Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- IteratedDominanceFrontier.h - Calculate IDF --------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | /// \file |
||
| 9 | /// Compute iterated dominance frontiers using a linear time algorithm. |
||
| 10 | /// |
||
| 11 | /// The algorithm used here is based on: |
||
| 12 | /// |
||
| 13 | /// Sreedhar and Gao. A linear time algorithm for placing phi-nodes. |
||
| 14 | /// In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of |
||
| 15 | /// Programming Languages |
||
| 16 | /// POPL '95. ACM, New York, NY, 62-73. |
||
| 17 | /// |
||
| 18 | /// It has been modified to not explicitly use the DJ graph data structure and |
||
| 19 | /// to directly compute pruned SSA using per-variable liveness information. |
||
| 20 | // |
||
| 21 | //===----------------------------------------------------------------------===// |
||
| 22 | |||
| 23 | #ifndef LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H |
||
| 24 | #define LLVM_SUPPORT_GENERICITERATEDDOMINANCEFRONTIER_H |
||
| 25 | |||
| 26 | #include "llvm/ADT/DenseMap.h" |
||
| 27 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 28 | #include "llvm/ADT/SmallVector.h" |
||
| 29 | #include "llvm/Support/GenericDomTree.h" |
||
| 30 | #include <queue> |
||
| 31 | |||
| 32 | namespace llvm { |
||
| 33 | |||
| 34 | namespace IDFCalculatorDetail { |
||
| 35 | |||
| 36 | /// Generic utility class used for getting the children of a basic block. |
||
| 37 | /// May be specialized if, for example, one wouldn't like to return nullpointer |
||
| 38 | /// successors. |
||
| 39 | template <class NodeTy, bool IsPostDom> struct ChildrenGetterTy { |
||
| 40 | using NodeRef = typename GraphTraits<NodeTy *>::NodeRef; |
||
| 41 | using ChildrenTy = SmallVector<NodeRef, 8>; |
||
| 42 | |||
| 43 | ChildrenTy get(const NodeRef &N); |
||
| 44 | }; |
||
| 45 | |||
| 46 | } // end of namespace IDFCalculatorDetail |
||
| 47 | |||
| 48 | /// Determine the iterated dominance frontier, given a set of defining |
||
| 49 | /// blocks, and optionally, a set of live-in blocks. |
||
| 50 | /// |
||
| 51 | /// In turn, the results can be used to place phi nodes. |
||
| 52 | /// |
||
| 53 | /// This algorithm is a linear time computation of Iterated Dominance Frontiers, |
||
| 54 | /// pruned using the live-in set. |
||
| 55 | /// By default, liveness is not used to prune the IDF computation. |
||
| 56 | /// The template parameters should be of a CFG block type. |
||
| 57 | template <class NodeTy, bool IsPostDom> class IDFCalculatorBase { |
||
| 58 | public: |
||
| 59 | using OrderedNodeTy = |
||
| 60 | std::conditional_t<IsPostDom, Inverse<NodeTy *>, NodeTy *>; |
||
| 61 | using ChildrenGetterTy = |
||
| 62 | IDFCalculatorDetail::ChildrenGetterTy<NodeTy, IsPostDom>; |
||
| 63 | |||
| 64 | IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT) : DT(DT) {} |
||
| 65 | |||
| 66 | IDFCalculatorBase(DominatorTreeBase<NodeTy, IsPostDom> &DT, |
||
| 67 | const ChildrenGetterTy &C) |
||
| 68 | : DT(DT), ChildrenGetter(C) {} |
||
| 69 | |||
