Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file contains a class for representing known zeros and ones used by |
||
10 | // computeKnownBits. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_SUPPORT_KNOWNBITS_H |
||
15 | #define LLVM_SUPPORT_KNOWNBITS_H |
||
16 | |||
17 | #include "llvm/ADT/APInt.h" |
||
18 | #include <optional> |
||
19 | |||
20 | namespace llvm { |
||
21 | |||
22 | // Struct for tracking the known zeros and ones of a value. |
||
23 | struct KnownBits { |
||
24 | APInt Zero; |
||
25 | APInt One; |
||
26 | |||
27 | private: |
||
28 | // Internal constructor for creating a KnownBits from two APInts. |
||
29 | KnownBits(APInt Zero, APInt One) |
||
30 | : Zero(std::move(Zero)), One(std::move(One)) {} |
||
31 | |||
32 | public: |
||
33 | // Default construct Zero and One. |
||
34 | KnownBits() = default; |
||
35 | |||
36 | /// Create a known bits object of BitWidth bits initialized to unknown. |
||
37 | KnownBits(unsigned BitWidth) : Zero(BitWidth, 0), One(BitWidth, 0) {} |
||
38 | |||
39 | /// Get the bit width of this value. |
||
40 | unsigned getBitWidth() const { |
||
41 | assert(Zero.getBitWidth() == One.getBitWidth() && |
||
42 | "Zero and One should have the same width!"); |
||
43 | return Zero.getBitWidth(); |
||
44 | } |
||
45 | |||
46 | /// Returns true if there is conflicting information. |
||
47 | bool hasConflict() const { return Zero.intersects(One); } |
||
48 | |||
49 | /// Returns true if we know the value of all bits. |
||
50 | bool isConstant() const { |
||
51 | assert(!hasConflict() && "KnownBits conflict!"); |
||
52 | return Zero.countPopulation() + One.countPopulation() == getBitWidth(); |
||
53 | } |
||
54 | |||
55 | /// Returns the value when all bits have a known value. This just returns One |
||
56 | /// with a protective assertion. |
||
57 | const APInt &getConstant() const { |
||
58 | assert(isConstant() && "Can only get value when all bits are known"); |
||
59 | return One; |
||
60 | } |
||
61 | |||
62 | /// Returns true if we don't know any bits. |
||
63 | bool isUnknown() const { return Zero.isZero() && One.isZero(); } |
||
64 | |||
65 | /// Resets the known state of all bits. |
||
66 | void resetAll() { |
||
67 | Zero.clearAllBits(); |
||
68 | One.clearAllBits(); |
||
69 | } |
||
70 | |||
71 | /// Returns true if value is all zero. |
||
72 | bool isZero() const { |
||
73 | assert(!hasConflict() && "KnownBits conflict!"); |
||
74 | return Zero.isAllOnes(); |
||
75 | } |
||
76 | |||
77 | /// Returns true if value is all one bits. |
||
78 | bool isAllOnes() const { |
||
79 | assert(!hasConflict() && "KnownBits conflict!"); |
||
80 | return One.isAllOnes(); |
||
81 | } |
||
82 | |||
83 | /// Make all bits known to be zero and discard any previous information. |
||
84 | void setAllZero() { |
||
85 | Zero.setAllBits(); |
||
86 | One.clearAllBits(); |
||
87 | } |
||
88 | |||
89 | /// Make all bits known to be one and discard any previous information. |
||
90 | void setAllOnes() { |
||
91 | Zero.clearAllBits(); |
||
92 | One.setAllBits(); |
||
93 | } |
||
94 | |||
95 | /// Returns true if this value is known to be negative. |
||
96 | bool isNegative() const { return One.isSignBitSet(); } |
||
97 | |||
98 | /// Returns true if this value is known to be non-negative. |
||
99 | bool isNonNegative() const { return Zero.isSignBitSet(); } |
||
100 | |||
101 | /// Returns true if this value is known to be non-zero. |
||
102 | bool isNonZero() const { return !One.isZero(); } |
||
103 | |||
104 | /// Returns true if this value is known to be positive. |
||
105 | bool isStrictlyPositive() const { |
||
106 | return Zero.isSignBitSet() && !One.isZero(); |
||
107 | } |
||
108 | |||
109 | /// Make this value negative. |
||
110 | void makeNegative() { |
