Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// |
||
10 | /// Generic dominator tree construction - this file provides routines to |
||
11 | /// construct immediate dominator information for a flow-graph based on the |
||
12 | /// Semi-NCA algorithm described in this dissertation: |
||
13 | /// |
||
14 | /// [1] Linear-Time Algorithms for Dominators and Related Problems |
||
15 | /// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23: |
||
16 | /// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf |
||
17 | /// |
||
18 | /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly |
||
19 | /// faster than Simple Lengauer-Tarjan in practice. |
||
20 | /// |
||
21 | /// O(n^2) worst cases happen when the computation of nearest common ancestors |
||
22 | /// requires O(n) average time, which is very unlikely in real world. If this |
||
23 | /// ever turns out to be an issue, consider implementing a hybrid algorithm |
||
24 | /// that uses SLT to perform full constructions and SemiNCA for incremental |
||
25 | /// updates. |
||
26 | /// |
||
27 | /// The file uses the Depth Based Search algorithm to perform incremental |
||
28 | /// updates (insertion and deletions). The implemented algorithm is based on |
||
29 | /// this publication: |
||
30 | /// |
||
31 | /// [2] An Experimental Study of Dynamic Dominators |
||
32 | /// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10: |
||
33 | /// https://arxiv.org/pdf/1604.02711.pdf |
||
34 | /// |
||
35 | //===----------------------------------------------------------------------===// |
||
36 | |||
37 | #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H |
||
38 | #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H |
||
39 | |||
40 | #include "llvm/ADT/ArrayRef.h" |
||
41 | #include "llvm/ADT/DenseSet.h" |
||
42 | #include "llvm/ADT/DepthFirstIterator.h" |
||
43 | #include "llvm/ADT/PointerIntPair.h" |
||
44 | #include "llvm/ADT/SmallPtrSet.h" |
||
45 | #include "llvm/Support/Debug.h" |
||
46 | #include "llvm/Support/GenericDomTree.h" |
||
47 | #include <optional> |
||
48 | #include <queue> |
||
49 | |||
50 | #define DEBUG_TYPE "dom-tree-builder" |
||
51 | |||
52 | namespace llvm { |
||
53 | namespace DomTreeBuilder { |
||
54 | |||
55 | template <typename DomTreeT> |
||
56 | struct SemiNCAInfo { |
||
57 | using NodePtr = typename DomTreeT::NodePtr; |
||
58 | using NodeT = typename DomTreeT::NodeType; |
||
59 | using TreeNodePtr = DomTreeNodeBase<NodeT> *; |
||
60 | using RootsT = decltype(DomTreeT::Roots); |
||
61 | static constexpr bool IsPostDom = DomTreeT::IsPostDominator; |
||
62 | using GraphDiffT = GraphDiff<NodePtr, IsPostDom>; |
||
63 | |||
64 | // Information record used by Semi-NCA during tree construction. |
||
65 | struct InfoRec { |
||
66 | unsigned DFSNum = 0; |
||
67 | unsigned Parent = 0; |
||
68 | unsigned Semi = 0; |
||
69 | NodePtr Label = nullptr; |
||
70 | NodePtr IDom = nullptr; |
||
71 | SmallVector<NodePtr, 2> ReverseChildren; |
||
72 | }; |
||
73 | |||
74 | // Number to node mapping is 1-based. Initialize the mapping to start with |
||
75 | // a dummy element. |
||
76 | std::vector<NodePtr> NumToNode = {nullptr}; |
||
77 | DenseMap<NodePtr, InfoRec> NodeToInfo; |
||
78 | |||
79 | using UpdateT = typename DomTreeT::UpdateType; |
||
80 | using UpdateKind = typename DomTreeT::UpdateKind; |
||
81 | struct BatchUpdateInfo { |
||
82 | // Note: Updates inside PreViewCFG are already legalized. |
||
83 | BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr) |
||
84 | : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG), |
||
85 | NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {} |
||
86 | |||
87 | // Remembers if the whole tree was recalculated at some point during the |
||
88 | // current batch update. |
||
89 | bool IsRecalculated = false; |
||
90 | GraphDiffT &PreViewCFG; |
||
91 | GraphDiffT *PostViewCFG; |
||
92 | const size_t NumLegalized; |
||
93 | }; |
||
94 | |||
95 | BatchUpdateInfo *BatchUpdates; |
||
96 | using BatchUpdatePtr = BatchUpdateInfo *; |
||
97 | |||
98 | // If BUI is a nullptr, then there's no batch update in progress. |
||
99 | SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {} |
||
100 | |||
101 | void clear() { |
||
102 | NumToNode = {nullptr}; // Restore to initial state with a dummy start node. |
||
103 | NodeToInfo.clear(); |
||
104 | // Don't reset the pointer to BatchUpdateInfo here -- if there's an update |
||
105 | // in progress, we need this information to continue it. |
||
106 | } |
||
107 | |||
108 | template <bool Inversed> |
||
109 | static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) { |
||
110 | if (BUI) |
||
111 | return BUI->PreViewCFG.template getChildren<Inversed>(N); |
||
112 | return getChildren<Inversed>(N); |
||
113 | } |
||
114 | |||
115 | template <bool Inversed> |
||
116 | static SmallVector<NodePtr, 8> getChildren(NodePtr N) { |
||
117 | using DirectedNodeT = |
||
118 | std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>; |
||
119 | auto R = children<DirectedNodeT>(N); |
||
120 | SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R)); |
||
121 | |||
122 | // Remove nullptr children for clang. |
||
123 | llvm::erase_value(Res, nullptr); |
||
124 | return Res; |
||
125 | } |
||
126 | |||
127 | NodePtr getIDom(NodePtr BB) const { |
||
128 | auto InfoIt = NodeToInfo.find(BB); |
||
129 | if (InfoIt == NodeToInfo.end()) return nullptr; |
||
130 | |||
131 | return InfoIt->second.IDom; |
||
132 | } |
||
133 | |||
134 | TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) { |
||
135 | if (TreeNodePtr Node = DT.getNode(BB)) return Node; |
||
136 | |||
137 | // Haven't calculated this node yet? Get or calculate the node for the |
||
138 | // immediate dominator. |
||
139 | NodePtr IDom = getIDom(BB); |
||
140 | |||
141 | assert(IDom || DT.DomTreeNodes[nullptr]); |
||
142 | TreeNodePtr IDomNode = getNodeForBlock(IDom, DT); |
||
143 | |||
144 | // Add a new tree node for this NodeT, and link it as a child of |
||
145 | // IDomNode |
||
146 | return DT.createChild(BB, IDomNode); |
||
147 | } |
||
148 | |||
149 | static bool AlwaysDescend(NodePtr, NodePtr) { return true; } |
||
150 | |||
151 | struct BlockNamePrinter { |
||
152 | NodePtr N; |
||
153 | |||
154 | BlockNamePrinter(NodePtr Block) : N(Block) {} |
||
155 | BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {} |
||
156 | |||
157 | friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) { |
||
158 | if (!BP.N) |
||
159 | O << "nullptr"; |
||
160 | else |
||
161 | BP.N->printAsOperand(O, false); |
||
162 | |||
163 | return O; |
||
164 | } |
||
165 | }; |
||
166 | |||
167 | using NodeOrderMap = DenseMap<NodePtr, unsigned>; |
||
168 | |||
169 | // Custom DFS implementation which can skip nodes based on a provided |
||
170 | // predicate. It also collects ReverseChildren so that we don't have to spend |
||
171 | // time getting predecessors in SemiNCA. |
||
172 | // |
||
173 | // If IsReverse is set to true, the DFS walk will be performed backwards |
||
174 | // relative to IsPostDom -- using reverse edges for dominators and forward |
||
175 | // edges for postdominators. |
||
176 | // |
||
177 | // If SuccOrder is specified then in this order the DFS traverses the children |
||
178 | // otherwise the order is implied by the results of getChildren(). |
||
179 | template <bool IsReverse = false, typename DescendCondition> |
||
180 | unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition, |
||
181 | unsigned AttachToNum, |
||
182 | const NodeOrderMap *SuccOrder = nullptr) { |
||
183 | assert(V); |
||
184 | SmallVector<NodePtr, 64> WorkList = {V}; |
||
185 | if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum; |
||
186 | |||
187 | while (!WorkList.empty()) { |
||
188 | const NodePtr BB = WorkList.pop_back_val(); |
||
189 | auto &BBInfo = NodeToInfo[BB]; |
||
190 | |||
191 | // Visited nodes always have positive DFS numbers. |
||
192 | if (BBInfo.DFSNum != 0) continue; |
||
193 | BBInfo.DFSNum = BBInfo.Semi = ++LastNum; |
||
194 | BBInfo.Label = BB; |
||
195 | NumToNode.push_back(BB); |
||
196 | |||
197 | constexpr bool Direction = IsReverse != IsPostDom; // XOR. |
||
198 | auto Successors = getChildren<Direction>(BB, BatchUpdates); |
||
199 | if (SuccOrder && Successors.size() > 1) |
||
200 | llvm::sort( |
||
201 | Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) { |
||
202 | return SuccOrder->find(A)->second < SuccOrder->find(B)->second; |
||
203 | }); |
||
204 | |||
205 | for (const NodePtr Succ : Successors) { |
||
206 | const auto SIT = NodeToInfo.find(Succ); |
||
207 | // Don't visit nodes more than once but remember to collect |
||
208 | // ReverseChildren. |
||
209 | if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) { |
||
210 | if (Succ != BB) SIT->second.ReverseChildren.push_back(BB); |
||
211 | continue; |
||
212 | } |
||
213 | |||
214 | if (!Condition(BB, Succ)) continue; |
||
215 | |||
