Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file contains some functions that are useful for math stuff. |
||
10 | // |
||
11 | //===----------------------------------------------------------------------===// |
||
12 | |||
13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
||
14 | #define LLVM_SUPPORT_MATHEXTRAS_H |
||
15 | |||
16 | #include "llvm/ADT/bit.h" |
||
17 | #include "llvm/Support/Compiler.h" |
||
18 | #include <cassert> |
||
19 | #include <climits> |
||
20 | #include <cstdint> |
||
21 | #include <cstring> |
||
22 | #include <limits> |
||
23 | #include <type_traits> |
||
24 | |||
25 | namespace llvm { |
||
26 | |||
27 | /// The behavior an operation has on an input of 0. |
||
28 | enum ZeroBehavior { |
||
29 | /// The returned value is undefined. |
||
30 | ZB_Undefined, |
||
31 | /// The returned value is numeric_limits<T>::max() |
||
32 | ZB_Max |
||
33 | }; |
||
34 | |||
35 | /// Mathematical constants. |
||
36 | namespace numbers { |
||
37 | // TODO: Track C++20 std::numbers. |
||
38 | // TODO: Favor using the hexadecimal FP constants (requires C++17). |
||
39 | constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 |
||
40 | egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 |
||
41 | ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 |
||
42 | ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 |
||
43 | log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) |
||
44 | log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) |
||
45 | pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 |
||
46 | inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 |
||
47 | sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 |
||
48 | inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 |
||
49 | sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 |
||
50 | inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) |
||
51 | sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 |
||
52 | inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) |
||
53 | phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 |
||
54 | constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 |
||
55 | egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 |
||
56 | ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 |
||
57 | ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 |
||
58 | log2ef = 1.44269504F, // (0x1.715476P+0) |
||
59 | log10ef = .434294482F, // (0x1.bcb7b2P-2) |
||
60 | pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 |
||
61 | inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 |
||
62 | sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 |
||
63 | inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 |
||
64 | sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 |
||
65 | inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) |
||
66 | sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 |
||
67 | inv_sqrt3f = .577350269F, // (0x1.279a74P-1) |
||
68 | phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 |
||
69 | } // namespace numbers |
||
70 | |||
71 | /// Count number of 0's from the least significant bit to the most |
||
72 | /// stopping at the first 1. |
||
73 | /// |
||
74 | /// Only unsigned integral types are allowed. |
||
75 | /// |
||
76 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
||
77 | template <typename T> unsigned countTrailingZeros(T Val) { |
||
78 | static_assert(std::is_unsigned_v<T>, |
||
79 | "Only unsigned integral types are allowed."); |
||
80 | return llvm::countr_zero(Val); |
||
81 | } |
||
82 | |||
83 | /// Count number of 0's from the most significant bit to the least |
||
84 | /// stopping at the first 1. |
||
85 | /// |
||
86 | /// Only unsigned integral types are allowed. |
||
87 | /// |
||
88 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
||
89 | template <typename T> unsigned countLeadingZeros(T Val) { |
||
90 | static_assert(std::is_unsigned_v<T>, |
||
91 | "Only unsigned integral types are allowed."); |
||
92 | return llvm::countl_zero(Val); |
||
93 | } |
||
94 | |||
95 | /// Get the index of the first set bit starting from the least |
||
96 | /// significant bit. |
