Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | |||
| 9 | #ifndef LLVM_SUPPORT_PARALLEL_H |
||
| 10 | #define LLVM_SUPPORT_PARALLEL_H |
||
| 11 | |||
| 12 | #include "llvm/ADT/STLExtras.h" |
||
| 13 | #include "llvm/Config/llvm-config.h" |
||
| 14 | #include "llvm/Support/Error.h" |
||
| 15 | #include "llvm/Support/MathExtras.h" |
||
| 16 | #include "llvm/Support/Threading.h" |
||
| 17 | |||
| 18 | #include <algorithm> |
||
| 19 | #include <condition_variable> |
||
| 20 | #include <functional> |
||
| 21 | #include <mutex> |
||
| 22 | |||
| 23 | namespace llvm { |
||
| 24 | |||
| 25 | namespace parallel { |
||
| 26 | |||
| 27 | // Strategy for the default executor used by the parallel routines provided by |
||
| 28 | // this file. It defaults to using all hardware threads and should be |
||
| 29 | // initialized before the first use of parallel routines. |
||
| 30 | extern ThreadPoolStrategy strategy; |
||
| 31 | |||
| 32 | #if LLVM_ENABLE_THREADS |
||
| 33 | #ifdef _WIN32 |
||
| 34 | // Direct access to thread_local variables from a different DLL isn't |
||
| 35 | // possible with Windows Native TLS. |
||
| 36 | unsigned getThreadIndex(); |
||
| 37 | #else |
||
| 38 | // Don't access this directly, use the getThreadIndex wrapper. |
||
| 39 | extern thread_local unsigned threadIndex; |
||
| 40 | |||
| 41 | inline unsigned getThreadIndex() { return threadIndex; } |
||
| 42 | #endif |
||
| 43 | #else |
||
| 44 | inline unsigned getThreadIndex() { return 0; } |
||
| 45 | #endif |
||
| 46 | |||
| 47 | namespace detail { |
||
| 48 | class Latch { |
||
| 49 | uint32_t Count; |
||
| 50 | mutable std::mutex Mutex; |
||
| 51 | mutable std::condition_variable Cond; |
||
| 52 | |||
| 53 | public: |
||
| 54 | explicit Latch(uint32_t Count = 0) : Count(Count) {} |
||
| 55 | ~Latch() { |
||
| 56 | // Ensure at least that sync() was called. |
||
| 57 | assert(Count == 0); |
||
| 58 | } |
||
| 59 | |||
| 60 | void inc() { |
||
| 61 | std::lock_guard<std::mutex> lock(Mutex); |
||
| 62 | ++Count; |
||
| 63 | } |
||
| 64 | |||
| 65 | void dec() { |
||
| 66 | std::lock_guard<std::mutex> lock(Mutex); |
||
| 67 | if (--Count == 0) |
||
| 68 | Cond.notify_all(); |
||
| 69 | } |
||
| 70 | |||
| 71 | void sync() const { |
||
| 72 | std::unique_lock<std::mutex> lock(Mutex); |
||
| 73 | Cond.wait(lock, [&] { return Count == 0; }); |
||
| 74 | } |
||
| 75 | }; |
||
| 76 | } // namespace detail |
||
| 77 | |||
| 78 | class TaskGroup { |
||
| 79 | detail::Latch L; |
||
| 80 | bool Parallel; |
||
| 81 | |||
| 82 | public: |
||
| 83 | TaskGroup(); |
||
| 84 | ~TaskGroup(); |
||
| 85 | |||
| 86 | // Spawn a task, but does not wait for it to finish. |
||
| 87 | void spawn(std::function<void()> f); |
||
| 88 | |||
| 89 | // Similar to spawn, but execute the task immediately when ThreadsRequested == |
||
| 90 | // 1. The difference is to give the following pattern a more intuitive order |
||
| 91 | // when single threading is requested. |
||
| 92 | // |
||
| 93 | // for (size_t begin = 0, i = 0, taskSize = 0;;) { |
||
| 94 | // taskSize += ... |
||
| 95 | // bool done = ++i == end; |
||
| 96 | // if (done || taskSize >= taskSizeLimit) { |
||
| 97 | // tg.execute([=] { fn(begin, i); }); |
||
| 98 | // if (done) |
||
| 99 | // break; |
||
| 100 | // begin = i; |
||
| 101 | // taskSize = 0; |
||
| 102 | // } |
||
| 103 | // } |
||
| 104 | void execute(std::function<void()> f); |
||
| 105 | |||
| 106 | void sync() const { L.sync(); } |
||
| 107 | }; |
||
| 108 | |||
| 109 | namespace detail { |
||
| 110 | |||
| 111 | #if LLVM_ENABLE_THREADS |
||
| 112 | const ptrdiff_t MinParallelSize = 1024; |
||
| 113 | |||
| 114 | /// Inclusive median. |
||
| 115 | template <class RandomAccessIterator, class Comparator> |
||
| 116 | RandomAccessIterator medianOf3(RandomAccessIterator Start, |
||
| 117 | RandomAccessIterator End, |
||
| 118 | const Comparator &Comp) { |
||
| 119 | RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2); |