216 | // It's fine to add Succ to the map, because we know that it will be |
||
217 | // visited later. |
||
218 | auto &SuccInfo = NodeToInfo[Succ]; |
||
219 | WorkList.push_back(Succ); |
||
220 | SuccInfo.Parent = LastNum; |
||
221 | SuccInfo.ReverseChildren.push_back(BB); |
||
222 | } |
||
223 | } |
||
224 | |||
225 | return LastNum; |
||
226 | } |
||
227 | |||
228 | // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum |
||
229 | // of sdom(U), where U > W and there is a virtual forest path from U to V. The |
||
230 | // virtual forest consists of linked edges of processed vertices. |
||
231 | // |
||
232 | // We can follow Parent pointers (virtual forest edges) to determine the |
||
233 | // ancestor U with minimum sdom(U). But it is slow and thus we employ the path |
||
234 | // compression technique to speed up to O(m*log(n)). Theoretically the virtual |
||
235 | // forest can be organized as balanced trees to achieve almost linear |
||
236 | // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size |
||
237 | // and Child) and is unlikely to be faster than the simple implementation. |
||
238 | // |
||
239 | // For each vertex V, its Label points to the vertex with the minimal sdom(U) |
||
240 | // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded). |
||
241 | NodePtr eval(NodePtr V, unsigned LastLinked, |
||
242 | SmallVectorImpl<InfoRec *> &Stack) { |
||
243 | InfoRec *VInfo = &NodeToInfo[V]; |
||
244 | if (VInfo->Parent < LastLinked) |
||
245 | return VInfo->Label; |
||
246 | |||
247 | // Store ancestors except the last (root of a virtual tree) into a stack. |
||
248 | assert(Stack.empty()); |
||
249 | do { |
||
250 | Stack.push_back(VInfo); |
||
251 | VInfo = &NodeToInfo[NumToNode[VInfo->Parent]]; |
||
252 | } while (VInfo->Parent >= LastLinked); |
||
253 | |||
254 | // Path compression. Point each vertex's Parent to the root and update its |
||
255 | // Label if any of its ancestors (PInfo->Label) has a smaller Semi. |
||
256 | const InfoRec *PInfo = VInfo; |
||
257 | const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label]; |
||
258 | do { |
||
259 | VInfo = Stack.pop_back_val(); |
||
260 | VInfo->Parent = PInfo->Parent; |
||
261 | const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label]; |
||
262 | if (PLabelInfo->Semi < VLabelInfo->Semi) |
||
263 | VInfo->Label = PInfo->Label; |
||
264 | else |
||
265 | PLabelInfo = VLabelInfo; |
||
266 | PInfo = VInfo; |
||
267 | } while (!Stack.empty()); |
||
268 | return VInfo->Label; |
||
269 | } |
||
270 | |||
271 | // This function requires DFS to be run before calling it. |
||
272 | void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) { |
||
273 | const unsigned NextDFSNum(NumToNode.size()); |
||
274 | // Initialize IDoms to spanning tree parents. |
||
275 | for (unsigned i = 1; i < NextDFSNum; ++i) { |
||
276 | const NodePtr V = NumToNode[i]; |
||
277 | auto &VInfo = NodeToInfo[V]; |
||
278 | VInfo.IDom = NumToNode[VInfo.Parent]; |
||
279 | } |
||
280 | |||
281 | // Step #1: Calculate the semidominators of all vertices. |
||
282 | SmallVector<InfoRec *, 32> EvalStack; |
||
283 | for (unsigned i = NextDFSNum - 1; i >= 2; --i) { |
||
284 | NodePtr W = NumToNode[i]; |
||
285 | auto &WInfo = NodeToInfo[W]; |
||
286 | |||
287 | // Initialize the semi dominator to point to the parent node. |
||
288 | WInfo.Semi = WInfo.Parent; |
||
289 | for (const auto &N : WInfo.ReverseChildren) { |
||
290 | if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors. |
||
291 | continue; |
||
292 | |||
293 | const TreeNodePtr TN = DT.getNode(N); |
||
294 | // Skip predecessors whose level is above the subtree we are processing. |
||
295 | if (TN && TN->getLevel() < MinLevel) |
||
296 | continue; |
||
297 | |||
298 | unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi; |
||
299 | if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; |
||
300 | } |
||
301 | } |
||
302 | |||
303 | // Step #2: Explicitly define the immediate dominator of each vertex. |
||
304 | // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)). |
||
305 | // Note that the parents were stored in IDoms and later got invalidated |
||
306 | // during path compression in Eval. |
||
307 | for (unsigned i = 2; i < NextDFSNum; ++i) { |
||
308 | const NodePtr W = NumToNode[i]; |
||
309 | auto &WInfo = NodeToInfo[W]; |
||
310 | const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum; |
||
311 | NodePtr WIDomCandidate = WInfo.IDom; |
||
312 | while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum) |
||
313 | WIDomCandidate = NodeToInfo[WIDomCandidate].IDom; |
||
314 | |||
315 | WInfo.IDom = WIDomCandidate; |
||
316 | } |
||
317 | } |
||
318 | |||
319 | // PostDominatorTree always has a virtual root that represents a virtual CFG |
||
320 | // node that serves as a single exit from the function. All the other exits |
||
321 | // (CFG nodes with terminators and nodes in infinite loops are logically |
||
322 | // connected to this virtual CFG exit node). |
||
323 | // This functions maps a nullptr CFG node to the virtual root tree node. |
||
324 | void addVirtualRoot() { |
||
325 | assert(IsPostDom && "Only postdominators have a virtual root"); |
||
326 | assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed"); |
||
327 | |||
328 | auto &BBInfo = NodeToInfo[nullptr]; |
||
329 | BBInfo.DFSNum = BBInfo.Semi = 1; |
||
330 | BBInfo.Label = nullptr; |
||
331 | |||
332 | NumToNode.push_back(nullptr); // NumToNode[1] = nullptr; |
||
333 | } |
||
334 | |||
335 | // For postdominators, nodes with no forward successors are trivial roots that |
||
336 | // are always selected as tree roots. Roots with forward successors correspond |
||
337 | // to CFG nodes within infinite loops. |
||
338 | static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) { |
||
339 | assert(N && "N must be a valid node"); |
||
340 | return !getChildren<false>(N, BUI).empty(); |
||
341 | } |
||
342 | |||
343 | static NodePtr GetEntryNode(const DomTreeT &DT) { |
||
344 | assert(DT.Parent && "Parent not set"); |
||
345 | return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent); |
||
346 | } |
||
347 | |||
348 | // Finds all roots without relaying on the set of roots already stored in the |
||
349 | // tree. |
||
350 | // We define roots to be some non-redundant set of the CFG nodes |
||
351 | static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) { |
||
352 | assert(DT.Parent && "Parent pointer is not set"); |
||
353 | RootsT Roots; |
||
354 | |||
355 | // For dominators, function entry CFG node is always a tree root node. |
||
356 | if (!IsPostDom) { |
||
357 | Roots.push_back(GetEntryNode(DT)); |
||
358 | return Roots; |
||
359 | } |
||
360 | |||
361 | SemiNCAInfo SNCA(BUI); |
||
362 | |||
363 | // PostDominatorTree always has a virtual root. |
||
364 | SNCA.addVirtualRoot(); |
||
365 | unsigned Num = 1; |
||
366 | |||
367 | LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n"); |
||
368 | |||
369 | // Step #1: Find all the trivial roots that are going to will definitely |
||
370 | // remain tree roots. |
||
371 | unsigned Total = 0; |
||
372 | // It may happen that there are some new nodes in the CFG that are result of |
||
373 | // the ongoing batch update, but we cannot really pretend that they don't |
||
374 | // exist -- we won't see any outgoing or incoming edges to them, so it's |
||
375 | // fine to discover them here, as they would end up appearing in the CFG at |
||
376 | // some point anyway. |
||
377 | for (const NodePtr N : nodes(DT.Parent)) { |
||
378 | ++Total; |
||
379 | // If it has no *successors*, it is definitely a root. |
||
380 | if (!HasForwardSuccessors(N, BUI)) { |
||
381 | Roots.push_back(N); |
||
382 | // Run DFS not to walk this part of CFG later. |
||
383 | Num = SNCA.runDFS(N, Num, AlwaysDescend, 1); |
||
384 | LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N) |
||
385 | << "\n"); |
||
386 | LLVM_DEBUG(dbgs() << "Last visited node: " |
||
387 | << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n"); |
||
388 | } |
||
389 | } |
||
390 | |||
391 | LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n"); |
||
392 | |||
393 | // Step #2: Find all non-trivial root candidates. Those are CFG nodes that |
||
394 | // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG |
||
395 | // nodes in infinite loops). |
||
396 | bool HasNonTrivialRoots = false; |
||
397 | // Accounting for the virtual exit, see if we had any reverse-unreachable |
||
398 | // nodes. |
||
399 | if (Total + 1 != Num) { |
||
400 | HasNonTrivialRoots = true; |
||
401 | |||
402 | // SuccOrder is the order of blocks in the function. It is needed to make |
||
403 | // the calculation of the FurthestAway node and the whole PostDomTree |
||
404 | // immune to swap successors transformation (e.g. canonicalizing branch |
||
405 | // predicates). SuccOrder is initialized lazily only for successors of |
||
406 | // reverse unreachable nodes. |
||