||
111 | One.setSignBit(); |
||
112 | } |
||
113 | |||
114 | /// Make this value non-negative. |
||
115 | void makeNonNegative() { |
||
116 | Zero.setSignBit(); |
||
117 | } |
||
118 | |||
119 | /// Return the minimal unsigned value possible given these KnownBits. |
||
120 | APInt getMinValue() const { |
||
121 | // Assume that all bits that aren't known-ones are zeros. |
||
122 | return One; |
||
123 | } |
||
124 | |||
125 | /// Return the minimal signed value possible given these KnownBits. |
||
126 | APInt getSignedMinValue() const { |
||
127 | // Assume that all bits that aren't known-ones are zeros. |
||
128 | APInt Min = One; |
||
129 | // Sign bit is unknown. |
||
130 | if (Zero.isSignBitClear()) |
||
131 | Min.setSignBit(); |
||
132 | return Min; |
||
133 | } |
||
134 | |||
135 | /// Return the maximal unsigned value possible given these KnownBits. |
||
136 | APInt getMaxValue() const { |
||
137 | // Assume that all bits that aren't known-zeros are ones. |
||
138 | return ~Zero; |
||
139 | } |
||
140 | |||
141 | /// Return the maximal signed value possible given these KnownBits. |
||
142 | APInt getSignedMaxValue() const { |
||
143 | // Assume that all bits that aren't known-zeros are ones. |
||
144 | APInt Max = ~Zero; |
||
145 | // Sign bit is unknown. |
||
146 | if (One.isSignBitClear()) |
||
147 | Max.clearSignBit(); |
||
148 | return Max; |
||
149 | } |
||
150 | |||
151 | /// Return known bits for a truncation of the value we're tracking. |
||
152 | KnownBits trunc(unsigned BitWidth) const { |
||
153 | return KnownBits(Zero.trunc(BitWidth), One.trunc(BitWidth)); |
||
154 | } |
||
155 | |||
156 | /// Return known bits for an "any" extension of the value we're tracking, |
||
157 | /// where we don't know anything about the extended bits. |
||
158 | KnownBits anyext(unsigned BitWidth) const { |
||
159 | return KnownBits(Zero.zext(BitWidth), One.zext(BitWidth)); |
||
160 | } |
||
161 | |||
162 | /// Return known bits for a zero extension of the value we're tracking. |
||
163 | KnownBits zext(unsigned BitWidth) const { |
||
164 | unsigned OldBitWidth = getBitWidth(); |
||
165 | APInt NewZero = Zero.zext(BitWidth); |
||
166 | NewZero.setBitsFrom(OldBitWidth); |
||
167 | return KnownBits(NewZero, One.zext(BitWidth)); |
||
168 | } |
||
169 | |||
170 | /// Return known bits for a sign extension of the value we're tracking. |
||
171 | KnownBits sext(unsigned BitWidth) const { |
||
172 | return KnownBits(Zero.sext(BitWidth), One.sext(BitWidth)); |
||
173 | } |
||
174 | |||
175 | /// Return known bits for an "any" extension or truncation of the value we're |
||
176 | /// tracking. |
||
177 | KnownBits anyextOrTrunc(unsigned BitWidth) const { |
||
178 | if (BitWidth > getBitWidth()) |
||
179 | return anyext(BitWidth); |
||
180 | if (BitWidth < getBitWidth()) |
||
181 | return trunc(BitWidth); |
||
182 | return *this; |
||
183 | } |
||
184 | |||
185 | /// Return known bits for a zero extension or truncation of the value we're |
||
186 | /// tracking. |
||
187 | KnownBits zextOrTrunc(unsigned BitWidth) const { |
||
188 | if (BitWidth > getBitWidth()) |
||
189 | return zext(BitWidth); |
||
190 | if (BitWidth < getBitWidth()) |
||
191 | return trunc(BitWidth); |
||
192 | return *this; |
||
193 | } |
||
194 | |||
195 | /// Return known bits for a sign extension or truncation of the value we're |
||
196 | /// tracking. |
||
197 | KnownBits sextOrTrunc(unsigned BitWidth) const { |
||
198 | if (BitWidth > getBitWidth()) |
||
199 | return sext(BitWidth); |
||
200 | if (BitWidth < getBitWidth()) |
||
201 | return trunc(BitWidth); |
||
202 | return *this; |
||
203 | } |
||
204 | |||
205 | /// Return known bits for a in-register sign extension of the value we're |
||
206 | /// tracking. |
||
