Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- IteratedDominanceFrontier.h - Calculate IDF --------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// Compute iterated dominance frontiers using a linear time algorithm. |
||
10 | /// |
||
11 | /// The algorithm used here is based on: |
||
12 | /// |
||
13 | /// Sreedhar and Gao. A linear time algorithm for placing phi-nodes. |
||
14 | /// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of |
||
15 | /// Programming Languages |
||
16 | /// POPL '95. ACM, New York, NY, 62-73. |
||
17 | /// |
||
18 | /// It has been modified to not explicitly use the DJ graph data structure and |
||
19 | /// to directly compute pruned SSA using per-variable liveness information. |
||
20 | // |
||
21 | //===----------------------------------------------------------------------===// |
||
22 | |||
23 | #ifndef LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H |
||
24 | #define LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H |
||
25 | |||
26 | #include "llvm/ADT/DenseMap.h" |
||
27 | #include "llvm/ADT/SmallPtrSet.h" |
||
28 | #include "llvm/ADT/SmallVector.h" |
||
29 | #include "llvm/Support/GenericDomTree.h" |
||
30 | #include <queue> |
||
31 | |||
32 | namespace llvm { |
||
33 | |||
34 | namespace IDFCalculatorDetail { |
||
35 | |||
36 | /// Generic utility class used for getting the children of a basic block. |
||
37 | /// May be specialized if, for example, one wouldn't like to return nullpointer |
||
38 | /// successors. |
||
39 | template <class NodeTy, bool IsPostDom> struct ChildrenGetterTy { |
||
40 | using NodeRef = typename GraphTraits<NodeTy *>::NodeRef; |
||
41 | using ChildrenTy = SmallVector<NodeRef, 8>; |
||
42 | |||
43 | ChildrenTy get(const NodeRef &N); |
||
44 | }; |
||
45 | |||
46 | } // end of namespace IDFCalculatorDetail |
||
47 | |||
48 | /// Determine the iterated dominance frontier, given a set of defining |
||
49 | /// blocks, and optionally, a set of live-in blocks. |
||
50 | /// |
||
51 | /// In turn, the results can be used to place phi nodes. |
||
52 | /// |
||
53 | /// This algorithm is a linear time computation of Iterated Dominance Frontiers, |
||
54 | /// pruned using the live-in set. |
||
55 | /// By default, liveness is not used to prune the IDF computation. |
||
56 | /// The template parameters should be of a CFG block type. |
||
57 | template <class NodeTy, bool IsPostDom> class IDFCalculatorBase { |
||
58 | public: |
||
59 | using OrderedNodeTy = |
||
60 | std::conditional_t<IsPostDom, Inverse<NodeTy *>, NodeTy *>; |
||
61 | using ChildrenGetterTy = |
||
62 | IDFCalculatorDetail::ChildrenGetterTy<NodeTy, IsPostDom>; |
||
63 | |||
64 | IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT) : DT(DT) {} |
||
65 | |||
66 | IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT, |
||
67 | const ChildrenGetterTy &C) |
||
68 | : DT(DT), ChildrenGetter(C) {} |
||
69 | |||
70 | /// Give the IDF calculator the set of blocks in which the value is |
||
71 | /// defined. This is equivalent to the set of starting blocks it should be |
||
72 | /// calculating the IDF for (though later gets pruned based on liveness). |
||
73 | /// |
||
74 | /// Note: This set *must* live for the entire lifetime of the IDF calculator. |
||
75 | void setDefiningBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) { |
||
76 | DefBlocks = &Blocks; |
||
77 | } |
||
78 | |||
79 | /// Give the IDF calculator the set of blocks in which the value is |
||
80 | /// live on entry to the block. This is used to prune the IDF calculation to |
||
81 | /// not include blocks where any phi insertion would be dead. |
||
82 | /// |
||
83 | /// Note: This set *must* live for the entire lifetime of the IDF calculator. |
||
84 | void setLiveInBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) { |
||
85 | LiveInBlocks = &Blocks; |
||
86 | useLiveIn = true; |
||
87 | } |
||
88 | |||
89 | /// Reset the live-in block set to be empty, and tell the IDF |
||
90 | /// calculator to not use liveness anymore. |
||
91 | void resetLiveInBlocks() { |
||
92 | LiveInBlocks = nullptr; |
||
93 | useLiveIn = false; |
||
94 | } |
||
95 | |||
96 | /// Calculate iterated dominance frontiers |
||
97 | /// |
||
98 | /// This uses the linear-time phi algorithm based on DJ-graphs mentioned in |
||
99 | /// the file-level comment. It performs DF->IDF pruning using the live-in |
||
100 | /// set, to avoid computing the IDF for blocks where an inserted PHI node |