407 | std::optional<NodeOrderMap> SuccOrder; |
||
408 | auto InitSuccOrderOnce = [&]() { |
||
409 | SuccOrder = NodeOrderMap(); |
||
410 | for (const auto Node : nodes(DT.Parent)) |
||
411 | if (SNCA.NodeToInfo.count(Node) == 0) |
||
412 | for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates)) |
||
413 | SuccOrder->try_emplace(Succ, 0); |
||
414 | |||
415 | // Add mapping for all entries of SuccOrder. |
||
416 | unsigned NodeNum = 0; |
||
417 | for (const auto Node : nodes(DT.Parent)) { |
||
418 | ++NodeNum; |
||
419 | auto Order = SuccOrder->find(Node); |
||
420 | if (Order != SuccOrder->end()) { |
||
421 | assert(Order->second == 0); |
||
422 | Order->second = NodeNum; |
||
423 | } |
||
424 | } |
||
425 | }; |
||
426 | |||
427 | // Make another DFS pass over all other nodes to find the |
||
428 | // reverse-unreachable blocks, and find the furthest paths we'll be able |
||
429 | // to make. |
||
430 | // Note that this looks N^2, but it's really 2N worst case, if every node |
||
431 | // is unreachable. This is because we are still going to only visit each |
||
432 | // unreachable node once, we may just visit it in two directions, |
||
433 | // depending on how lucky we get. |
||
434 | for (const NodePtr I : nodes(DT.Parent)) { |
||
435 | if (SNCA.NodeToInfo.count(I) == 0) { |
||
436 | LLVM_DEBUG(dbgs() |
||
437 | << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n"); |
||
438 | // Find the furthest away we can get by following successors, then |
||
439 | // follow them in reverse. This gives us some reasonable answer about |
||
440 | // the post-dom tree inside any infinite loop. In particular, it |
||
441 | // guarantees we get to the farthest away point along *some* |
||
442 | // path. This also matches the GCC's behavior. |
||
443 | // If we really wanted a totally complete picture of dominance inside |
||
444 | // this infinite loop, we could do it with SCC-like algorithms to find |
||
445 | // the lowest and highest points in the infinite loop. In theory, it |
||
446 | // would be nice to give the canonical backedge for the loop, but it's |
||
447 | // expensive and does not always lead to a minimal set of roots. |
||
448 | LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n"); |
||
449 | |||
450 | if (!SuccOrder) |
||
451 | InitSuccOrderOnce(); |
||
452 | assert(SuccOrder); |
||
453 | |||
454 | const unsigned NewNum = |
||
455 | SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder); |
||
456 | const NodePtr FurthestAway = SNCA.NumToNode[NewNum]; |
||
457 | LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node " |
||
458 | << "(non-trivial root): " |
||
459 | << BlockNamePrinter(FurthestAway) << "\n"); |
||
460 | Roots.push_back(FurthestAway); |
||
461 | LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: " |
||
462 | << NewNum << "\n\t\t\tRemoving DFS info\n"); |
||
463 | for (unsigned i = NewNum; i > Num; --i) { |
||
464 | const NodePtr N = SNCA.NumToNode[i]; |
||
465 | LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for " |
||
466 | << BlockNamePrinter(N) << "\n"); |
||
467 | SNCA.NodeToInfo.erase(N); |
||
468 | SNCA.NumToNode.pop_back(); |
||
469 | } |
||
470 | const unsigned PrevNum = Num; |
||
471 | LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n"); |
||
472 | Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1); |
||
473 | for (unsigned i = PrevNum + 1; i <= Num; ++i) |
||
474 | LLVM_DEBUG(dbgs() << "\t\t\t\tfound node " |
||
475 | << BlockNamePrinter(SNCA.NumToNode[i]) << "\n"); |
||
476 | } |
||
477 | } |
||
478 | } |
||
479 | |||
480 | LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n"); |
||
481 | LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n"); |
||
482 | LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs() |
||
483 | << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n"); |
||
484 | |||
485 | assert((Total + 1 == Num) && "Everything should have been visited"); |
||
486 | |||
487 | // Step #3: If we found some non-trivial roots, make them non-redundant. |
||
488 | if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots); |
||
489 | |||
490 | LLVM_DEBUG(dbgs() << "Found roots: "); |
||
491 | LLVM_DEBUG(for (auto *Root |
||
492 | : Roots) dbgs() |
||
493 | << BlockNamePrinter(Root) << " "); |
||
494 | LLVM_DEBUG(dbgs() << "\n"); |
||
495 | |||
496 | return Roots; |
||
497 | } |
||
498 | |||
499 | // This function only makes sense for postdominators. |
||
500 | // We define roots to be some set of CFG nodes where (reverse) DFS walks have |
||
501 | // to start in order to visit all the CFG nodes (including the |
||
502 | // reverse-unreachable ones). |
||
503 | // When the search for non-trivial roots is done it may happen that some of |
||
504 | // the non-trivial roots are reverse-reachable from other non-trivial roots, |
||
505 | // which makes them redundant. This function removes them from the set of |
||
506 | // input roots. |
||
507 | static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI, |
||
508 | RootsT &Roots) { |
||
509 | assert(IsPostDom && "This function is for postdominators only"); |
||
510 | LLVM_DEBUG(dbgs() << "Removing redundant roots\n"); |
||
511 | |||
512 | SemiNCAInfo SNCA(BUI); |
||
513 | |||
514 | for (unsigned i = 0; i < Roots.size(); ++i) { |
||
515 | auto &Root = Roots[i]; |
||
516 | // Trivial roots are always non-redundant. |
||
517 | if (!HasForwardSuccessors(Root, BUI)) continue; |
||
518 | LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root) |
||
519 | << " remains a root\n"); |
||
520 | SNCA.clear(); |
||
521 | // Do a forward walk looking for the other roots. |
||
522 | const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0); |
||
523 | // Skip the start node and begin from the second one (note that DFS uses |
||
524 | // 1-based indexing). |
||
525 | for (unsigned x = 2; x <= Num; ++x) { |
||
526 | const NodePtr N = SNCA.NumToNode[x]; |
||
527 | // If we wound another root in a (forward) DFS walk, remove the current |
||
528 | // root from the set of roots, as it is reverse-reachable from the other |
||
529 | // one. |
||
530 | if (llvm::is_contained(Roots, N)) { |
||
531 | LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root " |
||
532 | << BlockNamePrinter(N) << "\n\tRemoving root " |
||
533 | << BlockNamePrinter(Root) << "\n"); |
||
534 | std::swap(Root, Roots.back()); |
||
535 | Roots.pop_back(); |
||
536 | |||
537 | // Root at the back takes the current root's place. |
||
538 | // Start the next loop iteration with the same index. |
||
539 | --i; |
||
540 | break; |
||
541 | } |
||
542 | } |
||
543 | } |
||
544 | } |
||
545 | |||
546 | template <typename DescendCondition> |
||
547 | void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) { |
||
548 | if (!IsPostDom) { |
||
549 | assert(DT.Roots.size() == 1 && "Dominators should have a singe root"); |
||
550 | runDFS(DT.Roots[0], 0, DC, 0); |
||
551 | return; |
||
552 | } |
||
553 | |||
554 | addVirtualRoot(); |
||
555 | unsigned Num = 1; |
||
556 | for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0); |
||
557 | } |
||
558 | |||
559 | static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) { |
||
560 | auto *Parent = DT.Parent; |
||
561 | DT.reset(); |
||
562 | DT.Parent = Parent; |
||
563 | // If the update is using the actual CFG, BUI is null. If it's using a view, |
||
564 | // BUI is non-null and the PreCFGView is used. When calculating from |
||
565 | // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used. |
||
566 | BatchUpdatePtr PostViewBUI = nullptr; |
||
567 | if (BUI && BUI->PostViewCFG) { |
||
568 | BUI->PreViewCFG = *BUI->PostViewCFG; |
||
569 | PostViewBUI = BUI; |
||
570 | } |
||
571 | // This is rebuilding the whole tree, not incrementally, but PostViewBUI is |
||
572 | // used in case the caller needs a DT update with a CFGView. |
||
573 | SemiNCAInfo SNCA(PostViewBUI); |
||
574 | |||
575 | // Step #0: Number blocks in depth-first order and initialize variables used |
||
576 | // in later stages of the algorithm. |
||
577 | DT.Roots = FindRoots(DT, PostViewBUI); |
||
578 | SNCA.doFullDFSWalk(DT, AlwaysDescend); |
||
579 | |||
580 | SNCA.runSemiNCA(DT); |
||
581 | if (BUI) { |
||
582 | BUI->IsRecalculated = true; |
||
583 | LLVM_DEBUG( |
||
584 | dbgs() << "DomTree recalculated, skipping future batch updates\n"); |
||
585 | } |
||
586 | |||
587 | if (DT.Roots.empty()) return; |
||
588 | |||
589 | // Add a node for the root. If the tree is a PostDominatorTree it will be |
||
590 | // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates |
||
591 | // all real exits (including multiple exit blocks, infinite loops). |
||
592 | NodePtr Root = IsPostDom ? nullptr : DT.Roots[0]; |
||
593 | |||
594 | DT.RootNode = DT.createNode(Root); |
||
595 | SNCA.attachNewSubtree(DT, DT.RootNode); |
||
596 | } |
||
597 | |||
598 | void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) { |
||
599 | // Attach the first unreachable block to AttachTo. |
||