||
| 120 | return Comp(*Start, *(End - 1)) |
||
| 121 | ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start) |
||
| 122 | : End - 1) |
||
| 123 | : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1) |
||
| 124 | : Start); |
||
| 125 | } |
||
| 126 | |||
| 127 | template <class RandomAccessIterator, class Comparator> |
||
| 128 | void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End, |
||
| 129 | const Comparator &Comp, TaskGroup &TG, size_t Depth) { |
||
| 130 | // Do a sequential sort for small inputs. |
||
| 131 | if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) { |
||
| 132 | llvm::sort(Start, End, Comp); |
||
| 133 | return; |
||
| 134 | } |
||
| 135 | |||
| 136 | // Partition. |
||
| 137 | auto Pivot = medianOf3(Start, End, Comp); |
||
| 138 | // Move Pivot to End. |
||
| 139 | std::swap(*(End - 1), *Pivot); |
||
| 140 | Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) { |
||
| 141 | return Comp(V, *(End - 1)); |
||
| 142 | }); |
||
| 143 | // Move Pivot to middle of partition. |
||
| 144 | std::swap(*Pivot, *(End - 1)); |
||
| 145 | |||
| 146 | // Recurse. |
||
| 147 | TG.spawn([=, &Comp, &TG] { |
||
| 148 | parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1); |
||
| 149 | }); |
||
| 150 | parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1); |
||
| 151 | } |
||
| 152 | |||
| 153 | template <class RandomAccessIterator, class Comparator> |
||
| 154 | void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End, |
||
| 155 | const Comparator &Comp) { |
||
| 156 | TaskGroup TG; |
||
| 157 | parallel_quick_sort(Start, End, Comp, TG, |
||
| 158 | llvm::Log2_64(std::distance(Start, End)) + 1); |
||
| 159 | } |
||
| 160 | |||
| 161 | // TaskGroup has a relatively high overhead, so we want to reduce |
||
| 162 | // the number of spawn() calls. We'll create up to 1024 tasks here. |
||
| 163 | // (Note that 1024 is an arbitrary number. This code probably needs |
||
| 164 | // improving to take the number of available cores into account.) |
||
| 165 | enum { MaxTasksPerGroup = 1024 }; |
||
| 166 | |||
| 167 | template <class IterTy, class ResultTy, class ReduceFuncTy, |
||
| 168 | class TransformFuncTy> |
||
| 169 | ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init, |
||
| 170 | ReduceFuncTy Reduce, |
||
| 171 | TransformFuncTy Transform) { |
||
| 172 | // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling |
||
| 173 | // overhead on large inputs. |
||
| 174 | size_t NumInputs = std::distance(Begin, End); |
||
| 175 | if (NumInputs == 0) |
||
| 176 | return std::move(Init); |
||
| 177 | size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs); |
||
| 178 | std::vector<ResultTy> Results(NumTasks, Init); |
||
| 179 | { |
||
| 180 | // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs |
||
| 181 | // remaining after dividing them equally amongst tasks are distributed as |
||
| 182 | // one extra input over the first tasks. |
||
| 183 | TaskGroup TG; |
||
| 184 | size_t TaskSize = NumInputs / NumTasks; |
||
| 185 | size_t RemainingInputs = NumInputs % NumTasks; |
||
| 186 | IterTy TBegin = Begin; |
||
| 187 | for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) { |
||
| 188 | IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0); |
||
| 189 | TG.spawn([=, &Transform, &Reduce, &Results] { |
||
| 190 | // Reduce the result of transformation eagerly within each task. |
||
| 191 | ResultTy R = Init; |
||
| 192 | for (IterTy It = TBegin; It != TEnd; ++It) |
||
| 193 | R = Reduce(R, Transform(*It)); |
||
| 194 | Results[TaskId] = R; |
||
| 195 | }); |
||
| 196 | TBegin = TEnd; |
||
| 197 | } |
||
| 198 | assert(TBegin == End); |
||
| 199 | } |
||
| 200 | |||
| 201 | // Do a final reduction. There are at most 1024 tasks, so this only adds |
||
| 202 | // constant single-threaded overhead for large inputs. Hopefully most |
||
| 203 | // reductions are cheaper than the transformation. |
||