||
97 | /// |
||
98 | /// Only unsigned integral types are allowed. |
||
99 | /// |
||
100 | /// \param ZB the behavior on an input of 0. |
||
101 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { |
||
102 | if (ZB == ZB_Max && Val == 0) |
||
103 | return std::numeric_limits<T>::max(); |
||
104 | |||
105 | return llvm::countr_zero(Val); |
||
106 | } |
||
107 | |||
108 | /// Create a bitmask with the N right-most bits set to 1, and all other |
||
109 | /// bits set to 0. Only unsigned types are allowed. |
||
110 | template <typename T> T maskTrailingOnes(unsigned N) { |
||
111 | static_assert(std::is_unsigned<T>::value, "Invalid type!"); |
||
112 | const unsigned Bits = CHAR_BIT * sizeof(T); |
||
113 | assert(N <= Bits && "Invalid bit index"); |
||
114 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); |
||
115 | } |
||
116 | |||
117 | /// Create a bitmask with the N left-most bits set to 1, and all other |
||
118 | /// bits set to 0. Only unsigned types are allowed. |
||
119 | template <typename T> T maskLeadingOnes(unsigned N) { |
||
120 | return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
||
121 | } |
||
122 | |||
123 | /// Create a bitmask with the N right-most bits set to 0, and all other |
||
124 | /// bits set to 1. Only unsigned types are allowed. |
||
125 | template <typename T> T maskTrailingZeros(unsigned N) { |
||
126 | return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); |
||
127 | } |
||
128 | |||
129 | /// Create a bitmask with the N left-most bits set to 0, and all other |
||
130 | /// bits set to 1. Only unsigned types are allowed. |
||
131 | template <typename T> T maskLeadingZeros(unsigned N) { |
||
132 | return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
||
133 | } |
||
134 | |||
135 | /// Get the index of the last set bit starting from the least |
||
136 | /// significant bit. |
||
137 | /// |
||
138 | /// Only unsigned integral types are allowed. |
||
139 | /// |
||
140 | /// \param ZB the behavior on an input of 0. |
||
141 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { |
||
142 | if (ZB == ZB_Max && Val == 0) |
||
143 | return std::numeric_limits<T>::max(); |
||
144 | |||
145 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ |
||
146 | // in the __builtin_clz intrinsic on x86. |
||
147 | return llvm::countl_zero(Val) ^ (std::numeric_limits<T>::digits - 1); |
||
148 | } |
||
149 | |||
150 | /// Macro compressed bit reversal table for 256 bits. |
||
151 | /// |
||
152 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
||
153 | static const unsigned char BitReverseTable256[256] = { |
||
154 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
||
155 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
||
156 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
||
157 | R6(0), R6(2), R6(1), R6(3) |
||
158 | #undef R2 |
||
159 | #undef R4 |
||
160 | #undef R6 |
||
161 | }; |
||
162 | |||
163 | /// Reverse the bits in \p Val. |
||
164 | template <typename T> T reverseBits(T Val) { |
||
165 | #if __has_builtin(__builtin_bitreverse8) |
||
166 | if constexpr (std::is_same_v<T, uint8_t>) |
||
167 | return __builtin_bitreverse8(Val); |
||
168 | #endif |
||
169 | #if __has_builtin(__builtin_bitreverse16) |
||
170 | if constexpr (std::is_same_v<T, uint16_t>) |
||
171 | return __builtin_bitreverse16(Val); |
||
172 | #endif |
||
173 | #if __has_builtin(__builtin_bitreverse32) |
||
174 | if constexpr (std::is_same_v<T, uint32_t>) |
||
175 | return __builtin_bitreverse32(Val); |
||
176 | #endif |
||
177 | #if __has_builtin(__builtin_bitreverse64) |
||
178 | if constexpr (std::is_same_v<T, uint64_t>) |
||
179 | return __builtin_bitreverse64(Val); |
||
180 | #endif |
||
181 | |||
182 | unsigned char in[sizeof(Val)]; |
||
183 | unsigned char out[sizeof(Val)]; |
||
184 | std::memcpy(in, &Val, sizeof(Val)); |
||
185 | for (unsigned i = 0; i < sizeof(Val); ++i) |
||
186 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
||
187 | std::memcpy(&Val, out, sizeof(Val)); |
||
188 | return Val; |
||
189 | } |
||
190 | |||
191 | // NOTE: The following support functions use the _32/_64 extensions instead of |
||