207 | KnownBits sextInReg(unsigned SrcBitWidth) const; |
||
208 | |||
209 | /// Insert the bits from a smaller known bits starting at bitPosition. |
||
210 | void insertBits(const KnownBits &SubBits, unsigned BitPosition) { |
||
211 | Zero.insertBits(SubBits.Zero, BitPosition); |
||
212 | One.insertBits(SubBits.One, BitPosition); |
||
213 | } |
||
214 | |||
215 | /// Return a subset of the known bits from [bitPosition,bitPosition+numBits). |
||
216 | KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const { |
||
217 | return KnownBits(Zero.extractBits(NumBits, BitPosition), |
||
218 | One.extractBits(NumBits, BitPosition)); |
||
219 | } |
||
220 | |||
221 | /// Concatenate the bits from \p Lo onto the bottom of *this. This is |
||
222 | /// equivalent to: |
||
223 | /// (this->zext(NewWidth) << Lo.getBitWidth()) | Lo.zext(NewWidth) |
||
224 | KnownBits concat(const KnownBits &Lo) const { |
||
225 | return KnownBits(Zero.concat(Lo.Zero), One.concat(Lo.One)); |
||
226 | } |
||
227 | |||
228 | /// Return KnownBits based on this, but updated given that the underlying |
||
229 | /// value is known to be greater than or equal to Val. |
||
230 | KnownBits makeGE(const APInt &Val) const; |
||
231 | |||
232 | /// Returns the minimum number of trailing zero bits. |
||
233 | unsigned countMinTrailingZeros() const { |
||
234 | return Zero.countTrailingOnes(); |
||
235 | } |
||
236 | |||
237 | /// Returns the minimum number of trailing one bits. |
||
238 | unsigned countMinTrailingOnes() const { |
||
239 | return One.countTrailingOnes(); |
||
240 | } |
||
241 | |||
242 | /// Returns the minimum number of leading zero bits. |
||
243 | unsigned countMinLeadingZeros() const { |
||
244 | return Zero.countLeadingOnes(); |
||
245 | } |
||
246 | |||
247 | /// Returns the minimum number of leading one bits. |
||
248 | unsigned countMinLeadingOnes() const { |
||
249 | return One.countLeadingOnes(); |
||
250 | } |
||
251 | |||
252 | /// Returns the number of times the sign bit is replicated into the other |
||
253 | /// bits. |
||
254 | unsigned countMinSignBits() const { |
||
255 | if (isNonNegative()) |
||
256 | return countMinLeadingZeros(); |
||
257 | if (isNegative()) |
||
258 | return countMinLeadingOnes(); |
||
259 | // Every value has at least 1 sign bit. |
||
260 | return 1; |
||
261 | } |
||
262 | |||
263 | /// Returns the maximum number of bits needed to represent all possible |
||
264 | /// signed values with these known bits. This is the inverse of the minimum |
||
265 | /// number of known sign bits. Examples for bitwidth 5: |
||
266 | /// 110?? --> 4 |
||
267 | /// 0000? --> 2 |
||
268 | unsigned countMaxSignificantBits() const { |
||
269 | return getBitWidth() - countMinSignBits() + 1; |
||
270 | } |
||
271 | |||
272 | /// Returns the maximum number of trailing zero bits possible. |
||
273 | unsigned countMaxTrailingZeros() const { |
||
274 | return One.countTrailingZeros(); |
||
275 | } |
||
276 | |||
277 | /// Returns the maximum number of trailing one bits possible. |
||
278 | unsigned countMaxTrailingOnes() const { |
||
279 | return Zero.countTrailingZeros(); |
||
280 | } |
||
281 | |||
282 | /// Returns the maximum number of leading zero bits possible. |
||
283 | unsigned countMaxLeadingZeros() const { |
||
284 | return One.countLeadingZeros(); |
||
285 | } |
||
286 | |||
287 | /// Returns the maximum number of leading one bits possible. |
||
288 | unsigned countMaxLeadingOnes() const { |
||
289 | return Zero.countLeadingZeros(); |
||
290 | } |
||
291 | |||
292 | /// Returns the number of bits known to be one. |
||
293 | unsigned countMinPopulation() const { |
||
294 | return One.countPopulation(); |
||
295 | } |
||
296 | |||
297 | /// Returns the maximum number of bits that could be one. |
