Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains some functions that are useful for math stuff.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_SUPPORT_MATHEXTRAS_H
14
#define LLVM_SUPPORT_MATHEXTRAS_H
15
 
16
#include "llvm/ADT/bit.h"
17
#include "llvm/Support/Compiler.h"
18
#include <cassert>
19
#include <climits>
20
#include <cstdint>
21
#include <cstring>
22
#include <limits>
23
#include <type_traits>
24
 
25
namespace llvm {
26
 
27
/// The behavior an operation has on an input of 0.
28
enum ZeroBehavior {
29
  /// The returned value is undefined.
30
  ZB_Undefined,
31
  /// The returned value is numeric_limits<T>::max()
32
  ZB_Max
33
};
34
 
35
/// Mathematical constants.
36
namespace numbers {
37
// TODO: Track C++20 std::numbers.
38
// TODO: Favor using the hexadecimal FP constants (requires C++17).
39
constexpr double e          = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113
40
                 egamma     = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620
41
                 ln2        = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162
42
                 ln10       = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392
43
                 log2e      = 1.4426950408889634074, // (0x1.71547652b82feP+0)
44
                 log10e     = .43429448190325182765, // (0x1.bcb7b1526e50eP-2)
45
                 pi         = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796
46
                 inv_pi     = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541
47
                 sqrtpi     = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161
48
                 inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197
49
                 sqrt2      = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219
50
                 inv_sqrt2  = .70710678118654752440, // (0x1.6a09e667f3bcdP-1)
51
                 sqrt3      = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194
52
                 inv_sqrt3  = .57735026918962576451, // (0x1.279a74590331cP-1)
53
                 phi        = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622
54
constexpr float ef          = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113
55
                egammaf     = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620
56
                ln2f        = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162
57
                ln10f       = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392
58
                log2ef      = 1.44269504F, // (0x1.715476P+0)
59
                log10ef     = .434294482F, // (0x1.bcb7b2P-2)
60
                pif         = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796
61
                inv_pif     = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541
62
                sqrtpif     = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161
63
                inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197
64
                sqrt2f      = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193
65
                inv_sqrt2f  = .707106781F, // (0x1.6a09e6P-1)
66
                sqrt3f      = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194
67
                inv_sqrt3f  = .577350269F, // (0x1.279a74P-1)
68
                phif        = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622
69
} // namespace numbers
70
 
71
/// Count number of 0's from the least significant bit to the most
72
///   stopping at the first 1.
73
///
74
/// Only unsigned integral types are allowed.
75
///
76
/// Returns std::numeric_limits<T>::digits on an input of 0.
77
template <typename T> unsigned countTrailingZeros(T Val) {
78
  static_assert(std::is_unsigned_v<T>,
79
                "Only unsigned integral types are allowed.");
80
  return llvm::countr_zero(Val);
81
}
82
 
83
/// Count number of 0's from the most significant bit to the least
84
///   stopping at the first 1.
85
///
86
/// Only unsigned integral types are allowed.
87
///
88
/// Returns std::numeric_limits<T>::digits on an input of 0.
89
template <typename T> unsigned countLeadingZeros(T Val) {
90
  static_assert(std::is_unsigned_v<T>,
91
                "Only unsigned integral types are allowed.");
92
  return llvm::countl_zero(Val);
93
}
94
 
95
/// Get the index of the first set bit starting from the least
96
///   significant bit.
97
///
98
/// Only unsigned integral types are allowed.
99
///
100
/// \param ZB the behavior on an input of 0.
101
template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
102
  if (ZB == ZB_Max && Val == 0)
103
    return std::numeric_limits<T>::max();
104
 
105
  return llvm::countr_zero(Val);
106
}
107
 
108
/// Create a bitmask with the N right-most bits set to 1, and all other
109
/// bits set to 0.  Only unsigned types are allowed.
110
template <typename T> T maskTrailingOnes(unsigned N) {
111
  static_assert(std::is_unsigned<T>::value, "Invalid type!");
112
  const unsigned Bits = CHAR_BIT * sizeof(T);
113
  assert(N <= Bits && "Invalid bit index");
114
  return N == 0 ? 0 : (T(-1) >> (Bits - N));
115
}
116
 