192 | // type overloading so that signed and unsigned integers can be used without |
||
193 | // ambiguity. |
||
194 | |||
195 | /// Return the high 32 bits of a 64 bit value. |
||
196 | constexpr inline uint32_t Hi_32(uint64_t Value) { |
||
197 | return static_cast<uint32_t>(Value >> 32); |
||
198 | } |
||
199 | |||
200 | /// Return the low 32 bits of a 64 bit value. |
||
201 | constexpr inline uint32_t Lo_32(uint64_t Value) { |
||
202 | return static_cast<uint32_t>(Value); |
||
203 | } |
||
204 | |||
205 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
||
206 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { |
||
207 | return ((uint64_t)High << 32) | (uint64_t)Low; |
||
208 | } |
||
209 | |||
210 | /// Checks if an integer fits into the given bit width. |
||
211 | template <unsigned N> constexpr inline bool isInt(int64_t x) { |
||
212 | if constexpr (N == 8) |
||
213 | return static_cast<int8_t>(x) == x; |
||
214 | if constexpr (N == 16) |
||
215 | return static_cast<int16_t>(x) == x; |
||
216 | if constexpr (N == 32) |
||
217 | return static_cast<int32_t>(x) == x; |
||
218 | if constexpr (N < 64) |
||
219 | return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)); |
||
220 | (void)x; // MSVC v19.25 warns that x is unused. |
||
221 | return true; |
||
222 | } |
||
223 | |||
224 | /// Checks if a signed integer is an N bit number shifted left by S. |
||
225 | template <unsigned N, unsigned S> |
||
226 | constexpr inline bool isShiftedInt(int64_t x) { |
||
227 | static_assert( |
||
228 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); |
||
229 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); |
||
230 | return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
||
231 | } |
||
232 | |||
233 | /// Checks if an unsigned integer fits into the given bit width. |
||
234 | template <unsigned N> constexpr inline bool isUInt(uint64_t x) { |
||
235 | static_assert(N > 0, "isUInt<0> doesn't make sense"); |
||
236 | if constexpr (N == 8) |
||
237 | return static_cast<uint8_t>(x) == x; |
||
238 | if constexpr (N == 16) |
||
239 | return static_cast<uint16_t>(x) == x; |
||
240 | if constexpr (N == 32) |
||
241 | return static_cast<uint32_t>(x) == x; |
||
242 | if constexpr (N < 64) |
||
243 | return x < (UINT64_C(1) << (N)); |
||
244 | (void)x; // MSVC v19.25 warns that x is unused. |
||
245 | return true; |
||
246 | } |
||
247 | |||
248 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
||
249 | template <unsigned N, unsigned S> |
||
250 | constexpr inline bool isShiftedUInt(uint64_t x) { |
||
251 | static_assert( |
||
252 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); |
||
253 | static_assert(N + S <= 64, |
||
254 | "isShiftedUInt<N, S> with N + S > 64 is too wide."); |
||
255 | // Per the two static_asserts above, S must be strictly less than 64. So |
||
256 | // 1 << S is not undefined behavior. |
||
257 | return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
||
258 | } |
||
259 | |||
260 | /// Gets the maximum value for a N-bit unsigned integer. |
||
261 | inline uint64_t maxUIntN(uint64_t N) { |
||
262 | assert(N > 0 && N <= 64 && "integer width out of range"); |
||
263 | |||
264 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
||
265 | // (uint64_t(1) << N) - 1 |
||
266 | // without checking first that N != 64. But this works and doesn't have a |
||
267 | // branch. |
||
268 | return UINT64_MAX >> (64 - N); |
||
269 | } |
||
270 | |||
271 | /// Gets the minimum value for a N-bit signed integer. |
||
272 | inline int64_t minIntN(int64_t N) { |
||
273 | assert(N > 0 && N <= 64 && "integer width out of range"); |
||
274 | |||
275 | return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); |
||
276 | } |
||
277 | |||
278 | /// Gets the maximum value for a N-bit signed integer. |
||
279 | inline int64_t maxIntN(int64_t N) { |
||
280 | assert(N > 0 && N <= 64 && "integer width out of range"); |
||
281 | |||
282 | // This relies on two's complement wraparound when N == 64, so we convert to |
||
283 | // int64_t only at the very end to avoid UB. |
||
284 | return (UINT64_C(1) << (N - 1)) - 1; |
||
285 | } |
||
286 | |||
287 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
||