||
298 | unsigned countMaxPopulation() const { |
||
299 | return getBitWidth() - Zero.countPopulation(); |
||
300 | } |
||
301 | |||
302 | /// Returns the maximum number of bits needed to represent all possible |
||
303 | /// unsigned values with these known bits. This is the inverse of the |
||
304 | /// minimum number of leading zeros. |
||
305 | unsigned countMaxActiveBits() const { |
||
306 | return getBitWidth() - countMinLeadingZeros(); |
||
307 | } |
||
308 | |||
309 | /// Create known bits from a known constant. |
||
310 | static KnownBits makeConstant(const APInt &C) { |
||
311 | return KnownBits(~C, C); |
||
312 | } |
||
313 | |||
314 | /// Compute known bits common to LHS and RHS. |
||
315 | static KnownBits commonBits(const KnownBits &LHS, const KnownBits &RHS) { |
||
316 | return KnownBits(LHS.Zero & RHS.Zero, LHS.One & RHS.One); |
||
317 | } |
||
318 | |||
319 | /// Return true if LHS and RHS have no common bits set. |
||
320 | static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS) { |
||
321 | return (LHS.Zero | RHS.Zero).isAllOnes(); |
||
322 | } |
||
323 | |||
324 | /// Compute known bits resulting from adding LHS, RHS and a 1-bit Carry. |
||
325 | static KnownBits computeForAddCarry( |
||
326 | const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry); |
||
327 | |||
328 | /// Compute known bits resulting from adding LHS and RHS. |
||
329 | static KnownBits computeForAddSub(bool Add, bool NSW, const KnownBits &LHS, |
||
330 | KnownBits RHS); |
||
331 | |||
332 | /// Compute known bits resulting from multiplying LHS and RHS. |
||
333 | static KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, |
||
334 | bool NoUndefSelfMultiply = false); |
||
335 | |||
336 | /// Compute known bits from sign-extended multiply-hi. |
||
337 | static KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS); |
||
338 | |||
339 | /// Compute known bits from zero-extended multiply-hi. |
||
340 | static KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS); |
||
341 | |||
342 | /// Compute known bits for udiv(LHS, RHS). |
||
343 | static KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS); |
||
344 | |||
345 | /// Compute known bits for urem(LHS, RHS). |
||
346 | static KnownBits urem(const KnownBits &LHS, const KnownBits &RHS); |
||
347 | |||
348 | /// Compute known bits for srem(LHS, RHS). |
||
349 | static KnownBits srem(const KnownBits &LHS, const KnownBits &RHS); |
||
350 | |||
351 | /// Compute known bits for umax(LHS, RHS). |
||
352 | static KnownBits umax(const KnownBits &LHS, const KnownBits &RHS); |
||
353 | |||
354 | /// Compute known bits for umin(LHS, RHS). |
||
355 | static KnownBits umin(const KnownBits &LHS, const KnownBits &RHS); |
||
356 | |||
357 | /// Compute known bits for smax(LHS, RHS). |
||
358 | static KnownBits smax(const KnownBits &LHS, const KnownBits &RHS); |
||
359 | |||
360 | /// Compute known bits for smin(LHS, RHS). |
||
361 | static KnownBits smin(const KnownBits &LHS, const KnownBits &RHS); |
||
362 | |||
363 | /// Compute known bits for shl(LHS, RHS). |
||
364 | /// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS. |
||
365 | static KnownBits shl(const KnownBits &LHS, const KnownBits &RHS); |
||
366 | |||
367 | /// Compute known bits for lshr(LHS, RHS). |
||
368 | /// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS. |
||
369 | static KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS); |
||
370 | |||
371 | /// Compute known bits for ashr(LHS, RHS). |
||
372 | /// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS. |
||
373 | static KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS); |
||
374 | |||
375 | /// Determine if these known bits always give the same ICMP_EQ result. |
||
