Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// |
||
10 | /// This file defines a set of templates that efficiently compute a dominator |
||
11 | /// tree over a generic graph. This is used typically in LLVM for fast |
||
12 | /// dominance queries on the CFG, but is fully generic w.r.t. the underlying |
||
13 | /// graph types. |
||
14 | /// |
||
15 | /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements |
||
16 | /// on the graph's NodeRef. The NodeRef should be a pointer and, |
||
17 | /// either NodeRef->getParent() must return the parent node that is also a |
||
18 | /// pointer or DomTreeNodeTraits needs to be specialized. |
||
19 | /// |
||
20 | /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits. |
||
21 | /// |
||
22 | //===----------------------------------------------------------------------===// |
||
23 | |||
24 | #ifndef LLVM_SUPPORT_GENERICDOMTREE_H |
||
25 | #define LLVM_SUPPORT_GENERICDOMTREE_H |
||
26 | |||
27 | #include "llvm/ADT/DenseMap.h" |
||
28 | #include "llvm/ADT/GraphTraits.h" |
||
29 | #include "llvm/ADT/STLExtras.h" |
||
30 | #include "llvm/ADT/SmallPtrSet.h" |
||
31 | #include "llvm/ADT/SmallVector.h" |
||
32 | #include "llvm/Support/CFGDiff.h" |
||
33 | #include "llvm/Support/CFGUpdate.h" |
||
34 | #include "llvm/Support/raw_ostream.h" |
||
35 | #include <algorithm> |
||
36 | #include <cassert> |
||
37 | #include <cstddef> |
||
38 | #include <iterator> |
||
39 | #include <memory> |
||
40 | #include <type_traits> |
||
41 | #include <utility> |
||
42 | |||
43 | namespace llvm { |
||
44 | |||
45 | template <typename NodeT, bool IsPostDom> |
||
46 | class DominatorTreeBase; |
||
47 | |||
48 | namespace DomTreeBuilder { |
||
49 | template <typename DomTreeT> |
||
50 | struct SemiNCAInfo; |
||
51 | } // namespace DomTreeBuilder |
||
52 | |||
53 | /// Base class for the actual dominator tree node. |
||
54 | template <class NodeT> class DomTreeNodeBase { |
||
55 | friend class PostDominatorTree; |
||
56 | friend class DominatorTreeBase<NodeT, false>; |
||
57 | friend class DominatorTreeBase<NodeT, true>; |
||
58 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>; |
||
59 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>; |
||
60 | |||
61 | NodeT *TheBB; |
||
62 | DomTreeNodeBase *IDom; |
||
63 | unsigned Level; |
||
64 | SmallVector<DomTreeNodeBase *, 4> Children; |
||
65 | mutable unsigned DFSNumIn = ~0; |
||
66 | mutable unsigned DFSNumOut = ~0; |
||
67 | |||
68 | public: |
||
69 | DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom) |
||
70 | : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {} |
||
71 | |||
72 | using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator; |
||
73 | using const_iterator = |
||
74 | typename SmallVector<DomTreeNodeBase *, 4>::const_iterator; |
||
75 | |||
76 | iterator begin() { return Children.begin(); } |
||
77 | iterator end() { return Children.end(); } |
||
78 | const_iterator begin() const { return Children.begin(); } |
||
79 | const_iterator end() const { return Children.end(); } |
||
80 | |||
81 | DomTreeNodeBase *const &back() const { return Children.back(); } |
||
82 | DomTreeNodeBase *&back() { return Children.back(); } |
||
83 | |||
84 | iterator_range<iterator> children() { return make_range(begin(), end()); } |
||
85 | iterator_range<const_iterator> children() const { |
||
86 | return make_range(begin(), end()); |
||
87 | } |
||
88 | |||
89 | NodeT *getBlock() const { return TheBB; } |
||
90 | DomTreeNodeBase *getIDom() const { return IDom; } |
||
91 | unsigned getLevel() const { return Level; } |
||
92 | |||
93 | std::unique_ptr<DomTreeNodeBase> addChild( |
||
94 | std::unique_ptr<DomTreeNodeBase> C) { |
||
95 | Children.push_back(C.get()); |
||
96 | return C; |
||
97 | } |
||
98 | |||
99 | bool isLeaf() const { return Children.empty(); } |
||
100 | size_t getNumChildren() const { return Children.size(); } |
||
101 | |||
102 | void clearAllChildren() { Children.clear(); } |
||
103 | |||