288 | inline bool isUIntN(unsigned N, uint64_t x) { |
||
289 | return N >= 64 || x <= maxUIntN(N); |
||
290 | } |
||
291 | |||
292 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
||
293 | inline bool isIntN(unsigned N, int64_t x) { |
||
294 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
||
295 | } |
||
296 | |||
297 | /// Return true if the argument is a non-empty sequence of ones starting at the |
||
298 | /// least significant bit with the remainder zero (32 bit version). |
||
299 | /// Ex. isMask_32(0x0000FFFFU) == true. |
||
300 | constexpr inline bool isMask_32(uint32_t Value) { |
||
301 | return Value && ((Value + 1) & Value) == 0; |
||
302 | } |
||
303 | |||
304 | /// Return true if the argument is a non-empty sequence of ones starting at the |
||
305 | /// least significant bit with the remainder zero (64 bit version). |
||
306 | constexpr inline bool isMask_64(uint64_t Value) { |
||
307 | return Value && ((Value + 1) & Value) == 0; |
||
308 | } |
||
309 | |||
310 | /// Return true if the argument contains a non-empty sequence of ones with the |
||
311 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
||
312 | constexpr inline bool isShiftedMask_32(uint32_t Value) { |
||
313 | return Value && isMask_32((Value - 1) | Value); |
||
314 | } |
||
315 | |||
316 | /// Return true if the argument contains a non-empty sequence of ones with the |
||
317 | /// remainder zero (64 bit version.) |
||
318 | constexpr inline bool isShiftedMask_64(uint64_t Value) { |
||
319 | return Value && isMask_64((Value - 1) | Value); |
||
320 | } |
||
321 | |||
322 | /// Return true if the argument is a power of two > 0. |
||
323 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
||
324 | constexpr inline bool isPowerOf2_32(uint32_t Value) { |
||
325 | return llvm::has_single_bit(Value); |
||
326 | } |
||
327 | |||
328 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
||
329 | constexpr inline bool isPowerOf2_64(uint64_t Value) { |
||
330 | return llvm::has_single_bit(Value); |
||
331 | } |
||
332 | |||
333 | /// Count the number of ones from the most significant bit to the first |
||
334 | /// zero bit. |
||
335 | /// |
||
336 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. |
||
337 | /// Only unsigned integral types are allowed. |
||
338 | /// |
||
339 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
||
340 | template <typename T> unsigned countLeadingOnes(T Value) { |
||
341 | static_assert(std::is_unsigned_v<T>, |
||
342 | "Only unsigned integral types are allowed."); |
||
343 | return llvm::countl_one<T>(Value); |
||
344 | } |
||
345 | |||
346 | /// Count the number of ones from the least significant bit to the first |
||
347 | /// zero bit. |
||
348 | /// |
||
349 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. |
||
350 | /// Only unsigned integral types are allowed. |
||
351 | /// |
||
352 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
||
353 | template <typename T> unsigned countTrailingOnes(T Value) { |
||
354 | static_assert(std::is_unsigned_v<T>, |
||
355 | "Only unsigned integral types are allowed."); |
||
356 | return llvm::countr_one<T>(Value); |
||
357 | } |
||
358 | |||
359 | /// Count the number of set bits in a value. |
||
360 | /// Ex. countPopulation(0xF000F000) = 8 |
||
361 | /// Returns 0 if the word is zero. |
||
362 | template <typename T> |
||
363 | inline unsigned countPopulation(T Value) { |
||
364 | static_assert(std::is_unsigned_v<T>, |
||
365 | "Only unsigned integral types are allowed."); |
||
366 | return (unsigned)llvm::popcount(Value); |
||
367 | } |
||
368 | |||
369 | /// Return true if the argument contains a non-empty sequence of ones with the |
||
370 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
||
371 | /// If true, \p MaskIdx will specify the index of the lowest set bit and \p |
||
372 | /// MaskLen is updated to specify the length of the mask, else neither are |
||
373 | /// updated. |
||
374 | inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx, |
||
375 | unsigned &MaskLen) { |
||
376 | if (!isShiftedMask_32(Value)) |
||
377 | return false; |
||
378 | MaskIdx = llvm::countr_zero(Value); |
||