117
/// Create a bitmask with the N left-most bits set to 1, and all other
118
/// bits set to 0.  Only unsigned types are allowed.
119
template <typename T> T maskLeadingOnes(unsigned N) {
120
  return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
121
}
122
 
123
/// Create a bitmask with the N right-most bits set to 0, and all other
124
/// bits set to 1.  Only unsigned types are allowed.
125
template <typename T> T maskTrailingZeros(unsigned N) {
126
  return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
127
}
128
 
129
/// Create a bitmask with the N left-most bits set to 0, and all other
130
/// bits set to 1.  Only unsigned types are allowed.
131
template <typename T> T maskLeadingZeros(unsigned N) {
132
  return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
133
}
134
 
135
/// Get the index of the last set bit starting from the least
136
///   significant bit.
137
///
138
/// Only unsigned integral types are allowed.
139
///
140
/// \param ZB the behavior on an input of 0.
141
template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
142
  if (ZB == ZB_Max && Val == 0)
143
    return std::numeric_limits<T>::max();
144
 
145
  // Use ^ instead of - because both gcc and llvm can remove the associated ^
146
  // in the __builtin_clz intrinsic on x86.
147
  return llvm::countl_zero(Val) ^ (std::numeric_limits<T>::digits - 1);
148
}
149
 
150
/// Macro compressed bit reversal table for 256 bits.
151
///
152
/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
153
static const unsigned char BitReverseTable256[256] = {
154
#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
155
#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
156
#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
157
  R6(0), R6(2), R6(1), R6(3)
158
#undef R2
159
#undef R4
160
#undef R6
161
};
162
 
163
/// Reverse the bits in \p Val.
164
template <typename T> T reverseBits(T Val) {
165
#if __has_builtin(__builtin_bitreverse8)
166
  if constexpr (std::is_same_v<T, uint8_t>)
167
    return __builtin_bitreverse8(Val);
168
#endif
169
#if __has_builtin(__builtin_bitreverse16)
170
  if constexpr (std::is_same_v<T, uint16_t>)
171
    return __builtin_bitreverse16(Val);
172
#endif
173
#if __has_builtin(__builtin_bitreverse32)
174
  if constexpr (std::is_same_v<T, uint32_t>)
175
    return __builtin_bitreverse32(Val);
176
#endif
177
#if __has_builtin(__builtin_bitreverse64)
178
  if constexpr (std::is_same_v<T, uint64_t>)
179
    return __builtin_bitreverse64(Val);
180
#endif
181
 
182
  unsigned char in[sizeof(Val)];
183
  unsigned char out[sizeof(Val)];
184
  std::memcpy(in, &Val, sizeof(Val));
185
  for (unsigned i = 0; i < sizeof(Val); ++i)
186
    out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
187
  std::memcpy(&Val, out, sizeof(Val));
188
  return Val;
189
}
190
 
191
// NOTE: The following support functions use the _32/_64 extensions instead of
192
// type overloading so that signed and unsigned integers can be used without
193
// ambiguity.
194
 
195
/// Return the high 32 bits of a 64 bit value.
196
constexpr inline uint32_t Hi_32(uint64_t Value) {
197
  return static_cast<uint32_t>(Value >> 32);
198
}
199
 
200
/// Return the low 32 bits of a 64 bit value.
201
constexpr inline uint32_t Lo_32(uint64_t Value) {
202
  return static_cast<uint32_t>(Value);
203
}
204
 
205
/// Make a 64-bit integer from a high / low pair of 32-bit integers.
206
constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
207
  return ((uint64_t)High << 32) | (uint64_t)Low;
208
}
209
 
210
/// Checks if an integer fits into the given bit width.
211
template <unsigned N> constexpr inline bool isInt(int64_t x) {
212
  if constexpr (N == 8)
213
    return static_cast<int8_t>(x) == x;
214
  if constexpr (N == 16)
215
    return static_cast<int16_t>(x) == x;
216
  if constexpr (N == 32)
217
    return static_cast<int32_t>(x) == x;
218
  if constexpr (N < 64)
219
    return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1));
220
  (void)x; // MSVC v19.25 warns that x is unused.
221
  return true;
222
}
223
 