104 | bool compare(const DomTreeNodeBase *Other) const { |
||
105 | if (getNumChildren() != Other->getNumChildren()) |
||
106 | return true; |
||
107 | |||
108 | if (Level != Other->Level) return true; |
||
109 | |||
110 | SmallPtrSet<const NodeT *, 4> OtherChildren; |
||
111 | for (const DomTreeNodeBase *I : *Other) { |
||
112 | const NodeT *Nd = I->getBlock(); |
||
113 | OtherChildren.insert(Nd); |
||
114 | } |
||
115 | |||
116 | for (const DomTreeNodeBase *I : *this) { |
||
117 | const NodeT *N = I->getBlock(); |
||
118 | if (OtherChildren.count(N) == 0) |
||
119 | return true; |
||
120 | } |
||
121 | return false; |
||
122 | } |
||
123 | |||
124 | void setIDom(DomTreeNodeBase *NewIDom) { |
||
125 | assert(IDom && "No immediate dominator?"); |
||
126 | if (IDom == NewIDom) return; |
||
127 | |||
128 | auto I = find(IDom->Children, this); |
||
129 | assert(I != IDom->Children.end() && |
||
130 | "Not in immediate dominator children set!"); |
||
131 | // I am no longer your child... |
||
132 | IDom->Children.erase(I); |
||
133 | |||
134 | // Switch to new dominator |
||
135 | IDom = NewIDom; |
||
136 | IDom->Children.push_back(this); |
||
137 | |||
138 | UpdateLevel(); |
||
139 | } |
||
140 | |||
141 | /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes |
||
142 | /// in the dominator tree. They are only guaranteed valid if |
||
143 | /// updateDFSNumbers() has been called. |
||
144 | unsigned getDFSNumIn() const { return DFSNumIn; } |
||
145 | unsigned getDFSNumOut() const { return DFSNumOut; } |
||
146 | |||
147 | private: |
||
148 | // Return true if this node is dominated by other. Use this only if DFS info |
||
149 | // is valid. |
||
150 | bool DominatedBy(const DomTreeNodeBase *other) const { |
||
151 | return this->DFSNumIn >= other->DFSNumIn && |
||
152 | this->DFSNumOut <= other->DFSNumOut; |
||
153 | } |
||
154 | |||
155 | void UpdateLevel() { |
||
156 | assert(IDom); |
||
157 | if (Level == IDom->Level + 1) return; |
||
158 | |||
159 | SmallVector<DomTreeNodeBase *, 64> WorkStack = {this}; |
||
160 | |||
161 | while (!WorkStack.empty()) { |
||
162 | DomTreeNodeBase *Current = WorkStack.pop_back_val(); |
||
163 | Current->Level = Current->IDom->Level + 1; |
||
164 | |||
165 | for (DomTreeNodeBase *C : *Current) { |
||
166 | assert(C->IDom); |
||
167 | if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C); |
||
168 | } |
||
169 | } |
||
170 | } |
||
171 | }; |
||
172 | |||
173 | template <class NodeT> |
||
174 | raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) { |
||
175 | if (Node->getBlock()) |
||
176 | Node->getBlock()->printAsOperand(O, false); |
||
177 | else |
||
178 | O << " <<exit node>>"; |
||
179 | |||
180 | O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} [" |
||
181 | << Node->getLevel() << "]\n"; |
||
182 | |||
183 | return O; |
||
184 | } |
||
185 | |||
186 | template <class NodeT> |
||
187 | void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O, |
||
188 | unsigned Lev) { |
||
189 | O.indent(2 * Lev) << "[" << Lev << "] " << N; |
||
190 | for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), |
||
191 | E = N->end(); |
||
192 | I != E; ++I) |
||
193 | PrintDomTree<NodeT>(*I, O, Lev + 1); |
||
194 | } |
||
195 | |||
196 | namespace DomTreeBuilder { |
||
197 | // The routines below are provided in a separate header but referenced here. |
||
198 | template <typename DomTreeT> |
||
199 | void Calculate(DomTreeT &DT); |
||
200 | |||
201 | template <typename DomTreeT> |
||
202 | void CalculateWithUpdates(DomTreeT &DT, |
||
203 | ArrayRef<typename DomTreeT::UpdateType> Updates); |
||
204 | |||
205 | template <typename DomTreeT> |
||
206 | void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
||
207 | typename DomTreeT::NodePtr To); |
||
208 | |||
209 | template <typename DomTreeT> |
||
210 | void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
||
211 | typename DomTreeT::NodePtr To); |
||
212 | |||
213 | template <typename DomTreeT> |