379 | MaskLen = llvm::popcount(Value); |
||
380 | return true; |
||
381 | } |
||
382 | |||
383 | /// Return true if the argument contains a non-empty sequence of ones with the |
||
384 | /// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index |
||
385 | /// of the lowest set bit and \p MaskLen is updated to specify the length of the |
||
386 | /// mask, else neither are updated. |
||
387 | inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx, |
||
388 | unsigned &MaskLen) { |
||
389 | if (!isShiftedMask_64(Value)) |
||
390 | return false; |
||
391 | MaskIdx = llvm::countr_zero(Value); |
||
392 | MaskLen = llvm::popcount(Value); |
||
393 | return true; |
||
394 | } |
||
395 | |||
396 | /// Compile time Log2. |
||
397 | /// Valid only for positive powers of two. |
||
398 | template <size_t kValue> constexpr inline size_t CTLog2() { |
||
399 | static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), |
||
400 | "Value is not a valid power of 2"); |
||
401 | return 1 + CTLog2<kValue / 2>(); |
||
402 | } |
||
403 | |||
404 | template <> constexpr inline size_t CTLog2<1>() { return 0; } |
||
405 | |||
406 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
||
407 | /// (32 bit edition.) |
||
408 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
||
409 | inline unsigned Log2_32(uint32_t Value) { |
||
410 | return 31 - llvm::countl_zero(Value); |
||
411 | } |
||
412 | |||
413 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
||
414 | /// (64 bit edition.) |
||
415 | inline unsigned Log2_64(uint64_t Value) { |
||
416 | return 63 - llvm::countl_zero(Value); |
||
417 | } |
||
418 | |||
419 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
||
420 | /// (32 bit edition). |
||
421 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
||
422 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
||
423 | return 32 - llvm::countl_zero(Value - 1); |
||
424 | } |
||
425 | |||
426 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
||
427 | /// (64 bit edition.) |
||
428 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
||
429 | return 64 - llvm::countl_zero(Value - 1); |
||
430 | } |
||
431 | |||
432 | /// This function takes a 64-bit integer and returns the bit equivalent double. |
||
433 | inline double BitsToDouble(uint64_t Bits) { |
||
434 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
||
435 | return llvm::bit_cast<double>(Bits); |
||
436 | } |
||
437 | |||
438 | /// This function takes a 32-bit integer and returns the bit equivalent float. |
||
439 | inline float BitsToFloat(uint32_t Bits) { |
||
440 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
||
441 | return llvm::bit_cast<float>(Bits); |
||
442 | } |
||
443 | |||
444 | /// This function takes a double and returns the bit equivalent 64-bit integer. |
||
445 | /// Note that copying doubles around changes the bits of NaNs on some hosts, |
||
446 | /// notably x86, so this routine cannot be used if these bits are needed. |
||
447 | inline uint64_t DoubleToBits(double Double) { |
||
448 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
||
449 | return llvm::bit_cast<uint64_t>(Double); |
||
450 | } |
||
451 | |||
452 | /// This function takes a float and returns the bit equivalent 32-bit integer. |
||
453 | /// Note that copying floats around changes the bits of NaNs on some hosts, |
||
454 | /// notably x86, so this routine cannot be used if these bits are needed. |
||
455 | inline uint32_t FloatToBits(float Float) { |
||
456 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
||
457 | return llvm::bit_cast<uint32_t>(Float); |
||
458 | } |
||
459 | |||
460 | /// A and B are either alignments or offsets. Return the minimum alignment that |
||
461 | /// may be assumed after adding the two together. |
||
462 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
||
463 | // The largest power of 2 that divides both A and B. |
||
464 | // |
||
465 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
||
466 | // MSVC warning C4146 |
||
467 | // return (A | B) & -(A | B); |
||
468 | return (A | B) & (1 + ~(A | B)); |
||
469 | } |
||
470 | |||
471 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
||
472 | /// Returns zero on overflow. |