600 | NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); |
||
601 | // Loop over all of the discovered blocks in the function... |
||
602 | for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { |
||
603 | NodePtr W = NumToNode[i]; |
||
604 | |||
605 | // Don't replace this with 'count', the insertion side effect is important |
||
606 | if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet? |
||
607 | |||
608 | NodePtr ImmDom = getIDom(W); |
||
609 | |||
610 | // Get or calculate the node for the immediate dominator. |
||
611 | TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT); |
||
612 | |||
613 | // Add a new tree node for this BasicBlock, and link it as a child of |
||
614 | // IDomNode. |
||
615 | DT.createChild(W, IDomNode); |
||
616 | } |
||
617 | } |
||
618 | |||
619 | void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) { |
||
620 | NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); |
||
621 | for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { |
||
622 | const NodePtr N = NumToNode[i]; |
||
623 | const TreeNodePtr TN = DT.getNode(N); |
||
624 | assert(TN); |
||
625 | const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom); |
||
626 | TN->setIDom(NewIDom); |
||
627 | } |
||
628 | } |
||
629 | |||
630 | // Helper struct used during edge insertions. |
||
631 | struct InsertionInfo { |
||
632 | struct Compare { |
||
633 | bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const { |
||
634 | return LHS->getLevel() < RHS->getLevel(); |
||
635 | } |
||
636 | }; |
||
637 | |||
638 | // Bucket queue of tree nodes ordered by descending level. For simplicity, |
||
639 | // we use a priority_queue here. |
||
640 | std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>, |
||
641 | Compare> |
||
642 | Bucket; |
||
643 | SmallDenseSet<TreeNodePtr, 8> Visited; |
||
644 | SmallVector<TreeNodePtr, 8> Affected; |
||
645 | #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
646 | SmallVector<TreeNodePtr, 8> VisitedUnaffected; |
||
647 | #endif |
||
648 | }; |
||
649 | |||
650 | static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI, |
||
651 | const NodePtr From, const NodePtr To) { |
||
652 | assert((From || IsPostDom) && |
||
653 | "From has to be a valid CFG node or a virtual root"); |
||
654 | assert(To && "Cannot be a nullptr"); |
||
655 | LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> " |
||
656 | << BlockNamePrinter(To) << "\n"); |
||
657 | TreeNodePtr FromTN = DT.getNode(From); |
||
658 | |||
659 | if (!FromTN) { |
||
660 | // Ignore edges from unreachable nodes for (forward) dominators. |
||
661 | if (!IsPostDom) return; |
||
662 | |||
663 | // The unreachable node becomes a new root -- a tree node for it. |
||
664 | TreeNodePtr VirtualRoot = DT.getNode(nullptr); |
||
665 | FromTN = DT.createChild(From, VirtualRoot); |
||
666 | DT.Roots.push_back(From); |
||
667 | } |
||
668 | |||
669 | DT.DFSInfoValid = false; |
||
670 | |||
671 | const TreeNodePtr ToTN = DT.getNode(To); |
||
672 | if (!ToTN) |
||
673 | InsertUnreachable(DT, BUI, FromTN, To); |
||
674 | else |
||
675 | InsertReachable(DT, BUI, FromTN, ToTN); |
||
676 | } |
||
677 | |||
678 | // Determines if some existing root becomes reverse-reachable after the |
||
679 | // insertion. Rebuilds the whole tree if that situation happens. |
||
680 | static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, |
||
681 | const TreeNodePtr From, |
||
682 | const TreeNodePtr To) { |
||
683 | assert(IsPostDom && "This function is only for postdominators"); |
||
684 | // Destination node is not attached to the virtual root, so it cannot be a |
||
685 | // root. |
||
686 | if (!DT.isVirtualRoot(To->getIDom())) return false; |
||
687 | |||
688 | if (!llvm::is_contained(DT.Roots, To->getBlock())) |
||
689 | return false; // To is not a root, nothing to update. |
||
690 | |||
691 | LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To) |
||
692 | << " is no longer a root\n\t\tRebuilding the tree!!!\n"); |
||
693 | |||
694 | CalculateFromScratch(DT, BUI); |
||
695 | return true; |
||
696 | } |
||
697 | |||
698 | static bool isPermutation(const SmallVectorImpl<NodePtr> &A, |
||
699 | const SmallVectorImpl<NodePtr> &B) { |
||
700 | if (A.size() != B.size()) |
||
701 | return false; |
||
702 | SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end()); |
||
703 | for (NodePtr N : B) |
||
704 | if (Set.count(N) == 0) |
||
705 | return false; |
||
706 | return true; |
||
707 | } |
||
708 | |||
709 | // Updates the set of roots after insertion or deletion. This ensures that |
||
710 | // roots are the same when after a series of updates and when the tree would |
||
711 | // be built from scratch. |
||
712 | static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) { |
||
713 | assert(IsPostDom && "This function is only for postdominators"); |
||
714 | |||
715 | // The tree has only trivial roots -- nothing to update. |
||
716 | if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) { |
||
717 | return HasForwardSuccessors(N, BUI); |
||
718 | })) |
||
719 | return; |
||
720 | |||
721 | // Recalculate the set of roots. |
||
722 | RootsT Roots = FindRoots(DT, BUI); |
||
723 | if (!isPermutation(DT.Roots, Roots)) { |
||
724 | // The roots chosen in the CFG have changed. This is because the |
||
725 | // incremental algorithm does not really know or use the set of roots and |
||
726 | // can make a different (implicit) decision about which node within an |
||
727 | // infinite loop becomes a root. |
||
728 | |||
729 | LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n" |
||
730 | << "The entire tree needs to be rebuilt\n"); |
||
731 | // It may be possible to update the tree without recalculating it, but |
||
732 | // we do not know yet how to do it, and it happens rarely in practice. |
||
733 | CalculateFromScratch(DT, BUI); |
||
734 | } |
||
735 | } |
||
736 | |||
737 | // Handles insertion to a node already in the dominator tree. |
||
738 | static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
||
739 | const TreeNodePtr From, const TreeNodePtr To) { |
||
740 | LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock()) |
||
741 | << " -> " << BlockNamePrinter(To->getBlock()) << "\n"); |
||
742 | if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return; |
||
743 | // DT.findNCD expects both pointers to be valid. When From is a virtual |
||
744 | // root, then its CFG block pointer is a nullptr, so we have to 'compute' |
||
745 | // the NCD manually. |
||
746 | const NodePtr NCDBlock = |
||
747 | (From->getBlock() && To->getBlock()) |
||
748 | ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock()) |
||
749 | : nullptr; |
||
750 | assert(NCDBlock || DT.isPostDominator()); |
||
751 | const TreeNodePtr NCD = DT.getNode(NCDBlock); |
||
752 | assert(NCD); |
||
753 | |||
754 | LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n"); |
||
755 | const unsigned NCDLevel = NCD->getLevel(); |
||
756 | |||
757 | // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected |
||
758 | // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every |
||
759 | // w on P s.t. depth(v) <= depth(w) |
||
760 | // |
||
761 | // This reduces to a widest path problem (maximizing the depth of the |
||
762 | // minimum vertex in the path) which can be solved by a modified version of |
||
763 | // Dijkstra with a bucket queue (named depth-based search in [2]). |
||
764 | |||
765 | // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing |
||
766 | // affected if this does not hold. |
||
767 | if (NCDLevel + 1 >= To->getLevel()) |
||
768 | return; |
||
769 | |||
770 | InsertionInfo II; |
||
771 | SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel; |
||
772 | II.Bucket.push(To); |
||
773 | II.Visited.insert(To); |
||
774 | |||
775 | while (!II.Bucket.empty()) { |
||
776 | TreeNodePtr TN = II.Bucket.top(); |
||
777 | II.Bucket.pop(); |
||
778 | II.Affected.push_back(TN); |
||
779 | |||
780 | const unsigned CurrentLevel = TN->getLevel(); |
||
781 | LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) << |
||
782 | "as affected, CurrentLevel " << CurrentLevel << "\n"); |
||
783 | |||
784 | assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!"); |
||
785 | |||
786 | while (true) { |
||
787 | // Unlike regular Dijkstra, we have an inner loop to expand more |
||
788 | // vertices. The first iteration is for the (affected) vertex popped |
||
789 | // from II.Bucket and the rest are for vertices in |
||
790 | // UnaffectedOnCurrentLevel, which may eventually expand to affected |
||
791 | // vertices. |
||
792 | // |
||
793 | // Invariant: there is an optimal path from `To` to TN with the minimum |
||
794 | // depth being CurrentLevel. |
||
795 | for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) { |
||
796 | const TreeNodePtr SuccTN = DT.getNode(Succ); |
||
797 | assert(SuccTN && |
||
798 | "Unreachable successor found at reachable insertion"); |
||