376 | static std::optional<bool> eq(const KnownBits &LHS, const KnownBits &RHS); |
||
377 | |||
378 | /// Determine if these known bits always give the same ICMP_NE result. |
||
379 | static std::optional<bool> ne(const KnownBits &LHS, const KnownBits &RHS); |
||
380 | |||
381 | /// Determine if these known bits always give the same ICMP_UGT result. |
||
382 | static std::optional<bool> ugt(const KnownBits &LHS, const KnownBits &RHS); |
||
383 | |||
384 | /// Determine if these known bits always give the same ICMP_UGE result. |
||
385 | static std::optional<bool> uge(const KnownBits &LHS, const KnownBits &RHS); |
||
386 | |||
387 | /// Determine if these known bits always give the same ICMP_ULT result. |
||
388 | static std::optional<bool> ult(const KnownBits &LHS, const KnownBits &RHS); |
||
389 | |||
390 | /// Determine if these known bits always give the same ICMP_ULE result. |
||
391 | static std::optional<bool> ule(const KnownBits &LHS, const KnownBits &RHS); |
||
392 | |||
393 | /// Determine if these known bits always give the same ICMP_SGT result. |
||
394 | static std::optional<bool> sgt(const KnownBits &LHS, const KnownBits &RHS); |
||
395 | |||
396 | /// Determine if these known bits always give the same ICMP_SGE result. |
||
397 | static std::optional<bool> sge(const KnownBits &LHS, const KnownBits &RHS); |
||
398 | |||
399 | /// Determine if these known bits always give the same ICMP_SLT result. |
||
400 | static std::optional<bool> slt(const KnownBits &LHS, const KnownBits &RHS); |
||
401 | |||
402 | /// Determine if these known bits always give the same ICMP_SLE result. |
||
403 | static std::optional<bool> sle(const KnownBits &LHS, const KnownBits &RHS); |
||
404 | |||
405 | /// Update known bits based on ANDing with RHS. |
||
406 | KnownBits &operator&=(const KnownBits &RHS); |
||
407 | |||
408 | /// Update known bits based on ORing with RHS. |
||
409 | KnownBits &operator|=(const KnownBits &RHS); |
||
410 | |||
411 | /// Update known bits based on XORing with RHS. |
||
412 | KnownBits &operator^=(const KnownBits &RHS); |
||
413 | |||
414 | /// Compute known bits for the absolute value. |
||
415 | KnownBits abs(bool IntMinIsPoison = false) const; |
||
416 | |||
417 | KnownBits byteSwap() const { |
||
418 | return KnownBits(Zero.byteSwap(), One.byteSwap()); |
||
419 | } |
||
420 | |||
421 | KnownBits reverseBits() const { |
||
422 | return KnownBits(Zero.reverseBits(), One.reverseBits()); |
||
423 | } |
||
424 | |||
425 | bool operator==(const KnownBits &Other) const { |
||
426 | return Zero == Other.Zero && One == Other.One; |
||
427 | } |
||
428 | |||
429 | bool operator!=(const KnownBits &Other) const { return !(*this == Other); } |
||
430 | |||
431 | void print(raw_ostream &OS) const; |
||
432 | void dump() const; |
||
433 | }; |
||
434 | |||
435 | inline KnownBits operator&(KnownBits LHS, const KnownBits &RHS) { |
||
436 | LHS &= RHS; |
||
437 | return LHS; |
||
438 | } |
||
439 | |||
440 | inline KnownBits operator&(const KnownBits &LHS, KnownBits &&RHS) { |
||
441 | RHS &= LHS; |
||
442 | return std::move(RHS); |
||
443 | } |
||
444 | |||
445 | inline KnownBits operator|(KnownBits LHS, const KnownBits &RHS) { |
||
446 | LHS |= RHS; |
||
447 | return LHS; |
||
448 | } |
||
449 | |||
450 | inline KnownBits operator|(const KnownBits &LHS, KnownBits &&RHS) { |
||
451 | RHS |= LHS; |
||
452 | return std::move(RHS); |
||
453 | } |
||
454 | |||
455 | inline KnownBits operator^(KnownBits LHS, const KnownBits &RHS) { |
||
456 | LHS ^= RHS; |
||
457 | return LHS; |
||
458 | } |
||
459 | |||
460 | inline KnownBits operator^(const KnownBits &LHS, KnownBits &&RHS) { |
||
461 | RHS ^= LHS; |
||
462 | return std::move(RHS); |
||
463 | } |
||
464 | |||
465 | } // end namespace llvm |
||
466 | |||
467 | #endif |