224
/// Checks if a signed integer is an N bit number shifted left by S.
225
template <unsigned N, unsigned S>
226
constexpr inline bool isShiftedInt(int64_t x) {
227
  static_assert(
228
      N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
229
  static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
230
  return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
231
}
232
 
233
/// Checks if an unsigned integer fits into the given bit width.
234
template <unsigned N> constexpr inline bool isUInt(uint64_t x) {
235
  static_assert(N > 0, "isUInt<0> doesn't make sense");
236
  if constexpr (N == 8)
237
    return static_cast<uint8_t>(x) == x;
238
  if constexpr (N == 16)
239
    return static_cast<uint16_t>(x) == x;
240
  if constexpr (N == 32)
241
    return static_cast<uint32_t>(x) == x;
242
  if constexpr (N < 64)
243
    return x < (UINT64_C(1) << (N));
244
  (void)x; // MSVC v19.25 warns that x is unused.
245
  return true;
246
}
247
 
248
/// Checks if a unsigned integer is an N bit number shifted left by S.
249
template <unsigned N, unsigned S>
250
constexpr inline bool isShiftedUInt(uint64_t x) {
251
  static_assert(
252
      N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
253
  static_assert(N + S <= 64,
254
                "isShiftedUInt<N, S> with N + S > 64 is too wide.");
255
  // Per the two static_asserts above, S must be strictly less than 64.  So
256
  // 1 << S is not undefined behavior.
257
  return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
258
}
259
 
260
/// Gets the maximum value for a N-bit unsigned integer.
261
inline uint64_t maxUIntN(uint64_t N) {
262
  assert(N > 0 && N <= 64 && "integer width out of range");
263
 
264
  // uint64_t(1) << 64 is undefined behavior, so we can't do
265
  //   (uint64_t(1) << N) - 1
266
  // without checking first that N != 64.  But this works and doesn't have a
267
  // branch.
268
  return UINT64_MAX >> (64 - N);
269
}
270
 
271
/// Gets the minimum value for a N-bit signed integer.
272
inline int64_t minIntN(int64_t N) {
273
  assert(N > 0 && N <= 64 && "integer width out of range");
274
 
275
  return UINT64_C(1) + ~(UINT64_C(1) << (N - 1));
276
}
277
 
278
/// Gets the maximum value for a N-bit signed integer.
279
inline int64_t maxIntN(int64_t N) {
280
  assert(N > 0 && N <= 64 && "integer width out of range");
281
 
282
  // This relies on two's complement wraparound when N == 64, so we convert to
283
  // int64_t only at the very end to avoid UB.
284
  return (UINT64_C(1) << (N - 1)) - 1;
285
}
286
 
287
/// Checks if an unsigned integer fits into the given (dynamic) bit width.
288
inline bool isUIntN(unsigned N, uint64_t x) {
289
  return N >= 64 || x <= maxUIntN(N);
290
}
291
 
292
/// Checks if an signed integer fits into the given (dynamic) bit width.
293
inline bool isIntN(unsigned N, int64_t x) {
294
  return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
295
}
296
 
297
/// Return true if the argument is a non-empty sequence of ones starting at the
298
/// least significant bit with the remainder zero (32 bit version).
299
/// Ex. isMask_32(0x0000FFFFU) == true.
300
constexpr inline bool isMask_32(uint32_t Value) {
301
  return Value && ((Value + 1) & Value) == 0;
302
}
303
 
304
/// Return true if the argument is a non-empty sequence of ones starting at the
305
/// least significant bit with the remainder zero (64 bit version).
306
constexpr inline bool isMask_64(uint64_t Value) {
307
  return Value && ((Value + 1) & Value) == 0;
308
}
309
 
310
/// Return true if the argument contains a non-empty sequence of ones with the
311
/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
312
constexpr inline bool isShiftedMask_32(uint32_t Value) {
313
  return Value && isMask_32((Value - 1) | Value);
314
}
315
 
316
/// Return true if the argument contains a non-empty sequence of ones with the
317
/// remainder zero (64 bit version.)
318
constexpr inline bool isShiftedMask_64(uint64_t Value) {
319
  return Value && isMask_64((Value - 1) | Value);
320
}
321
 