799 | const unsigned SuccLevel = SuccTN->getLevel(); |
||
800 | |||
801 | LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ) |
||
802 | << ", level = " << SuccLevel << "\n"); |
||
803 | |||
804 | // There is an optimal path from `To` to Succ with the minimum depth |
||
805 | // being min(CurrentLevel, SuccLevel). |
||
806 | // |
||
807 | // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected |
||
808 | // and no affected vertex may be reached by a path passing through it. |
||
809 | // Stop here. Also, Succ may be visited by other predecessors but the |
||
810 | // first visit has the optimal path. Stop if Succ has been visited. |
||
811 | if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second) |
||
812 | continue; |
||
813 | |||
814 | if (SuccLevel > CurrentLevel) { |
||
815 | // Succ is unaffected but it may (transitively) expand to affected |
||
816 | // vertices. Store it in UnaffectedOnCurrentLevel. |
||
817 | LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected " |
||
818 | << BlockNamePrinter(Succ) << "\n"); |
||
819 | UnaffectedOnCurrentLevel.push_back(SuccTN); |
||
820 | #ifndef NDEBUG |
||
821 | II.VisitedUnaffected.push_back(SuccTN); |
||
822 | #endif |
||
823 | } else { |
||
824 | // The condition is satisfied (Succ is affected). Add Succ to the |
||
825 | // bucket queue. |
||
826 | LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ) |
||
827 | << " to a Bucket\n"); |
||
828 | II.Bucket.push(SuccTN); |
||
829 | } |
||
830 | } |
||
831 | |||
832 | if (UnaffectedOnCurrentLevel.empty()) |
||
833 | break; |
||
834 | TN = UnaffectedOnCurrentLevel.pop_back_val(); |
||
835 | LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n"); |
||
836 | } |
||
837 | } |
||
838 | |||
839 | // Finish by updating immediate dominators and levels. |
||
840 | UpdateInsertion(DT, BUI, NCD, II); |
||
841 | } |
||
842 | |||
843 | // Updates immediate dominators and levels after insertion. |
||
844 | static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, |
||
845 | const TreeNodePtr NCD, InsertionInfo &II) { |
||
846 | LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n"); |
||
847 | |||
848 | for (const TreeNodePtr TN : II.Affected) { |
||
849 | LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN) |
||
850 | << ") = " << BlockNamePrinter(NCD) << "\n"); |
||
851 | TN->setIDom(NCD); |
||
852 | } |
||
853 | |||
854 | #if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG) |
||
855 | for (const TreeNodePtr TN : II.VisitedUnaffected) |
||
856 | assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 && |
||
857 | "TN should have been updated by an affected ancestor"); |
||
858 | #endif |
||
859 | |||
860 | if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); |
||
861 | } |
||
862 | |||
863 | // Handles insertion to previously unreachable nodes. |
||
864 | static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
||
865 | const TreeNodePtr From, const NodePtr To) { |
||
866 | LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From) |
||
867 | << " -> (unreachable) " << BlockNamePrinter(To) << "\n"); |
||
868 | |||
869 | // Collect discovered edges to already reachable nodes. |
||
870 | SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable; |
||
871 | // Discover and connect nodes that became reachable with the insertion. |
||
872 | ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable); |
||
873 | |||
874 | LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From) |
||
875 | << " -> (prev unreachable) " << BlockNamePrinter(To) |
||
876 | << "\n"); |
||
877 | |||
878 | // Used the discovered edges and inset discovered connecting (incoming) |
||
879 | // edges. |
||
880 | for (const auto &Edge : DiscoveredEdgesToReachable) { |
||
881 | LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge " |
||
882 | << BlockNamePrinter(Edge.first) << " -> " |
||
883 | << BlockNamePrinter(Edge.second) << "\n"); |
||
884 | InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second); |
||
885 | } |
||
886 | } |
||
887 | |||
888 | // Connects nodes that become reachable with an insertion. |
||
889 | static void ComputeUnreachableDominators( |
||
890 | DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root, |
||
891 | const TreeNodePtr Incoming, |
||
892 | SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>> |
||
893 | &DiscoveredConnectingEdges) { |
||
894 | assert(!DT.getNode(Root) && "Root must not be reachable"); |
||
895 | |||
896 | // Visit only previously unreachable nodes. |
||
897 | auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From, |
||
898 | NodePtr To) { |
||
899 | const TreeNodePtr ToTN = DT.getNode(To); |
||
900 | if (!ToTN) return true; |
||
901 | |||
902 | DiscoveredConnectingEdges.push_back({From, ToTN}); |
||
903 | return false; |
||
904 | }; |
||
905 | |||
906 | SemiNCAInfo SNCA(BUI); |
||
907 | SNCA.runDFS(Root, 0, UnreachableDescender, 0); |
||
908 | SNCA.runSemiNCA(DT); |
||
909 | SNCA.attachNewSubtree(DT, Incoming); |
||
910 | |||
911 | LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n"); |
||
912 | } |
||
913 | |||
914 | static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI, |
||
915 | const NodePtr From, const NodePtr To) { |
||
916 | assert(From && To && "Cannot disconnect nullptrs"); |
||
917 | LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> " |
||
918 | << BlockNamePrinter(To) << "\n"); |
||
919 | |||
920 | #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
921 | // Ensure that the edge was in fact deleted from the CFG before informing |
||
922 | // the DomTree about it. |
||
923 | // The check is O(N), so run it only in debug configuration. |
||
924 | auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) { |
||
925 | auto Successors = getChildren<IsPostDom>(Of, BUI); |
||
926 | return llvm::is_contained(Successors, SuccCandidate); |
||
927 | }; |
||
928 | (void)IsSuccessor; |
||
929 | assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!"); |
||
930 | #endif |
||
931 | |||
932 | const TreeNodePtr FromTN = DT.getNode(From); |
||
933 | // Deletion in an unreachable subtree -- nothing to do. |
||
934 | if (!FromTN) return; |
||
935 | |||
936 | const TreeNodePtr ToTN = DT.getNode(To); |
||
937 | if (!ToTN) { |
||
938 | LLVM_DEBUG( |
||
939 | dbgs() << "\tTo (" << BlockNamePrinter(To) |
||
940 | << ") already unreachable -- there is no edge to delete\n"); |
||
941 | return; |
||
942 | } |
||
943 | |||
944 | const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To); |
||
945 | const TreeNodePtr NCD = DT.getNode(NCDBlock); |
||
946 | |||
947 | // If To dominates From -- nothing to do. |
||
948 | if (ToTN != NCD) { |
||
949 | DT.DFSInfoValid = false; |
||
950 | |||
951 | const TreeNodePtr ToIDom = ToTN->getIDom(); |
||
952 | LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom " |
||
953 | << BlockNamePrinter(ToIDom) << "\n"); |
||
954 | |||
955 | // To remains reachable after deletion. |
||
956 | // (Based on the caption under Figure 4. from [2].) |
||
957 | if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN)) |
||
958 | DeleteReachable(DT, BUI, FromTN, ToTN); |
||
959 | else |
||
960 | DeleteUnreachable(DT, BUI, ToTN); |
||
961 | } |
||
962 | |||
963 | if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); |
||
964 | } |
||
965 | |||
966 | // Handles deletions that leave destination nodes reachable. |
||
967 | static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
||
968 | const TreeNodePtr FromTN, |
||
969 | const TreeNodePtr ToTN) { |
||
970 | LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) |
||
971 | << " -> " << BlockNamePrinter(ToTN) << "\n"); |
||
972 | LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n"); |
||
973 | |||
974 | // Find the top of the subtree that needs to be rebuilt. |
||
975 | // (Based on the lemma 2.6 from [2].) |
||
976 | const NodePtr ToIDom = |
||
977 | DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock()); |
||
978 | assert(ToIDom || DT.isPostDominator()); |
||
979 | const TreeNodePtr ToIDomTN = DT.getNode(ToIDom); |
||
980 | assert(ToIDomTN); |
||
981 | const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom(); |
||
982 | // Top of the subtree to rebuild is the root node. Rebuild the tree from |
||
983 | // scratch. |
||
984 | if (!PrevIDomSubTree) { |
||
985 | LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); |
||
986 | CalculateFromScratch(DT, BUI); |
||
987 | return; |
||
988 | } |
||
989 | |||
990 | // Only visit nodes in the subtree starting at To. |
||
991 | const unsigned Level = ToIDomTN->getLevel(); |
||
992 | auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) { |
||
993 | return DT.getNode(To)->getLevel() > Level; |
||
994 | }; |
||
995 | |||
996 | LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) |
||
997 | << "\n"); |
||
998 | |||
999 | SemiNCAInfo SNCA(BUI); |
||
1000 | SNCA.runDFS(ToIDom, 0, DescendBelow, 0); |
||
1001 | LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n"); |