| 70 | /// Give the IDF calculator the set of blocks in which the value is |
||
| 71 | /// defined. This is equivalent to the set of starting blocks it should be |
||
| 72 | /// calculating the IDF for (though later gets pruned based on liveness). |
||
| 73 | /// |
||
| 74 | /// Note: This set *must* live for the entire lifetime of the IDF calculator. |
||
| 75 | void setDefiningBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) { |
||
| 76 | DefBlocks = &Blocks; |
||
| 77 | } |
||
| 78 | |||
| 79 | /// Give the IDF calculator the set of blocks in which the value is |
||
| 80 | /// live on entry to the block. This is used to prune the IDF calculation to |
||
| 81 | /// not include blocks where any phi insertion would be dead. |
||
| 82 | /// |
||
| 83 | /// Note: This set *must* live for the entire lifetime of the IDF calculator. |
||
| 84 | void setLiveInBlocks(const SmallPtrSetImpl<NodeTy *> &Blocks) { |
||
| 85 | LiveInBlocks = &Blocks; |
||
| 86 | useLiveIn = true; |
||
| 87 | } |
||
| 88 | |||
| 89 | /// Reset the live-in block set to be empty, and tell the IDF |
||
| 90 | /// calculator to not use liveness anymore. |
||
| 91 | void resetLiveInBlocks() { |
||
| 92 | LiveInBlocks = nullptr; |
||
| 93 | useLiveIn = false; |
||
| 94 | } |
||
| 95 | |||
| 96 | /// Calculate iterated dominance frontiers |
||
| 97 | /// |
||
| 98 | /// This uses the linear-time phi algorithm based on DJ-graphs mentioned in |
||
| 99 | /// the file-level comment. It performs DF->IDF pruning using the live-in |
||
| 100 | /// set, to avoid computing the IDF for blocks where an inserted PHI node |
||
| 101 | /// would be dead. |
||
| 102 | void calculate(SmallVectorImpl<NodeTy *> &IDFBlocks); |
||
| 103 | |||
| 104 | private: |
||
| 105 | DominatorTreeBase<NodeTy, IsPostDom> &DT; |
||
| 106 | ChildrenGetterTy ChildrenGetter; |
||
| 107 | bool useLiveIn = false; |
||
| 108 | const SmallPtrSetImpl<NodeTy *> *LiveInBlocks; |
||
| 109 | const SmallPtrSetImpl<NodeTy *> *DefBlocks; |
||
| 110 | }; |
||
| 111 | |||
| 112 | //===----------------------------------------------------------------------===// |
||
| 113 | // Implementation. |
||
| 114 | //===----------------------------------------------------------------------===// |
||
| 115 | |||
| 116 | namespace IDFCalculatorDetail { |
||
| 117 | |||
| 118 | template <class NodeTy, bool IsPostDom> |
||
| 119 | typename ChildrenGetterTy<NodeTy, IsPostDom>::ChildrenTy |
||
| 120 | ChildrenGetterTy<NodeTy, IsPostDom>::get(const NodeRef &N) { |
||
| 121 | using OrderedNodeTy = |
||
| 122 | typename IDFCalculatorBase<NodeTy, IsPostDom>::OrderedNodeTy; |
||
| 123 | |||
| 124 | auto Children = children<OrderedNodeTy>(N); |
||
| 125 | return {Children.begin(), Children.end()}; |
||
| 126 | } |
||
| 127 | |||
| 128 | } // end of namespace IDFCalculatorDetail |
||
| 129 | |||
| 130 | template <class NodeTy, bool IsPostDom> |
||
| 131 | void IDFCalculatorBase<NodeTy, IsPostDom>::calculate( |
||
| 132 | SmallVectorImpl<NodeTy *> &IDFBlocks) { |
||
| 133 | // Use a priority queue keyed on dominator tree level so that inserted nodes |
||