322
/// Return true if the argument is a power of two > 0.
323
/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
324
constexpr inline bool isPowerOf2_32(uint32_t Value) {
325
  return llvm::has_single_bit(Value);
326
}
327
 
328
/// Return true if the argument is a power of two > 0 (64 bit edition.)
329
constexpr inline bool isPowerOf2_64(uint64_t Value) {
330
  return llvm::has_single_bit(Value);
331
}
332
 
333
/// Count the number of ones from the most significant bit to the first
334
/// zero bit.
335
///
336
/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
337
/// Only unsigned integral types are allowed.
338
///
339
/// Returns std::numeric_limits<T>::digits on an input of all ones.
340
template <typename T> unsigned countLeadingOnes(T Value) {
341
  static_assert(std::is_unsigned_v<T>,
342
                "Only unsigned integral types are allowed.");
343
  return llvm::countl_one<T>(Value);
344
}
345
 
346
/// Count the number of ones from the least significant bit to the first
347
/// zero bit.
348
///
349
/// Ex. countTrailingOnes(0x00FF00FF) == 8.
350
/// Only unsigned integral types are allowed.
351
///
352
/// Returns std::numeric_limits<T>::digits on an input of all ones.
353
template <typename T> unsigned countTrailingOnes(T Value) {
354
  static_assert(std::is_unsigned_v<T>,
355
                "Only unsigned integral types are allowed.");
356
  return llvm::countr_one<T>(Value);
357
}
358
 
359
/// Count the number of set bits in a value.
360
/// Ex. countPopulation(0xF000F000) = 8
361
/// Returns 0 if the word is zero.
362
template <typename T>
363
inline unsigned countPopulation(T Value) {
364
  static_assert(std::is_unsigned_v<T>,
365
                "Only unsigned integral types are allowed.");
366
  return (unsigned)llvm::popcount(Value);
367
}
368
 
369
/// Return true if the argument contains a non-empty sequence of ones with the
370
/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
371
/// If true, \p MaskIdx will specify the index of the lowest set bit and \p
372
/// MaskLen is updated to specify the length of the mask, else neither are
373
/// updated.
374
inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx,
375
                             unsigned &MaskLen) {
376
  if (!isShiftedMask_32(Value))
377
    return false;
378
  MaskIdx = llvm::countr_zero(Value);
379
  MaskLen = llvm::popcount(Value);
380
  return true;
381
}
382
 
383
/// Return true if the argument contains a non-empty sequence of ones with the
384
/// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index
385
/// of the lowest set bit and \p MaskLen is updated to specify the length of the
386
/// mask, else neither are updated.
387
inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx,
388
                             unsigned &MaskLen) {
389
  if (!isShiftedMask_64(Value))
390
    return false;
391
  MaskIdx = llvm::countr_zero(Value);
392
  MaskLen = llvm::popcount(Value);
393
  return true;
394
}
395
 
396
/// Compile time Log2.
397
/// Valid only for positive powers of two.
398
template <size_t kValue> constexpr inline size_t CTLog2() {
399
  static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue),
400
                "Value is not a valid power of 2");
401
  return 1 + CTLog2<kValue / 2>();
402
}
403
 
404
template <> constexpr inline size_t CTLog2<1>() { return 0; }
405
 
406
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
407
/// (32 bit edition.)
408
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
409
inline unsigned Log2_32(uint32_t Value) {
410
  return 31 - llvm::countl_zero(Value);
411
}
412
 
413
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
414
/// (64 bit edition.)
415
inline unsigned Log2_64(uint64_t Value) {
416
  return 63 - llvm::countl_zero(Value);
417
}
418
 
419
/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
420
/// (32 bit edition).
421
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
422
inline unsigned Log2_32_Ceil(uint32_t Value) {
423
  return 32 - llvm::countl_zero(Value - 1);
424
}
425
 
426
/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
427
/// (64 bit edition.)
428
inline unsigned Log2_64_Ceil(uint64_t Value) {
429
  return 64 - llvm::countl_zero(Value - 1);
430
}
431
 