||
1002 | SNCA.runSemiNCA(DT, Level); |
||
1003 | SNCA.reattachExistingSubtree(DT, PrevIDomSubTree); |
||
1004 | } |
||
1005 | |||
1006 | // Checks if a node has proper support, as defined on the page 3 and later |
||
1007 | // explained on the page 7 of [2]. |
||
1008 | static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI, |
||
1009 | const TreeNodePtr TN) { |
||
1010 | LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) |
||
1011 | << "\n"); |
||
1012 | auto TNB = TN->getBlock(); |
||
1013 | for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) { |
||
1014 | LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n"); |
||
1015 | if (!DT.getNode(Pred)) continue; |
||
1016 | |||
1017 | const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred); |
||
1018 | LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n"); |
||
1019 | if (Support != TNB) { |
||
1020 | LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN) |
||
1021 | << " is reachable from support " |
||
1022 | << BlockNamePrinter(Support) << "\n"); |
||
1023 | return true; |
||
1024 | } |
||
1025 | } |
||
1026 | |||
1027 | return false; |
||
1028 | } |
||
1029 | |||
1030 | // Handle deletions that make destination node unreachable. |
||
1031 | // (Based on the lemma 2.7 from the [2].) |
||
1032 | static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, |
||
1033 | const TreeNodePtr ToTN) { |
||
1034 | LLVM_DEBUG(dbgs() << "Deleting unreachable subtree " |
||
1035 | << BlockNamePrinter(ToTN) << "\n"); |
||
1036 | assert(ToTN); |
||
1037 | assert(ToTN->getBlock()); |
||
1038 | |||
1039 | if (IsPostDom) { |
||
1040 | // Deletion makes a region reverse-unreachable and creates a new root. |
||
1041 | // Simulate that by inserting an edge from the virtual root to ToTN and |
||
1042 | // adding it as a new root. |
||
1043 | LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n"); |
||
1044 | LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN) |
||
1045 | << "\n"); |
||
1046 | DT.Roots.push_back(ToTN->getBlock()); |
||
1047 | InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN); |
||
1048 | return; |
||
1049 | } |
||
1050 | |||
1051 | SmallVector<NodePtr, 16> AffectedQueue; |
||
1052 | const unsigned Level = ToTN->getLevel(); |
||
1053 | |||
1054 | // Traverse destination node's descendants with greater level in the tree |
||
1055 | // and collect visited nodes. |
||
1056 | auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) { |
||
1057 | const TreeNodePtr TN = DT.getNode(To); |
||
1058 | assert(TN); |
||
1059 | if (TN->getLevel() > Level) return true; |
||
1060 | if (!llvm::is_contained(AffectedQueue, To)) |
||
1061 | AffectedQueue.push_back(To); |
||
1062 | |||
1063 | return false; |
||
1064 | }; |
||
1065 | |||
1066 | SemiNCAInfo SNCA(BUI); |
||
1067 | unsigned LastDFSNum = |
||
1068 | SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0); |
||
1069 | |||
1070 | TreeNodePtr MinNode = ToTN; |
||
1071 | |||
1072 | // Identify the top of the subtree to rebuild by finding the NCD of all |
||
1073 | // the affected nodes. |
||
1074 | for (const NodePtr N : AffectedQueue) { |
||
1075 | const TreeNodePtr TN = DT.getNode(N); |
||
1076 | const NodePtr NCDBlock = |
||
1077 | DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock()); |
||
1078 | assert(NCDBlock || DT.isPostDominator()); |
||
1079 | const TreeNodePtr NCD = DT.getNode(NCDBlock); |
||
1080 | assert(NCD); |
||
1081 | |||
1082 | LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN) |
||
1083 | << " with NCD = " << BlockNamePrinter(NCD) |
||
1084 | << ", MinNode =" << BlockNamePrinter(MinNode) << "\n"); |
||
1085 | if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD; |
||
1086 | } |
||
1087 | |||
1088 | // Root reached, rebuild the whole tree from scratch. |
||
1089 | if (!MinNode->getIDom()) { |
||
1090 | LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); |
||
1091 | CalculateFromScratch(DT, BUI); |
||
1092 | return; |
||
1093 | } |
||
1094 | |||
1095 | // Erase the unreachable subtree in reverse preorder to process all children |
||
1096 | // before deleting their parent. |
||
1097 | for (unsigned i = LastDFSNum; i > 0; --i) { |
||
1098 | const NodePtr N = SNCA.NumToNode[i]; |
||
1099 | const TreeNodePtr TN = DT.getNode(N); |
||
1100 | LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n"); |
||
1101 | |||
1102 | EraseNode(DT, TN); |
||
1103 | } |
||
1104 | |||
1105 | // The affected subtree start at the To node -- there's no extra work to do. |
||
1106 | if (MinNode == ToTN) return; |
||
1107 | |||
1108 | LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = " |
||
1109 | << BlockNamePrinter(MinNode) << "\n"); |
||
1110 | const unsigned MinLevel = MinNode->getLevel(); |
||
1111 | const TreeNodePtr PrevIDom = MinNode->getIDom(); |
||
1112 | assert(PrevIDom); |
||
1113 | SNCA.clear(); |
||
1114 | |||
1115 | // Identify nodes that remain in the affected subtree. |
||
1116 | auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) { |
||
1117 | const TreeNodePtr ToTN = DT.getNode(To); |
||
1118 | return ToTN && ToTN->getLevel() > MinLevel; |
||
1119 | }; |
||
1120 | SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0); |
||
1121 | |||
1122 | LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = " |
||
1123 | << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n"); |
||
1124 | |||
1125 | // Rebuild the remaining part of affected subtree. |
||
1126 | SNCA.runSemiNCA(DT, MinLevel); |
||
1127 | SNCA.reattachExistingSubtree(DT, PrevIDom); |
||
1128 | } |
||
1129 | |||
1130 | // Removes leaf tree nodes from the dominator tree. |
||
1131 | static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) { |
||
1132 | assert(TN); |
||
1133 | assert(TN->getNumChildren() == 0 && "Not a tree leaf"); |
||
1134 | |||
1135 | const TreeNodePtr IDom = TN->getIDom(); |
||
1136 | assert(IDom); |
||
1137 | |||
1138 | auto ChIt = llvm::find(IDom->Children, TN); |
||
1139 | assert(ChIt != IDom->Children.end()); |
||
1140 | std::swap(*ChIt, IDom->Children.back()); |
||
1141 | IDom->Children.pop_back(); |
||
1142 | |||
1143 | DT.DomTreeNodes.erase(TN->getBlock()); |
||
1144 | } |
||
1145 | |||
1146 | //~~ |
||
1147 | //===--------------------- DomTree Batch Updater --------------------------=== |
||
1148 | //~~ |
||
1149 | |||
1150 | static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG, |
||
1151 | GraphDiffT *PostViewCFG) { |
||
1152 | // Note: the PostViewCFG is only used when computing from scratch. It's data |
||
1153 | // should already included in the PreViewCFG for incremental updates. |
||
1154 | const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates(); |
||
1155 | if (NumUpdates == 0) |
||
1156 | return; |
||
1157 | |||
1158 | // Take the fast path for a single update and avoid running the batch update |
||
1159 | // machinery. |
||
1160 | if (NumUpdates == 1) { |
||
1161 | UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates(); |
||
1162 | if (!PostViewCFG) { |
||
1163 | if (Update.getKind() == UpdateKind::Insert) |
||
1164 | InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo()); |
||
1165 | else |
||
1166 | DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo()); |
||
1167 | } else { |
||
1168 | BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG); |
||
1169 | if (Update.getKind() == UpdateKind::Insert) |
||
1170 | InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo()); |
||
1171 | else |
||
1172 | DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo()); |
||
1173 | } |
||
1174 | return; |
||
1175 | } |
||
1176 | |||
1177 | BatchUpdateInfo BUI(PreViewCFG, PostViewCFG); |
||
1178 | // Recalculate the DominatorTree when the number of updates |
||
1179 | // exceeds a threshold, which usually makes direct updating slower than |
||
1180 | // recalculation. We select this threshold proportional to the |
||
1181 | // size of the DominatorTree. The constant is selected |
||
1182 | // by choosing the one with an acceptable performance on some real-world |
||
1183 | // inputs. |
||
1184 | |||
1185 | // Make unittests of the incremental algorithm work |
||
1186 | if (DT.DomTreeNodes.size() <= 100) { |
||
1187 | if (BUI.NumLegalized > DT.DomTreeNodes.size()) |
||
1188 | CalculateFromScratch(DT, &BUI); |
||
1189 | } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40) |
||
1190 | CalculateFromScratch(DT, &BUI); |
||
1191 | |||
1192 | // If the DominatorTree was recalculated at some point, stop the batch |
||
1193 | // updates. Full recalculations ignore batch updates and look at the actual |
||
1194 | // CFG. |
||
1195 | for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i) |
||
1196 | ApplyNextUpdate(DT, BUI); |
||
1197 | } |
||
1198 | |||
1199 | static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) { |
||
1200 | // Popping the next update, will move the PreViewCFG to the next snapshot. |
||
1201 | UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates(); |