||
473 | constexpr inline uint64_t NextPowerOf2(uint64_t A) { |
||
474 | A |= (A >> 1); |
||
475 | A |= (A >> 2); |
||
476 | A |= (A >> 4); |
||
477 | A |= (A >> 8); |
||
478 | A |= (A >> 16); |
||
479 | A |= (A >> 32); |
||
480 | return A + 1; |
||
481 | } |
||
482 | |||
483 | /// Returns the power of two which is less than or equal to the given value. |
||
484 | /// Essentially, it is a floor operation across the domain of powers of two. |
||
485 | inline uint64_t PowerOf2Floor(uint64_t A) { |
||
486 | return llvm::bit_floor(A); |
||
487 | } |
||
488 | |||
489 | /// Returns the power of two which is greater than or equal to the given value. |
||
490 | /// Essentially, it is a ceil operation across the domain of powers of two. |
||
491 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
||
492 | if (!A) |
||
493 | return 0; |
||
494 | return NextPowerOf2(A - 1); |
||
495 | } |
||
496 | |||
497 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
||
498 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
||
499 | /// |
||
500 | /// Examples: |
||
501 | /// \code |
||
502 | /// alignTo(5, 8) = 8 |
||
503 | /// alignTo(17, 8) = 24 |
||
504 | /// alignTo(~0LL, 8) = 0 |
||
505 | /// alignTo(321, 255) = 510 |
||
506 | /// \endcode |
||
507 | inline uint64_t alignTo(uint64_t Value, uint64_t Align) { |
||
508 | assert(Align != 0u && "Align can't be 0."); |
||
509 | return (Value + Align - 1) / Align * Align; |
||
510 | } |
||
511 | |||
512 | inline uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) { |
||
513 | assert(Align != 0 && (Align & (Align - 1)) == 0 && |
||
514 | "Align must be a power of 2"); |
||
515 | return (Value + Align - 1) & -Align; |
||
516 | } |
||
517 | |||
518 | /// If non-zero \p Skew is specified, the return value will be a minimal integer |
||
519 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for |
||
520 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p |
||
521 | /// Skew mod \p A'. \p Align must be non-zero. |
||
522 | /// |
||
523 | /// Examples: |
||
524 | /// \code |
||
525 | /// alignTo(5, 8, 7) = 7 |
||
526 | /// alignTo(17, 8, 1) = 17 |
||
527 | /// alignTo(~0LL, 8, 3) = 3 |
||
528 | /// alignTo(321, 255, 42) = 552 |
||
529 | /// \endcode |
||
530 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew) { |
||
531 | assert(Align != 0u && "Align can't be 0."); |
||
532 | Skew %= Align; |
||
533 | return alignTo(Value - Skew, Align) + Skew; |
||
534 | } |
||
535 | |||
536 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
||
537 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
||
538 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { |
||
539 | static_assert(Align != 0u, "Align must be non-zero"); |
||
540 | return (Value + Align - 1) / Align * Align; |
||
541 | } |
||
542 | |||
543 | /// Returns the integer ceil(Numerator / Denominator). |
||
544 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
||
545 | return alignTo(Numerator, Denominator) / Denominator; |
||
546 | } |
||
547 | |||
548 | /// Returns the integer nearest(Numerator / Denominator). |
||
549 | inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { |
||
550 | return (Numerator + (Denominator / 2)) / Denominator; |
||
551 | } |
||
552 | |||
553 | /// Returns the largest uint64_t less than or equal to \p Value and is |
||
554 | /// \p Skew mod \p Align. \p Align must be non-zero |
||
555 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
||
556 | assert(Align != 0u && "Align can't be 0."); |
||
557 | Skew %= Align; |
||
558 | return (Value - Skew) / Align * Align + Skew; |
||
559 | } |
||
560 | |||
561 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
||
562 | /// Requires 0 < B <= 32. |
||
563 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { |
||
564 | static_assert(B > 0, "Bit width can't be 0."); |
||
565 | static_assert(B <= 32, "Bit width out of range."); |
||
566 | return int32_t(X << (32 - B)) >> (32 - B); |
||
567 | } |
||
568 | |||
569 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
||
570 | /// Requires 0 < B <= 32. |
||
571 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
||
572 | assert(B > 0 && "Bit width can't be 0."); |