432
/// This function takes a 64-bit integer and returns the bit equivalent double.
433
inline double BitsToDouble(uint64_t Bits) {
434
  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
435
  return llvm::bit_cast<double>(Bits);
436
}
437
 
438
/// This function takes a 32-bit integer and returns the bit equivalent float.
439
inline float BitsToFloat(uint32_t Bits) {
440
  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
441
  return llvm::bit_cast<float>(Bits);
442
}
443
 
444
/// This function takes a double and returns the bit equivalent 64-bit integer.
445
/// Note that copying doubles around changes the bits of NaNs on some hosts,
446
/// notably x86, so this routine cannot be used if these bits are needed.
447
inline uint64_t DoubleToBits(double Double) {
448
  static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
449
  return llvm::bit_cast<uint64_t>(Double);
450
}
451
 
452
/// This function takes a float and returns the bit equivalent 32-bit integer.
453
/// Note that copying floats around changes the bits of NaNs on some hosts,
454
/// notably x86, so this routine cannot be used if these bits are needed.
455
inline uint32_t FloatToBits(float Float) {
456
  static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
457
  return llvm::bit_cast<uint32_t>(Float);
458
}
459
 
460
/// A and B are either alignments or offsets. Return the minimum alignment that
461
/// may be assumed after adding the two together.
462
constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
463
  // The largest power of 2 that divides both A and B.
464
  //
465
  // Replace "-Value" by "1+~Value" in the following commented code to avoid
466
  // MSVC warning C4146
467
  //    return (A | B) & -(A | B);
468
  return (A | B) & (1 + ~(A | B));
469
}
470
 
471
/// Returns the next power of two (in 64-bits) that is strictly greater than A.
472
/// Returns zero on overflow.
473
constexpr inline uint64_t NextPowerOf2(uint64_t A) {
474
  A |= (A >> 1);
475
  A |= (A >> 2);
476
  A |= (A >> 4);
477
  A |= (A >> 8);
478
  A |= (A >> 16);
479
  A |= (A >> 32);
480
  return A + 1;
481
}
482
 
483
/// Returns the power of two which is less than or equal to the given value.
484
/// Essentially, it is a floor operation across the domain of powers of two.
485
inline uint64_t PowerOf2Floor(uint64_t A) {
486
  return llvm::bit_floor(A);
487
}
488
 
489
/// Returns the power of two which is greater than or equal to the given value.
490
/// Essentially, it is a ceil operation across the domain of powers of two.
491
inline uint64_t PowerOf2Ceil(uint64_t A) {
492
  if (!A)
493
    return 0;
494
  return NextPowerOf2(A - 1);
495
}
496
 
497
/// Returns the next integer (mod 2**64) that is greater than or equal to
498
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
499
///
500
/// Examples:
501
/// \code
502
///   alignTo(5, 8) = 8
503
///   alignTo(17, 8) = 24
504
///   alignTo(~0LL, 8) = 0
505
///   alignTo(321, 255) = 510
506
/// \endcode
507
inline uint64_t alignTo(uint64_t Value, uint64_t Align) {
508
  assert(Align != 0u && "Align can't be 0.");
509
  return (Value + Align - 1) / Align * Align;
510
}
511
 
512
inline uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) {
513
  assert(Align != 0 && (Align & (Align - 1)) == 0 &&
514
         "Align must be a power of 2");
515
  return (Value + Align - 1) & -Align;
516
}
517
 
518
/// If non-zero \p Skew is specified, the return value will be a minimal integer
519
/// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for
520
/// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p
521
/// Skew mod \p A'. \p Align must be non-zero.
522
///
523
/// Examples:
524
/// \code
525
///   alignTo(5, 8, 7) = 7
526
///   alignTo(17, 8, 1) = 17
527
///   alignTo(~0LL, 8, 3) = 3
528
///   alignTo(321, 255, 42) = 552
529
/// \endcode
530
inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew) {
531
  assert(Align != 0u && "Align can't be 0.");
532
  Skew %= Align;
533
  return alignTo(Value - Skew, Align) + Skew;
534
}
535
 
536
/// Returns the next integer (mod 2**64) that is greater than or equal to
537
/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
538
template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) {
539
  static_assert(Align != 0u, "Align must be non-zero");
540
  return (Value + Align - 1) / Align * Align;
541
}
542
 