| 204 | ResultTy FinalResult = std::move(Results.front()); |
||
| 205 | for (ResultTy &PartialResult : |
||
| 206 | MutableArrayRef(Results.data() + 1, Results.size() - 1)) |
||
| 207 | FinalResult = Reduce(FinalResult, std::move(PartialResult)); |
||
| 208 | return std::move(FinalResult); |
||
| 209 | } |
||
| 210 | |||
| 211 | #endif |
||
| 212 | |||
| 213 | } // namespace detail |
||
| 214 | } // namespace parallel |
||
| 215 | |||
| 216 | template <class RandomAccessIterator, |
||
| 217 | class Comparator = std::less< |
||
| 218 | typename std::iterator_traits<RandomAccessIterator>::value_type>> |
||
| 219 | void parallelSort(RandomAccessIterator Start, RandomAccessIterator End, |
||
| 220 | const Comparator &Comp = Comparator()) { |
||
| 221 | #if LLVM_ENABLE_THREADS |
||
| 222 | if (parallel::strategy.ThreadsRequested != 1) { |
||
| 223 | parallel::detail::parallel_sort(Start, End, Comp); |
||
| 224 | return; |
||
| 225 | } |
||
| 226 | #endif |
||
| 227 | llvm::sort(Start, End, Comp); |
||
| 228 | } |
||
| 229 | |||
| 230 | void parallelFor(size_t Begin, size_t End, function_ref<void(size_t)> Fn); |
||
| 231 | |||
| 232 | template <class IterTy, class FuncTy> |
||
| 233 | void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) { |
||
| 234 | parallelFor(0, End - Begin, [&](size_t I) { Fn(Begin[I]); }); |
||
| 235 | } |
||
| 236 | |||
| 237 | template <class IterTy, class ResultTy, class ReduceFuncTy, |
||
| 238 | class TransformFuncTy> |
||
| 239 | ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init, |
||
| 240 | ReduceFuncTy Reduce, |
||
| 241 | TransformFuncTy Transform) { |
||
| 242 | #if LLVM_ENABLE_THREADS |
||
| 243 | if (parallel::strategy.ThreadsRequested != 1) { |
||
| 244 | return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce, |
||
| 245 | Transform); |
||
| 246 | } |
||
| 247 | #endif |
||
| 248 | for (IterTy I = Begin; I != End; ++I) |
||
| 249 | Init = Reduce(std::move(Init), Transform(*I)); |
||
| 250 | return std::move(Init); |
||
| 251 | } |
||
| 252 | |||
| 253 | // Range wrappers. |
||
| 254 | template <class RangeTy, |
||
| 255 | class Comparator = std::less<decltype(*std::begin(RangeTy()))>> |
||
| 256 | void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) { |
||
| 257 | parallelSort(std::begin(R), std::end(R), Comp); |
||
| 258 | } |
||
| 259 | |||
| 260 | template <class RangeTy, class FuncTy> |
||
| 261 | void parallelForEach(RangeTy &&R, FuncTy Fn) { |
||
| 262 | parallelForEach(std::begin(R), std::end(R), Fn); |
||
| 263 | } |
||
| 264 | |||
| 265 | template <class RangeTy, class ResultTy, class ReduceFuncTy, |
||
| 266 | class TransformFuncTy> |
||
| 267 | ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init, |
||
| 268 | ReduceFuncTy Reduce, |
||
| 269 | TransformFuncTy Transform) { |
||
| 270 | return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce, |
||
| 271 | Transform); |
||
| 272 | } |
||
| 273 | |||
| 274 | // Parallel for-each, but with error handling. |
||
| 275 | template <class RangeTy, class FuncTy> |
||
| 276 | Error parallelForEachError(RangeTy &&R, FuncTy Fn) { |
||
| 277 | // The transform_reduce algorithm requires that the initial value be copyable. |
||
| 278 | // Error objects are uncopyable. We only need to copy initial success values, |
||
| 279 | // so work around this mismatch via the C API. The C API represents success |
||
| 280 | // values with a null pointer. The joinErrors discards null values and joins |
||
| 281 | // multiple errors into an ErrorList. |
||
| 282 | return unwrap(parallelTransformReduce( |
||
| 283 | std::begin(R), std::end(R), wrap(Error::success()), |
||
| 284 | [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) { |
||
| 285 | return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs))); |
||
| 286 | }, |
||
| 287 | [&Fn](auto &&V) { return wrap(Fn(V)); })); |
||
| 288 | } |
||
| 289 | |||
| 290 | } // namespace llvm |
||
| 291 | |||
| 292 | #endif // LLVM_SUPPORT_PARALLEL_H |