||
573 | assert(B <= 32 && "Bit width out of range."); |
||
574 | return int32_t(X << (32 - B)) >> (32 - B); |
||
575 | } |
||
576 | |||
577 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
||
578 | /// Requires 0 < B <= 64. |
||
579 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { |
||
580 | static_assert(B > 0, "Bit width can't be 0."); |
||
581 | static_assert(B <= 64, "Bit width out of range."); |
||
582 | return int64_t(x << (64 - B)) >> (64 - B); |
||
583 | } |
||
584 | |||
585 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
||
586 | /// Requires 0 < B <= 64. |
||
587 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
||
588 | assert(B > 0 && "Bit width can't be 0."); |
||
589 | assert(B <= 64 && "Bit width out of range."); |
||
590 | return int64_t(X << (64 - B)) >> (64 - B); |
||
591 | } |
||
592 | |||
593 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
||
594 | /// value of the result. |
||
595 | template <typename T> |
||
596 | std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) { |
||
597 | return X > Y ? (X - Y) : (Y - X); |
||
598 | } |
||
599 | |||
600 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
||
601 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
||
602 | /// the result is larger than the maximum representable value of type T. |
||
603 | template <typename T> |
||
604 | std::enable_if_t<std::is_unsigned<T>::value, T> |
||
605 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
||
606 | bool Dummy; |
||
607 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
||
608 | // Hacker's Delight, p. 29 |
||
609 | T Z = X + Y; |
||
610 | Overflowed = (Z < X || Z < Y); |
||
611 | if (Overflowed) |
||
612 | return std::numeric_limits<T>::max(); |
||
613 | else |
||
614 | return Z; |
||
615 | } |
||
616 | |||
617 | /// Add multiple unsigned integers of type T. Clamp the result to the |
||
618 | /// maximum representable value of T on overflow. |
||
619 | template <class T, class... Ts> |
||
620 | std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z, |
||
621 | Ts... Args) { |
||
622 | bool Overflowed = false; |
||
623 | T XY = SaturatingAdd(X, Y, &Overflowed); |
||
624 | if (Overflowed) |
||
625 | return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...); |
||
626 | return SaturatingAdd(XY, Z, Args...); |
||
627 | } |
||
628 | |||
629 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
||
630 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
||
631 | /// the result is larger than the maximum representable value of type T. |
||
632 | template <typename T> |
||
633 | std::enable_if_t<std::is_unsigned<T>::value, T> |
||
634 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
||
635 | bool Dummy; |
||
636 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
||
637 | |||
638 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
||
639 | // because it fails for uint16_t (where multiplication can have undefined |
||
640 | // behavior due to promotion to int), and requires a division in addition |
||
641 | // to the multiplication. |
||
642 | |||
643 | Overflowed = false; |
||
644 | |||
645 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
||
646 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
||
647 | // will necessarily be less than Log2Max as desired. |
||
648 | int Log2Z = Log2_64(X) + Log2_64(Y); |
||
649 | const T Max = std::numeric_limits<T>::max(); |
||
650 | int Log2Max = Log2_64(Max); |
||
651 | if (Log2Z < Log2Max) { |
||
652 | return X * Y; |
||
653 | } |
||
654 | if (Log2Z > Log2Max) { |
||
655 | Overflowed = true; |
||
656 | return Max; |
||
657 | } |
||
658 | |||
659 | // We're going to use the top bit, and maybe overflow one |
||
660 | // bit past it. Multiply all but the bottom bit then add |
||
661 | // that on at the end. |
||
662 | T Z = (X >> 1) * Y; |
||
663 | if (Z & ~(Max >> 1)) { |
||
664 | Overflowed = true; |
||
665 | return Max; |
||
666 | } |
||
667 | Z <<= 1; |
||
668 | if (X & 1) |
||
669 | return SaturatingAdd(Z, Y, ResultOverflowed); |
||
670 | |||
671 | return Z; |
||
672 | } |
||
673 | |||
674 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
||