||
1202 | #if 0 |
||
1203 | // FIXME: The LLVM_DEBUG macro only plays well with a modular |
||
1204 | // build of LLVM when the header is marked as textual, but doing |
||
1205 | // so causes redefinition errors. |
||
1206 | LLVM_DEBUG(dbgs() << "Applying update: "); |
||
1207 | LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n"); |
||
1208 | #endif |
||
1209 | |||
1210 | if (CurrentUpdate.getKind() == UpdateKind::Insert) |
||
1211 | InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); |
||
1212 | else |
||
1213 | DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); |
||
1214 | } |
||
1215 | |||
1216 | //~~ |
||
1217 | //===--------------- DomTree correctness verification ---------------------=== |
||
1218 | //~~ |
||
1219 | |||
1220 | // Check if the tree has correct roots. A DominatorTree always has a single |
||
1221 | // root which is the function's entry node. A PostDominatorTree can have |
||
1222 | // multiple roots - one for each node with no successors and for infinite |
||
1223 | // loops. |
||
1224 | // Running time: O(N). |
||
1225 | bool verifyRoots(const DomTreeT &DT) { |
||
1226 | if (!DT.Parent && !DT.Roots.empty()) { |
||
1227 | errs() << "Tree has no parent but has roots!\n"; |
||
1228 | errs().flush(); |
||
1229 | return false; |
||
1230 | } |
||
1231 | |||
1232 | if (!IsPostDom) { |
||
1233 | if (DT.Roots.empty()) { |
||
1234 | errs() << "Tree doesn't have a root!\n"; |
||
1235 | errs().flush(); |
||
1236 | return false; |
||
1237 | } |
||
1238 | |||
1239 | if (DT.getRoot() != GetEntryNode(DT)) { |
||
1240 | errs() << "Tree's root is not its parent's entry node!\n"; |
||
1241 | errs().flush(); |
||
1242 | return false; |
||
1243 | } |
||
1244 | } |
||
1245 | |||
1246 | RootsT ComputedRoots = FindRoots(DT, nullptr); |
||
1247 | if (!isPermutation(DT.Roots, ComputedRoots)) { |
||
1248 | errs() << "Tree has different roots than freshly computed ones!\n"; |
||
1249 | errs() << "\tPDT roots: "; |
||
1250 | for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", "; |
||
1251 | errs() << "\n\tComputed roots: "; |
||
1252 | for (const NodePtr N : ComputedRoots) |
||
1253 | errs() << BlockNamePrinter(N) << ", "; |
||
1254 | errs() << "\n"; |
||
1255 | errs().flush(); |
||
1256 | return false; |
||
1257 | } |
||
1258 | |||
1259 | return true; |
||
1260 | } |
||
1261 | |||
1262 | // Checks if the tree contains all reachable nodes in the input graph. |
||
1263 | // Running time: O(N). |
||
1264 | bool verifyReachability(const DomTreeT &DT) { |
||
1265 | clear(); |
||
1266 | doFullDFSWalk(DT, AlwaysDescend); |
||
1267 | |||
1268 | for (auto &NodeToTN : DT.DomTreeNodes) { |
||
1269 | const TreeNodePtr TN = NodeToTN.second.get(); |
||
1270 | const NodePtr BB = TN->getBlock(); |
||
1271 | |||
1272 | // Virtual root has a corresponding virtual CFG node. |
||
1273 | if (DT.isVirtualRoot(TN)) continue; |
||
1274 | |||
1275 | if (NodeToInfo.count(BB) == 0) { |
||
1276 | errs() << "DomTree node " << BlockNamePrinter(BB) |
||
1277 | << " not found by DFS walk!\n"; |
||
1278 | errs().flush(); |
||
1279 | |||
1280 | return false; |
||
1281 | } |
||
1282 | } |
||
1283 | |||
1284 | for (const NodePtr N : NumToNode) { |
||
1285 | if (N && !DT.getNode(N)) { |
||
1286 | errs() << "CFG node " << BlockNamePrinter(N) |
||
1287 | << " not found in the DomTree!\n"; |
||
1288 | errs().flush(); |
||
1289 | |||
1290 | return false; |
||
1291 | } |
||
1292 | } |
||
1293 | |||
1294 | return true; |
||
1295 | } |
||
1296 | |||
1297 | // Check if for every parent with a level L in the tree all of its children |
||
1298 | // have level L + 1. |
||
1299 | // Running time: O(N). |
||
1300 | static bool VerifyLevels(const DomTreeT &DT) { |
||
1301 | for (auto &NodeToTN : DT.DomTreeNodes) { |
||
1302 | const TreeNodePtr TN = NodeToTN.second.get(); |
||
1303 | const NodePtr BB = TN->getBlock(); |
||
1304 | if (!BB) continue; |
||
1305 | |||
1306 | const TreeNodePtr IDom = TN->getIDom(); |
||
1307 | if (!IDom && TN->getLevel() != 0) { |
||
1308 | errs() << "Node without an IDom " << BlockNamePrinter(BB) |
||
1309 | << " has a nonzero level " << TN->getLevel() << "!\n"; |
||
1310 | errs().flush(); |
||
1311 | |||
1312 | return false; |
||
1313 | } |
||
1314 | |||
1315 | if (IDom && TN->getLevel() != IDom->getLevel() + 1) { |
||
1316 | errs() << "Node " << BlockNamePrinter(BB) << " has level " |
||
1317 | << TN->getLevel() << " while its IDom " |
||
1318 | << BlockNamePrinter(IDom->getBlock()) << " has level " |
||
1319 | << IDom->getLevel() << "!\n"; |
||
1320 | errs().flush(); |
||
1321 | |||
1322 | return false; |
||
1323 | } |
||
1324 | } |
||
1325 | |||
1326 | return true; |
||
1327 | } |
||
1328 | |||
1329 | // Check if the computed DFS numbers are correct. Note that DFS info may not |
||
1330 | // be valid, and when that is the case, we don't verify the numbers. |
||
1331 | // Running time: O(N log(N)). |
||
1332 | static bool VerifyDFSNumbers(const DomTreeT &DT) { |
||
1333 | if (!DT.DFSInfoValid || !DT.Parent) |
||
1334 | return true; |
||
1335 | |||
1336 | const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin(); |
||
1337 | const TreeNodePtr Root = DT.getNode(RootBB); |
||
1338 | |||
1339 | auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) { |
||
1340 | errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", " |
||
1341 | << TN->getDFSNumOut() << '}'; |
||
1342 | }; |
||
1343 | |||
1344 | // Verify the root's DFS In number. Although DFS numbering would also work |
||
1345 | // if we started from some other value, we assume 0-based numbering. |
||
1346 | if (Root->getDFSNumIn() != 0) { |
||
1347 | errs() << "DFSIn number for the tree root is not:\n\t"; |
||
1348 | PrintNodeAndDFSNums(Root); |
||
1349 | errs() << '\n'; |
||
1350 | errs().flush(); |
||
1351 | return false; |
||
1352 | } |
||
1353 | |||
1354 | // For each tree node verify if children's DFS numbers cover their parent's |
||
1355 | // DFS numbers with no gaps. |
||
1356 | for (const auto &NodeToTN : DT.DomTreeNodes) { |
||
1357 | const TreeNodePtr Node = NodeToTN.second.get(); |
||
1358 | |||
1359 | // Handle tree leaves. |
||
1360 | if (Node->isLeaf()) { |
||
1361 | if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) { |
||
1362 | errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t"; |
||
1363 | PrintNodeAndDFSNums(Node); |
||
1364 | errs() << '\n'; |
||
1365 | errs().flush(); |
||
1366 | return false; |
||
1367 | } |
||
1368 | |||
1369 | continue; |
||
1370 | } |
||
1371 | |||
1372 | // Make a copy and sort it such that it is possible to check if there are |
||
1373 | // no gaps between DFS numbers of adjacent children. |
||
1374 | SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end()); |
||
1375 | llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) { |
||
1376 | return Ch1->getDFSNumIn() < Ch2->getDFSNumIn(); |
||
1377 | }); |
||
1378 | |||
1379 | auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums]( |
||
1380 | const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) { |
||
1381 | assert(FirstCh); |
||
1382 | |||
1383 | errs() << "Incorrect DFS numbers for:\n\tParent "; |
||
1384 | PrintNodeAndDFSNums(Node); |
||
1385 | |||
1386 | errs() << "\n\tChild "; |
||
1387 | PrintNodeAndDFSNums(FirstCh); |
||
1388 | |||
1389 | if (SecondCh) { |
||
1390 | errs() << "\n\tSecond child "; |
||
1391 | PrintNodeAndDFSNums(SecondCh); |
||
1392 | } |
||
1393 | |||
1394 | errs() << "\nAll children: "; |
||
1395 | for (const TreeNodePtr Ch : Children) { |
||
1396 | PrintNodeAndDFSNums(Ch); |
||
1397 | errs() << ", "; |
||
1398 | } |
||
1399 | |||
1400 | errs() << '\n'; |
||
1401 | errs().flush(); |
||
1402 | }; |
||
1403 | |||
1404 | if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) { |
||
1405 | PrintChildrenError(Children.front(), nullptr); |
||
1406 | return false; |
||
1407 | } |
||
1408 | |||
1409 | if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) { |
||
1410 | PrintChildrenError(Children.back(), nullptr); |
||
1411 | return false; |
||
1412 | } |
||
1413 | |||
1414 | for (size_t i = 0, e = Children.size() - 1; i != e; ++i) { |
||
1415 | if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) { |
||
1416 | PrintChildrenError(Children[i], Children[i + 1]); |
||
1417 | return false; |
||
1418 | } |
||
1419 | } |
||
1420 | } |
||
1421 | |||
1422 | return true; |
||
1423 | } |
||
1424 | |||
1425 | // The below routines verify the correctness of the dominator tree relative to |
||
1426 | // the CFG it's coming from. A tree is a dominator tree iff it has two |
||
1427 | // properties, called the parent property and the sibling property. Tarjan |
||
1428 | // and Lengauer prove (but don't explicitly name) the properties as part of |
||
1429 | // the proofs in their 1972 paper, but the proofs are mostly part of proving |
||
1430 | // things about semidominators and idoms, and some of them are simply asserted |
||