543
/// Returns the integer ceil(Numerator / Denominator).
544
inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
545
  return alignTo(Numerator, Denominator) / Denominator;
546
}
547
 
548
/// Returns the integer nearest(Numerator / Denominator).
549
inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) {
550
  return (Numerator + (Denominator / 2)) / Denominator;
551
}
552
 
553
/// Returns the largest uint64_t less than or equal to \p Value and is
554
/// \p Skew mod \p Align. \p Align must be non-zero
555
inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
556
  assert(Align != 0u && "Align can't be 0.");
557
  Skew %= Align;
558
  return (Value - Skew) / Align * Align + Skew;
559
}
560
 
561
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
562
/// Requires 0 < B <= 32.
563
template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) {
564
  static_assert(B > 0, "Bit width can't be 0.");
565
  static_assert(B <= 32, "Bit width out of range.");
566
  return int32_t(X << (32 - B)) >> (32 - B);
567
}
568
 
569
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
570
/// Requires 0 < B <= 32.
571
inline int32_t SignExtend32(uint32_t X, unsigned B) {
572
  assert(B > 0 && "Bit width can't be 0.");
573
  assert(B <= 32 && "Bit width out of range.");
574
  return int32_t(X << (32 - B)) >> (32 - B);
575
}
576
 
577
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
578
/// Requires 0 < B <= 64.
579
template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) {
580
  static_assert(B > 0, "Bit width can't be 0.");
581
  static_assert(B <= 64, "Bit width out of range.");
582
  return int64_t(x << (64 - B)) >> (64 - B);
583
}
584
 
585
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
586
/// Requires 0 < B <= 64.
587
inline int64_t SignExtend64(uint64_t X, unsigned B) {
588
  assert(B > 0 && "Bit width can't be 0.");
589
  assert(B <= 64 && "Bit width out of range.");
590
  return int64_t(X << (64 - B)) >> (64 - B);
591
}
592
 
593
/// Subtract two unsigned integers, X and Y, of type T and return the absolute
594
/// value of the result.
595
template <typename T>
596
std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) {
597
  return X > Y ? (X - Y) : (Y - X);
598
}
599
 
600
/// Add two unsigned integers, X and Y, of type T.  Clamp the result to the
601
/// maximum representable value of T on overflow.  ResultOverflowed indicates if
602
/// the result is larger than the maximum representable value of type T.
603
template <typename T>
604
std::enable_if_t<std::is_unsigned<T>::value, T>
605
SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
606
  bool Dummy;
607
  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
608
  // Hacker's Delight, p. 29
609
  T Z = X + Y;
610
  Overflowed = (Z < X || Z < Y);
611
  if (Overflowed)
612
    return std::numeric_limits<T>::max();
613
  else
614
    return Z;
615
}
616
 
617
/// Add multiple unsigned integers of type T.  Clamp the result to the
618
/// maximum representable value of T on overflow.
619
template <class T, class... Ts>
620
std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z,
621
                                                         Ts... Args) {
622
  bool Overflowed = false;
623
  T XY = SaturatingAdd(X, Y, &Overflowed);
624
  if (Overflowed)
625
    return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...);
626
  return SaturatingAdd(XY, Z, Args...);
627
}
628
 
629
/// Multiply two unsigned integers, X and Y, of type T.  Clamp the result to the
630
/// maximum representable value of T on overflow.  ResultOverflowed indicates if
631
/// the result is larger than the maximum representable value of type T.
632
template <typename T>
633
std::enable_if_t<std::is_unsigned<T>::value, T>
634
SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
635
  bool Dummy;
636
  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
637
 
638
  // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
639
  // because it fails for uint16_t (where multiplication can have undefined
640
  // behavior due to promotion to int), and requires a division in addition
641
  // to the multiplication.
642
 
643
  Overflowed = false;
644
 
645
  // Log2(Z) would be either Log2Z or Log2Z + 1.
646
  // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
647
  // will necessarily be less than Log2Max as desired.
648
  int Log2Z = Log2_64(X) + Log2_64(Y);
649
  const T Max = std::numeric_limits<T>::max();
650
  int Log2Max = Log2_64(Max);
651
  if (Log2Z < Log2Max) {
652
    return X * Y;
653
  }
654
  if (Log2Z > Log2Max) {
655
    Overflowed = true;
656
    return Max;
657
  }
658
 
