TARGET_OPCODE(G_FSQRT)
731
 
732
/// Floating point floor.
733
HANDLE_TARGET_OPCODE(G_FFLOOR)
734
 
735
/// Floating point round to next integer.
736
HANDLE_TARGET_OPCODE(G_FRINT)
737
 
738
/// Floating point round to nearest integer.
739
HANDLE_TARGET_OPCODE(G_FNEARBYINT)
740
 
741
/// Generic AddressSpaceCast.
742
HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
743
 
744
/// Generic block address
745
HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
746
 
747
/// Generic jump table address
748
HANDLE_TARGET_OPCODE(G_JUMP_TABLE)
749
 
750
/// Generic dynamic stack allocation.
751
HANDLE_TARGET_OPCODE(G_DYN_STACKALLOC)
752
 
753
/// Strict floating point instructions.
754
HANDLE_TARGET_OPCODE(G_STRICT_FADD)
755
HANDLE_TARGET_OPCODE(G_STRICT_FSUB)
756
HANDLE_TARGET_OPCODE(G_STRICT_FMUL)
757
HANDLE_TARGET_OPCODE(G_STRICT_FDIV)
758
HANDLE_TARGET_OPCODE(G_STRICT_FREM)
759
HANDLE_TARGET_OPCODE(G_STRICT_FMA)
760
HANDLE_TARGET_OPCODE(G_STRICT_FSQRT)
761
 
762
/// read_register intrinsic
763
HANDLE_TARGET_OPCODE(G_READ_REGISTER)
764
 
765
/// write_register intrinsic
766
HANDLE_TARGET_OPCODE(G_WRITE_REGISTER)
767
 
768
/// llvm.memcpy intrinsic
769
HANDLE_TARGET_OPCODE(G_MEMCPY)
770
 
771
/// llvm.memcpy.inline intrinsic
772
HANDLE_TARGET_OPCODE(G_MEMCPY_INLINE)
773
 
774
/// llvm.memmove intrinsic
775
HANDLE_TARGET_OPCODE(G_MEMMOVE)
776
 
777
/// llvm.memset intrinsic
778
HANDLE_TARGET_OPCODE(G_MEMSET)
779
HANDLE_TARGET_OPCODE(G_BZERO)
780
 
781
/// Vector reductions
782
HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FADD)
783
HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FMUL)
784
HANDLE_TARGET_OPCODE(G_VECREDUCE_FADD)
785
HANDLE_TARGET_OPCODE(G_VECREDUCE_FMUL)
786
HANDLE_TARGET_OPCODE(G_VECREDUCE_FMAX)
787
HANDLE_TARGET_OPCODE(G_VECREDUCE_FMIN)
788
HANDLE_TARGET_OPCODE(G_VECREDUCE_ADD)
789
HANDLE_TARGET_OPCODE(G_VECREDUCE_MUL)
790
HANDLE_TARGET_OPCODE(G_VECREDUCE_AND)
791
HANDLE_TARGET_OPCODE(G_VECREDUCE_OR)
792
HANDLE_TARGET_OPCODE(G_VECREDUCE_XOR)
793
HANDLE_TARGET_OPCODE(G_VECREDUCE_SMAX)
794
HANDLE_TARGET_OPCODE(G_VECREDUCE_SMIN)
795
HANDLE_TARGET_OPCODE(G_VECREDUCE_UMAX)
796
HANDLE_TARGET_OPCODE(G_VECREDUCE_UMIN)
797
 
798
HANDLE_TARGET_OPCODE(G_SBFX)
799
HANDLE_TARGET_OPCODE(G_UBFX)
800
 
801
/// Marker for the end of the generic opcode.
802
/// This is used to check if an opcode is in the range of the
803
/// generic opcodes.
804
HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_UBFX)
805
 
806
/// BUILTIN_OP_END - This must be the last enum value in this list.
807
/// The target-specific post-isel opcode values start here.
808
HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)