1431 | // based on even earlier papers (see, e.g., lemma 2). Some papers refer to |
||
1432 | // these properties as "valid" and "co-valid". See, e.g., "Dominators, |
||
1433 | // directed bipolar orders, and independent spanning trees" by Loukas |
||
1434 | // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification |
||
1435 | // and Vertex-Disjoint Paths " by the same authors. |
||
1436 | |||
1437 | // A very simple and direct explanation of these properties can be found in |
||
1438 | // "An Experimental Study of Dynamic Dominators", found at |
||
1439 | // https://arxiv.org/abs/1604.02711 |
||
1440 | |||
1441 | // The easiest way to think of the parent property is that it's a requirement |
||
1442 | // of being a dominator. Let's just take immediate dominators. For PARENT to |
||
1443 | // be an immediate dominator of CHILD, all paths in the CFG must go through |
||
1444 | // PARENT before they hit CHILD. This implies that if you were to cut PARENT |
||
1445 | // out of the CFG, there should be no paths to CHILD that are reachable. If |
||
1446 | // there are, then you now have a path from PARENT to CHILD that goes around |
||
1447 | // PARENT and still reaches CHILD, which by definition, means PARENT can't be |
||
1448 | // a dominator of CHILD (let alone an immediate one). |
||
1449 | |||
1450 | // The sibling property is similar. It says that for each pair of sibling |
||
1451 | // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each |
||
1452 | // other. If sibling LEFT dominated sibling RIGHT, it means there are no |
||
1453 | // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through |
||
1454 | // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of |
||
1455 | // RIGHT, not a sibling. |
||
1456 | |||
1457 | // It is possible to verify the parent and sibling properties in linear time, |
||
1458 | // but the algorithms are complex. Instead, we do it in a straightforward |
||
1459 | // N^2 and N^3 way below, using direct path reachability. |
||
1460 | |||
1461 | // Checks if the tree has the parent property: if for all edges from V to W in |
||
1462 | // the input graph, such that V is reachable, the parent of W in the tree is |
||
1463 | // an ancestor of V in the tree. |
||
1464 | // Running time: O(N^2). |
||
1465 | // |
||
1466 | // This means that if a node gets disconnected from the graph, then all of |
||
1467 | // the nodes it dominated previously will now become unreachable. |
||
1468 | bool verifyParentProperty(const DomTreeT &DT) { |
||
1469 | for (auto &NodeToTN : DT.DomTreeNodes) { |
||
1470 | const TreeNodePtr TN = NodeToTN.second.get(); |
||
1471 | const NodePtr BB = TN->getBlock(); |
||
1472 | if (!BB || TN->isLeaf()) |
||
1473 | continue; |
||
1474 | |||
1475 | LLVM_DEBUG(dbgs() << "Verifying parent property of node " |
||
1476 | << BlockNamePrinter(TN) << "\n"); |
||
1477 | clear(); |
||
1478 | doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) { |
||
1479 | return From != BB && To != BB; |
||
1480 | }); |
||
1481 | |||
1482 | for (TreeNodePtr Child : TN->children()) |
||
1483 | if (NodeToInfo.count(Child->getBlock()) != 0) { |
||
1484 | errs() << "Child " << BlockNamePrinter(Child) |
||
1485 | << " reachable after its parent " << BlockNamePrinter(BB) |
||
1486 | << " is removed!\n"; |
||
1487 | errs().flush(); |
||
1488 | |||
1489 | return false; |
||
1490 | } |
||
1491 | } |
||
1492 | |||
1493 | return true; |
||
1494 | } |
||
1495 | |||
1496 | // Check if the tree has sibling property: if a node V does not dominate a |
||
1497 | // node W for all siblings V and W in the tree. |
||
1498 | // Running time: O(N^3). |
||
1499 | // |
||
1500 | // This means that if a node gets disconnected from the graph, then all of its |
||
1501 | // siblings will now still be reachable. |
||
1502 | bool verifySiblingProperty(const DomTreeT &DT) { |
||
1503 | for (auto &NodeToTN : DT.DomTreeNodes) { |
||
1504 | const TreeNodePtr TN = NodeToTN.second.get(); |
||
1505 | const NodePtr BB = TN->getBlock(); |
||
1506 | if (!BB || TN->isLeaf()) |
||
1507 | continue; |
||
1508 | |||
1509 | for (const TreeNodePtr N : TN->children()) { |
||
1510 | clear(); |
||
1511 | NodePtr BBN = N->getBlock(); |
||
1512 | doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) { |
||
1513 | return From != BBN && To != BBN; |
||
1514 | }); |
||
1515 | |||
1516 | for (const TreeNodePtr S : TN->children()) { |
||
1517 | if (S == N) continue; |
||
1518 | |||
1519 | if (NodeToInfo.count(S->getBlock()) == 0) { |
||
1520 | errs() << "Node " << BlockNamePrinter(S) |
||
1521 | << " not reachable when its sibling " << BlockNamePrinter(N) |
||
1522 | << " is removed!\n"; |
||
1523 | errs().flush(); |
||
1524 | |||
1525 | return false; |
||
1526 | } |
||
1527 | } |
||
1528 | } |
||
1529 | } |
||
1530 | |||
1531 | return true; |
||
1532 | } |
||
1533 | |||
1534 | // Check if the given tree is the same as a freshly computed one for the same |
||
1535 | // Parent. |
||
1536 | // Running time: O(N^2), but faster in practice (same as tree construction). |
||
1537 | // |
||
1538 | // Note that this does not check if that the tree construction algorithm is |
||
1539 | // correct and should be only used for fast (but possibly unsound) |
||
1540 | // verification. |
||
1541 | static bool IsSameAsFreshTree(const DomTreeT &DT) { |
||
1542 | DomTreeT FreshTree; |
||
1543 | FreshTree.recalculate(*DT.Parent); |
||
1544 | const bool Different = DT.compare(FreshTree); |
||
1545 | |||
1546 | if (Different) { |
||
1547 | errs() << (DT.isPostDominator() ? "Post" : "") |
||
1548 | << "DominatorTree is different than a freshly computed one!\n" |
||
1549 | << "\tCurrent:\n"; |
||
1550 | DT.print(errs()); |
||
1551 | errs() << "\n\tFreshly computed tree:\n"; |
||
1552 | FreshTree.print(errs()); |
||
1553 | errs().flush(); |
||
1554 | } |
||
1555 | |||
1556 | return !Different; |
||
1557 | } |
||
1558 | }; |
||
1559 | |||
1560 | template <class DomTreeT> |
||
1561 | void Calculate(DomTreeT &DT) { |
||
1562 | SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr); |
||
1563 | } |
||
1564 | |||
1565 | template <typename DomTreeT> |
||
1566 | void CalculateWithUpdates(DomTreeT &DT, |
||
1567 | ArrayRef<typename DomTreeT::UpdateType> Updates) { |
||
1568 | // FIXME: Updated to use the PreViewCFG and behave the same as until now. |
||
1569 | // This behavior is however incorrect; this actually needs the PostViewCFG. |
||
1570 | GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG( |
||
1571 | Updates, /*ReverseApplyUpdates=*/true); |
||
1572 | typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG); |
||
1573 | SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI); |
||
1574 | } |
||
1575 | |||
1576 | template <class DomTreeT> |
||
1577 | void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
||
1578 | typename DomTreeT::NodePtr To) { |
||
1579 | if (DT.isPostDominator()) std::swap(From, To); |
||
1580 | SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To); |
||
1581 | } |
||
1582 | |||
1583 | template <class DomTreeT> |
||
1584 | void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
||
1585 | typename DomTreeT::NodePtr To) { |
||
1586 | if (DT.isPostDominator()) std::swap(From, To); |
||
1587 | SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To); |
||
1588 | } |
||
1589 | |||
1590 | template <class DomTreeT> |
||
1591 | void ApplyUpdates(DomTreeT &DT, |
||
1592 | GraphDiff<typename DomTreeT::NodePtr, |
||
1593 | DomTreeT::IsPostDominator> &PreViewCFG, |
||
1594 | GraphDiff<typename DomTreeT::NodePtr, |
||
1595 | DomTreeT::IsPostDominator> *PostViewCFG) { |
||
1596 | SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG); |
||
1597 | } |
||
1598 | |||
1599 | template <class DomTreeT> |
||
1600 | bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) { |
||
1601 | SemiNCAInfo<DomTreeT> SNCA(nullptr); |
||
1602 | |||
1603 | // Simplist check is to compare against a new tree. This will also |
||
1604 | // usefully print the old and new trees, if they are different. |
||
1605 | if (!SNCA.IsSameAsFreshTree(DT)) |
||
1606 | return false; |
||
1607 | |||
1608 | // Common checks to verify the properties of the tree. O(N log N) at worst. |
||
1609 | if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) || |
||
1610 | !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT)) |
||
1611 | return false; |
||
1612 | |||
1613 | // Extra checks depending on VerificationLevel. Up to O(N^3). |
||
1614 | if (VL == DomTreeT::VerificationLevel::Basic || |
||
1615 | VL == DomTreeT::VerificationLevel::Full) |
||
1616 | if (!SNCA.verifyParentProperty(DT)) |
||
1617 | return false; |
||
1618 | if (VL == DomTreeT::VerificationLevel::Full) |
||
1619 | if (!SNCA.verifySiblingProperty(DT)) |
||
1620 | return false; |
||
1621 | |||
1622 | return true; |
||
1623 | } |
||
1624 | |||
1625 | } // namespace DomTreeBuilder |
||
1626 | } // namespace llvm |
||
1627 | |||
1628 | #undef DEBUG_TYPE |
||
1629 | |||
1630 | #endif |