675 | /// the product. Clamp the result to the maximum representable value of T on |
||
676 | /// overflow. ResultOverflowed indicates if the result is larger than the |
||
677 | /// maximum representable value of type T. |
||
678 | template <typename T> |
||
679 | std::enable_if_t<std::is_unsigned<T>::value, T> |
||
680 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
||
681 | bool Dummy; |
||
682 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
||
683 | |||
684 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
||
685 | if (Overflowed) |
||
686 | return Product; |
||
687 | |||
688 | return SaturatingAdd(A, Product, &Overflowed); |
||
689 | } |
||
690 | |||
691 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
||
692 | extern const float huge_valf; |
||
693 | |||
694 | |||
695 | /// Add two signed integers, computing the two's complement truncated result, |
||
696 | /// returning true if overflow occurred. |
||
697 | template <typename T> |
||
698 | std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) { |
||
699 | #if __has_builtin(__builtin_add_overflow) |
||
700 | return __builtin_add_overflow(X, Y, &Result); |
||
701 | #else |
||
702 | // Perform the unsigned addition. |
||
703 | using U = std::make_unsigned_t<T>; |
||
704 | const U UX = static_cast<U>(X); |
||
705 | const U UY = static_cast<U>(Y); |
||
706 | const U UResult = UX + UY; |
||
707 | |||
708 | // Convert to signed. |
||
709 | Result = static_cast<T>(UResult); |
||
710 | |||
711 | // Adding two positive numbers should result in a positive number. |
||
712 | if (X > 0 && Y > 0) |
||
713 | return Result <= 0; |
||
714 | // Adding two negatives should result in a negative number. |
||
715 | if (X < 0 && Y < 0) |
||
716 | return Result >= 0; |
||
717 | return false; |
||
718 | #endif |
||
719 | } |
||
720 | |||
721 | /// Subtract two signed integers, computing the two's complement truncated |
||
722 | /// result, returning true if an overflow ocurred. |
||
723 | template <typename T> |
||
724 | std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) { |
||
725 | #if __has_builtin(__builtin_sub_overflow) |
||
726 | return __builtin_sub_overflow(X, Y, &Result); |
||
727 | #else |
||
728 | // Perform the unsigned addition. |
||
729 | using U = std::make_unsigned_t<T>; |
||
730 | const U UX = static_cast<U>(X); |
||
731 | const U UY = static_cast<U>(Y); |
||
732 | const U UResult = UX - UY; |
||
733 | |||
734 | // Convert to signed. |
||
735 | Result = static_cast<T>(UResult); |
||
736 | |||
737 | // Subtracting a positive number from a negative results in a negative number. |
||
738 | if (X <= 0 && Y > 0) |
||
739 | return Result >= 0; |
||
740 | // Subtracting a negative number from a positive results in a positive number. |
||
741 | if (X >= 0 && Y < 0) |
||
742 | return Result <= 0; |
||
743 | return false; |
||
744 | #endif |
||
745 | } |
||
746 | |||
747 | /// Multiply two signed integers, computing the two's complement truncated |
||
748 | /// result, returning true if an overflow ocurred. |
||
749 | template <typename T> |
||
750 | std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) { |
||
751 | // Perform the unsigned multiplication on absolute values. |
||
752 | using U = std::make_unsigned_t<T>; |
||
753 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); |
||
754 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); |
||
755 | const U UResult = UX * UY; |
||
756 | |||
757 | // Convert to signed. |
||
758 | const bool IsNegative = (X < 0) ^ (Y < 0); |
||
759 | Result = IsNegative ? (0 - UResult) : UResult; |
||
760 | |||
761 | // If any of the args was 0, result is 0 and no overflow occurs. |
||
762 | if (UX == 0 || UY == 0) |
||
763 | return false; |
||
764 | |||
765 | // UX and UY are in [1, 2^n], where n is the number of digits. |
||
766 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for |
||
767 | // positive) divided by an argument compares to the other. |
||
768 | if (IsNegative) |
||
769 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; |
||
770 | else |
||
771 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; |
||
772 | } |
||
773 | |||
774 | } // End llvm namespace |
||
775 | |||
776 | #endif |