659
  // We're going to use the top bit, and maybe overflow one
660
  // bit past it. Multiply all but the bottom bit then add
661
  // that on at the end.
662
  T Z = (X >> 1) * Y;
663
  if (Z & ~(Max >> 1)) {
664
    Overflowed = true;
665
    return Max;
666
  }
667
  Z <<= 1;
668
  if (X & 1)
669
    return SaturatingAdd(Z, Y, ResultOverflowed);
670
 
671
  return Z;
672
}
673
 
674
/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
675
/// the product. Clamp the result to the maximum representable value of T on
676
/// overflow. ResultOverflowed indicates if the result is larger than the
677
/// maximum representable value of type T.
678
template <typename T>
679
std::enable_if_t<std::is_unsigned<T>::value, T>
680
SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) {
681
  bool Dummy;
682
  bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
683
 
684
  T Product = SaturatingMultiply(X, Y, &Overflowed);
685
  if (Overflowed)
686
    return Product;
687
 
688
  return SaturatingAdd(A, Product, &Overflowed);
689
}
690
 
691
/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
692
extern const float huge_valf;
693
 
694
 
695
/// Add two signed integers, computing the two's complement truncated result,
696
/// returning true if overflow occurred.
697
template <typename T>
698
std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) {
699
#if __has_builtin(__builtin_add_overflow)
700
  return __builtin_add_overflow(X, Y, &Result);
701
#else
702
  // Perform the unsigned addition.
703
  using U = std::make_unsigned_t<T>;
704
  const U UX = static_cast<U>(X);
705
  const U UY = static_cast<U>(Y);
706
  const U UResult = UX + UY;
707
 
708
  // Convert to signed.
709
  Result = static_cast<T>(UResult);
710
 
711
  // Adding two positive numbers should result in a positive number.
712
  if (X > 0 && Y > 0)
713
    return Result <= 0;
714
  // Adding two negatives should result in a negative number.
715
  if (X < 0 && Y < 0)
716
    return Result >= 0;
717
  return false;
718
#endif
719
}
720
 
721
/// Subtract two signed integers, computing the two's complement truncated
722
/// result, returning true if an overflow ocurred.
723
template <typename T>
724
std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) {
725
#if __has_builtin(__builtin_sub_overflow)
726
  return __builtin_sub_overflow(X, Y, &Result);
727
#else
728
  // Perform the unsigned addition.
729
  using U = std::make_unsigned_t<T>;
730
  const U UX = static_cast<U>(X);
731
  const U UY = static_cast<U>(Y);
732
  const U UResult = UX - UY;
733
 
734
  // Convert to signed.
735
  Result = static_cast<T>(UResult);
736
 
737
  // Subtracting a positive number from a negative results in a negative number.
738
  if (X <= 0 && Y > 0)
739
    return Result >= 0;
740
  // Subtracting a negative number from a positive results in a positive number.
741
  if (X >= 0 && Y < 0)
742
    return Result <= 0;
743
  return false;
744
#endif
745
}
746
 
747
/// Multiply two signed integers, computing the two's complement truncated
748
/// result, returning true if an overflow ocurred.
749
template <typename T>
750
std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) {
751
  // Perform the unsigned multiplication on absolute values.
752
  using U = std::make_unsigned_t<T>;
753
  const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X);
754
  const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y);
755
  const U UResult = UX * UY;
756
 
757
  // Convert to signed.
758
  const bool IsNegative = (X < 0) ^ (Y < 0);
759
  Result = IsNegative ? (0 - UResult) : UResult;
760
 
761
  // If any of the args was 0, result is 0 and no overflow occurs.
762
  if (UX == 0 || UY == 0)
763
    return false;
764
 
765
  // UX and UY are in [1, 2^n], where n is the number of digits.
766
  // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for
767
  // positive) divided by an argument compares to the other.
768
  if (IsNegative)
769
    return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY;
770
  else
771
    return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY;
772
}
773
 
774
} // End llvm namespace
775
 
776
#endif