||
214 | void ApplyUpdates(DomTreeT &DT, |
||
215 | GraphDiff<typename DomTreeT::NodePtr, |
||
216 | DomTreeT::IsPostDominator> &PreViewCFG, |
||
217 | GraphDiff<typename DomTreeT::NodePtr, |
||
218 | DomTreeT::IsPostDominator> *PostViewCFG); |
||
219 | |||
220 | template <typename DomTreeT> |
||
221 | bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL); |
||
222 | } // namespace DomTreeBuilder |
||
223 | |||
224 | /// Default DomTreeNode traits for NodeT. The default implementation assume a |
||
225 | /// Function-like NodeT. Can be specialized to support different node types. |
||
226 | template <typename NodeT> struct DomTreeNodeTraits { |
||
227 | using NodeType = NodeT; |
||
228 | using NodePtr = NodeT *; |
||
229 | using ParentPtr = decltype(std::declval<NodePtr>()->getParent()); |
||
230 | static_assert(std::is_pointer<ParentPtr>::value, |
||
231 | "Currently NodeT's parent must be a pointer type"); |
||
232 | using ParentType = std::remove_pointer_t<ParentPtr>; |
||
233 | |||
234 | static NodeT *getEntryNode(ParentPtr Parent) { return &Parent->front(); } |
||
235 | static ParentPtr getParent(NodePtr BB) { return BB->getParent(); } |
||
236 | }; |
||
237 | |||
238 | /// Core dominator tree base class. |
||
239 | /// |
||
240 | /// This class is a generic template over graph nodes. It is instantiated for |
||
241 | /// various graphs in the LLVM IR or in the code generator. |
||
242 | template <typename NodeT, bool IsPostDom> |
||
243 | class DominatorTreeBase { |
||
244 | public: |
||
245 | static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value, |
||
246 | "Currently DominatorTreeBase supports only pointer nodes"); |
||
247 | using NodeTrait = DomTreeNodeTraits<NodeT>; |
||
248 | using NodeType = typename NodeTrait::NodeType; |
||
249 | using NodePtr = typename NodeTrait::NodePtr; |
||
250 | using ParentPtr = typename NodeTrait::ParentPtr; |
||
251 | static_assert(std::is_pointer<ParentPtr>::value, |
||
252 | "Currently NodeT's parent must be a pointer type"); |
||
253 | using ParentType = std::remove_pointer_t<ParentPtr>; |
||
254 | static constexpr bool IsPostDominator = IsPostDom; |
||
255 | |||
256 | using UpdateType = cfg::Update<NodePtr>; |
||
257 | using UpdateKind = cfg::UpdateKind; |
||
258 | static constexpr UpdateKind Insert = UpdateKind::Insert; |
||
259 | static constexpr UpdateKind Delete = UpdateKind::Delete; |
||
260 | |||
261 | enum class VerificationLevel { Fast, Basic, Full }; |
||
262 | |||
263 | protected: |
||
264 | // Dominators always have a single root, postdominators can have more. |
||
265 | SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots; |
||
266 | |||
267 | using DomTreeNodeMapType = |
||
268 | DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>; |
||
269 | DomTreeNodeMapType DomTreeNodes; |
||
270 | DomTreeNodeBase<NodeT> *RootNode = nullptr; |
||
271 | ParentPtr Parent = nullptr; |
||
272 | |||
273 | mutable bool DFSInfoValid = false; |
||
274 | mutable unsigned int SlowQueries = 0; |
||
275 | |||
276 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>; |
||
277 | |||
278 | public: |
||
279 | DominatorTreeBase() = default; |
||
280 | |||
281 | DominatorTreeBase(DominatorTreeBase &&Arg) |
||
282 | : Roots(std::move(Arg.Roots)), |
||
283 | DomTreeNodes(std::move(Arg.DomTreeNodes)), |
||
284 | RootNode(Arg.RootNode), |
||
285 | Parent(Arg.Parent), |
||
286 | DFSInfoValid(Arg.DFSInfoValid), |
||
287 | SlowQueries(Arg.SlowQueries) { |
||
288 | Arg.wipe(); |
||
289 | } |
||
290 | |||
291 | DominatorTreeBase &operator=(DominatorTreeBase &&RHS) { |
||
292 | Roots = std::move(RHS.Roots); |
||
293 | DomTreeNodes = std::move(RHS.DomTreeNodes); |
||
294 | RootNode = RHS.RootNode; |
||
295 | Parent = RHS.Parent; |
||
296 | DFSInfoValid = RHS.DFSInfoValid; |
||
297 | SlowQueries = RHS.SlowQueries; |
||
298 | RHS.wipe(); |
||
299 | return *this; |
||
300 | } |
||
301 | |||
302 | DominatorTreeBase(const DominatorTreeBase &) = delete; |
||