||
101 | /// would be dead. |
||
102 | void calculate(SmallVectorImpl<NodeTy *> &IDFBlocks); |
||
103 | |||
104 | private: |
||
105 | DominatorTreeBase<NodeTy, IsPostDom> &DT; |
||
106 | ChildrenGetterTy ChildrenGetter; |
||
107 | bool useLiveIn = false; |
||
108 | const SmallPtrSetImpl<NodeTy *> *LiveInBlocks; |
||
109 | const SmallPtrSetImpl<NodeTy *> *DefBlocks; |
||
110 | }; |
||
111 | |||
112 | //===----------------------------------------------------------------------===// |
||
113 | // Implementation. |
||
114 | //===----------------------------------------------------------------------===// |
||
115 | |||
116 | namespace IDFCalculatorDetail { |
||
117 | |||
118 | template <class NodeTy, bool IsPostDom> |
||
119 | typename ChildrenGetterTy<NodeTy, IsPostDom>::ChildrenTy |
||
120 | ChildrenGetterTy<NodeTy, IsPostDom>::get(const NodeRef &N) { |
||
121 | using OrderedNodeTy = |
||
122 | typename IDFCalculatorBase<NodeTy, IsPostDom>::OrderedNodeTy; |
||
123 | |||
124 | auto Children = children<OrderedNodeTy>(N); |
||
125 | return {Children.begin(), Children.end()}; |
||
126 | } |
||
127 | |||
128 | } // end of namespace IDFCalculatorDetail |
||
129 | |||
130 | template <class NodeTy, bool IsPostDom> |
||
131 | void IDFCalculatorBase<NodeTy, IsPostDom>::calculate( |
||
132 | SmallVectorImpl<NodeTy *> &IDFBlocks) { |
||
133 | // Use a priority queue keyed on dominator tree level so that inserted nodes |
||
134 | // are handled from the bottom of the dominator tree upwards. We also augment |
||
135 | // the level with a DFS number to ensure that the blocks are ordered in a |
||
136 | // deterministic way. |
||
137 | using DomTreeNodePair = |
||
138 | std::pair<DomTreeNodeBase<NodeTy> *, std::pair<unsigned, unsigned>>; |
||
139 | using IDFPriorityQueue = |
||
140 | std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>, |
||
141 | less_second>; |
||
142 | |||
143 | IDFPriorityQueue PQ; |
||
144 | |||
145 | DT.updateDFSNumbers(); |
||
146 | |||
147 | SmallVector<DomTreeNodeBase<NodeTy> *, 32> Worklist; |
||
148 | SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedPQ; |
||
149 | SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedWorklist; |
||
150 | |||
151 | for (NodeTy *BB : *DefBlocks) |
||
152 | if (DomTreeNodeBase<NodeTy> *Node = DT.getNode(BB)) { |
||
153 | PQ.push({Node, std::make_pair(Node->getLevel(), Node->getDFSNumIn())}); |
||
154 | VisitedWorklist.insert(Node); |
||
155 | } |
||
156 | |||
157 | while (!PQ.empty()) { |
||
158 | DomTreeNodePair RootPair = PQ.top(); |
||
159 | PQ.pop(); |
||
160 | DomTreeNodeBase<NodeTy> *Root = RootPair.first; |
||
161 | unsigned RootLevel = RootPair.second.first; |
||
162 | |||
163 | // Walk all dominator tree children of Root, inspecting their CFG edges with |
||
164 | // targets elsewhere on the dominator tree. Only targets whose level is at |
||
165 | // most Root's level are added to the iterated dominance frontier of the |
||
166 | // definition set. |
||
167 | |||
168 | assert(Worklist.empty()); |
||
169 | Worklist.push_back(Root); |
||
170 | |||
171 | while (!Worklist.empty()) { |
||
172 | DomTreeNodeBase<NodeTy> *Node = Worklist.pop_back_val(); |
||
173 | NodeTy *BB = Node->getBlock(); |
||
174 | // Succ is the successor in the direction we are calculating IDF, so it is |
||
175 | // successor for IDF, and predecessor for Reverse IDF. |
||
176 | auto DoWork = [&](NodeTy *Succ) { |
||
177 | DomTreeNodeBase<NodeTy> *SuccNode = DT.getNode(Succ); |
||
178 | |||
179 | const unsigned SuccLevel = SuccNode->getLevel(); |
||
180 | if (SuccLevel > RootLevel) |
||
181 | return; |
||
182 | |||
183 | if (!VisitedPQ.insert(SuccNode).second) |
||
184 | return; |
||
185 | |||
186 | NodeTy *SuccBB = SuccNode->getBlock(); |
||
187 | if (useLiveIn && !LiveInBlocks->count(SuccBB)) |
||
188 | return; |
||
189 | |||
190 | IDFBlocks.emplace_back(SuccBB); |
||
191 | if (!DefBlocks->count(SuccBB)) |
||
192 | PQ.push(std::make_pair( |
||
193 | SuccNode, std::make_pair(SuccLevel, SuccNode->getDFSNumIn()))); |
||
194 | }; |
||
195 | |||
196 | for (auto *Succ : ChildrenGetter.get(BB)) |
||
197 | DoWork(Succ); |
||
198 | |||
199 | for (auto DomChild : *Node) { |
||
200 | if (VisitedWorklist.insert(DomChild).second) |
||
201 | Worklist.push_back(DomChild); |
||
202 | } |
||
203 | } |
||
204 | } |
||
205 | } |
||
206 | |||
207 | } // end of namespace llvm |
||
208 | |||
209 | #endif |