| 134 | // are handled from the bottom of the dominator tree upwards. We also augment |
||
| 135 | // the level with a DFS number to ensure that the blocks are ordered in a |
||
| 136 | // deterministic way. |
||
| 137 | using DomTreeNodePair = |
||
| 138 | std::pair<DomTreeNodeBase<NodeTy> *, std::pair<unsigned, unsigned>>; |
||
| 139 | using IDFPriorityQueue = |
||
| 140 | std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>, |
||
| 141 | less_second>; |
||
| 142 | |||
| 143 | IDFPriorityQueue PQ; |
||
| 144 | |||
| 145 | DT.updateDFSNumbers(); |
||
| 146 | |||
| 147 | SmallVector<DomTreeNodeBase<NodeTy> *, 32> Worklist; |
||
| 148 | SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedPQ; |
||
| 149 | SmallPtrSet<DomTreeNodeBase<NodeTy> *, 32> VisitedWorklist; |
||
| 150 | |||
| 151 | for (NodeTy *BB : *DefBlocks) |
||
| 152 | if (DomTreeNodeBase<NodeTy> *Node = DT.getNode(BB)) { |
||
| 153 | PQ.push({Node, std::make_pair(Node->getLevel(), Node->getDFSNumIn())}); |
||
| 154 | VisitedWorklist.insert(Node); |
||
| 155 | } |
||
| 156 | |||
| 157 | while (!PQ.empty()) { |
||
| 158 | DomTreeNodePair RootPair = PQ.top(); |
||
| 159 | PQ.pop(); |
||
| 160 | DomTreeNodeBase<NodeTy> *Root = RootPair.first; |
||
| 161 | unsigned RootLevel = RootPair.second.first; |
||
| 162 | |||
| 163 | // Walk all dominator tree children of Root, inspecting their CFG edges with |
||
| 164 | // targets elsewhere on the dominator tree. Only targets whose level is at |
||
| 165 | // most Root's level are added to the iterated dominance frontier of the |
||
| 166 | // definition set. |
||
| 167 | |||
| 168 | assert(Worklist.empty()); |
||
| 169 | Worklist.push_back(Root); |
||
| 170 | |||
| 171 | while (!Worklist.empty()) { |
||
| 172 | DomTreeNodeBase<NodeTy> *Node = Worklist.pop_back_val(); |
||
| 173 | NodeTy *BB = Node->getBlock(); |
||
| 174 | // Succ is the successor in the direction we are calculating IDF, so it is |
||
| 175 | // successor for IDF, and predecessor for Reverse IDF. |
||
| 176 | auto DoWork = [&](NodeTy *Succ) { |
||
| 177 | DomTreeNodeBase<NodeTy> *SuccNode = DT.getNode(Succ); |
||
| 178 | |||
| 179 | const unsigned SuccLevel = SuccNode->getLevel(); |
||
| 180 | if (SuccLevel > RootLevel) |
||
| 181 | return; |
||
| 182 | |||
| 183 | if (!VisitedPQ.insert(SuccNode).second) |
||
| 184 | return; |
||
| 185 | |||
| 186 | NodeTy *SuccBB = SuccNode->getBlock(); |
||
| 187 | if (useLiveIn && !LiveInBlocks->count(SuccBB)) |
||
| 188 | return; |
||
| 189 | |||
| 190 | IDFBlocks.emplace_back(SuccBB); |
||
| 191 | if (!DefBlocks->count(SuccBB)) |
||
| 192 | PQ.push(std::make_pair( |
||
| 193 | SuccNode, std::make_pair(SuccLevel, SuccNode->getDFSNumIn()))); |
||
| 194 | }; |
||
| 195 | |||
| 196 | for (auto *Succ : ChildrenGetter.get(BB)) |
||
| 197 | DoWork(Succ); |
||
| 198 | |||
| 199 | for (auto DomChild : *Node) { |
||
| 200 | if (VisitedWorklist.insert(DomChild).second) |
||
| 201 | Worklist.push_back(DomChild); |
||
| 202 | } |
||
| 203 | } |
||
| 204 | } |
||
| 205 | } |
||
| 206 | |||
| 207 | } // end of namespace llvm |
||
| 208 | |||
| 209 | #endif |