303 | DominatorTreeBase &operator=(const DominatorTreeBase &) = delete; |
||
304 | |||
305 | /// Iteration over roots. |
||
306 | /// |
||
307 | /// This may include multiple blocks if we are computing post dominators. |
||
308 | /// For forward dominators, this will always be a single block (the entry |
||
309 | /// block). |
||
310 | using root_iterator = typename SmallVectorImpl<NodeT *>::iterator; |
||
311 | using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator; |
||
312 | |||
313 | root_iterator root_begin() { return Roots.begin(); } |
||
314 | const_root_iterator root_begin() const { return Roots.begin(); } |
||
315 | root_iterator root_end() { return Roots.end(); } |
||
316 | const_root_iterator root_end() const { return Roots.end(); } |
||
317 | |||
318 | size_t root_size() const { return Roots.size(); } |
||
319 | |||
320 | iterator_range<root_iterator> roots() { |
||
321 | return make_range(root_begin(), root_end()); |
||
322 | } |
||
323 | iterator_range<const_root_iterator> roots() const { |
||
324 | return make_range(root_begin(), root_end()); |
||
325 | } |
||
326 | |||
327 | /// isPostDominator - Returns true if analysis based of postdoms |
||
328 | /// |
||
329 | bool isPostDominator() const { return IsPostDominator; } |
||
330 | |||
331 | /// compare - Return false if the other dominator tree base matches this |
||
332 | /// dominator tree base. Otherwise return true. |
||
333 | bool compare(const DominatorTreeBase &Other) const { |
||
334 | if (Parent != Other.Parent) return true; |
||
335 | |||
336 | if (Roots.size() != Other.Roots.size()) |
||
337 | return true; |
||
338 | |||
339 | if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin())) |
||
340 | return true; |
||
341 | |||
342 | const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; |
||
343 | if (DomTreeNodes.size() != OtherDomTreeNodes.size()) |
||
344 | return true; |
||
345 | |||
346 | for (const auto &DomTreeNode : DomTreeNodes) { |
||
347 | NodeT *BB = DomTreeNode.first; |
||
348 | typename DomTreeNodeMapType::const_iterator OI = |
||
349 | OtherDomTreeNodes.find(BB); |
||
350 | if (OI == OtherDomTreeNodes.end()) |
||
351 | return true; |
||
352 | |||
353 | DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second; |
||
354 | DomTreeNodeBase<NodeT> &OtherNd = *OI->second; |
||
355 | |||
356 | if (MyNd.compare(&OtherNd)) |
||
357 | return true; |
||
358 | } |
||
359 | |||
360 | return false; |
||
361 | } |
||
362 | |||
363 | /// getNode - return the (Post)DominatorTree node for the specified basic |
||
364 | /// block. This is the same as using operator[] on this class. The result |
||
365 | /// may (but is not required to) be null for a forward (backwards) |
||
366 | /// statically unreachable block. |
||
367 | DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const { |
||
368 | auto I = DomTreeNodes.find(BB); |
||
369 | if (I != DomTreeNodes.end()) |
||
370 | return I->second.get(); |
||
371 | return nullptr; |
||
372 | } |
||
373 | |||
374 | /// See getNode. |
||
375 | DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const { |
||
376 | return getNode(BB); |
||
377 | } |
||
378 | |||
379 | /// getRootNode - This returns the entry node for the CFG of the function. If |
||
380 | /// this tree represents the post-dominance relations for a function, however, |
||
381 | /// this root may be a node with the block == NULL. This is the case when |
||
382 | /// there are multiple exit nodes from a particular function. Consumers of |
||
383 | /// post-dominance information must be capable of dealing with this |
||
384 | /// possibility. |
||
385 | /// |
||
386 | DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } |
||
387 | const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } |
||
388 | |||
389 | /// Get all nodes dominated by R, including R itself. |
||
390 | void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const { |
||
391 | Result.clear(); |
||
392 | const DomTreeNodeBase<NodeT> *RN = getNode(R); |
||
393 | if (!RN) |
||
394 | return; // If R is unreachable, it will not be present in the DOM tree. |
||
395 | SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL; |
||
396 | WL.push_back(RN); |
||
397 | |||
398 | while (!WL.empty()) { |
||
399 | const DomTreeNodeBase<NodeT> *N = WL.pop_back_val(); |
||
400 | Result.push_back(N->getBlock()); |
||
401 | WL.append(N->begin(), N->end()); |
||
402 | } |
||
403 | } |
||
404 | |||
405 | /// properlyDominates - Returns true iff A dominates B and A != B. |
||
406 | /// Note that this is not a constant time operation! |
||
407 | /// |
||
408 | bool properlyDominates(const DomTreeNodeBase<NodeT> *A, |
||
409 | const DomTreeNodeBase<NodeT> *B) const { |
||
410 | if (!A || !B) |
||
411 | return false; |
||
412 | if (A == B) |
||
413 | return false; |
||
414 | return dominates(A, B); |
||
415 | } |
||
416 | |||
417 | bool properlyDominates(const NodeT *A, const NodeT *B) const; |
||
418 | |||
419 | /// isReachableFromEntry - Return true if A is dominated by the entry |
||
420 | /// block of the function containing it. |
||
421 | bool isReachableFromEntry(const NodeT *A) const { |
||
422 | assert(!this->isPostDominator() && |
||
423 | "This is not implemented for post dominators"); |
||
424 | return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); |
||
425 | } |
||
426 | |||
427 | bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; } |
||
428 | |||
429 | /// dominates - Returns true iff A dominates B. Note that this is not a |
||
430 | /// constant time operation! |
||
431 | /// |
||
432 | bool dominates(const DomTreeNodeBase<NodeT> *A, |
||
433 | const DomTreeNodeBase<NodeT> *B) const { |
||
434 | // A node trivially dominates itself. |
||
435 | if (B == A) |
||
436 | return true; |
||
437 | |||
438 | // An unreachable node is dominated by anything. |
||
439 | if (!isReachableFromEntry(B)) |
||
440 | return true; |
||
441 | |||
442 | // And dominates nothing. |
||
443 | if (!isReachableFromEntry(A)) |
||
444 | return false; |
||
445 | |||
446 | if (B->getIDom() == A) return true; |
||
447 | |||
448 | if (A->getIDom() == B) return false; |
||
449 | |||
450 | // A can only dominate B if it is higher in the tree. |
||
451 | if (A->getLevel() >= B->getLevel()) return false; |
||
452 | |||
453 | // Compare the result of the tree walk and the dfs numbers, if expensive |
||
454 | // checks are enabled. |
||
455 | #ifdef EXPENSIVE_CHECKS |
||
456 | assert((!DFSInfoValid || |
||
457 | (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && |
||
458 | "Tree walk disagrees with dfs numbers!"); |
||
459 | #endif |
||
460 | |||
461 | if (DFSInfoValid) |
||
462 | return B->DominatedBy(A); |
||
463 | |||
464 | // If we end up with too many slow queries, just update the |
||
465 | // DFS numbers on the theory that we are going to keep querying. |
||
466 | SlowQueries++; |
||
467 | if (SlowQueries > 32) { |
||
468 | updateDFSNumbers(); |
||
469 | return B->DominatedBy(A); |
||
470 | } |
||
471 | |||
472 | return dominatedBySlowTreeWalk(A, B); |
||
473 | } |
||
474 | |||
475 | bool dominates(const NodeT *A, const NodeT *B) const; |
||
476 | |||
477 | NodeT *getRoot() const { |
||
478 | assert(this->Roots.size() == 1 && "Should always have entry node!"); |
||
479 | return this->Roots[0]; |
||
480 | } |
||
481 | |||
482 | /// Find nearest common dominator basic block for basic block A and B. A and B |
||
483 | /// must have tree nodes. |
||
484 | NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const { |
||
485 | assert(A && B && "Pointers are not valid"); |
||
486 | assert(NodeTrait::getParent(A) == NodeTrait::getParent(B) && |
||
487 | "Two blocks are not in same function"); |
||
488 | |||
489 | // If either A or B is a entry block then it is nearest common dominator |
||
490 | // (for forward-dominators). |
||
491 | if (!isPostDominator()) { |
||
492 | NodeT &Entry = |
||
493 | *DomTreeNodeTraits<NodeT>::getEntryNode(NodeTrait::getParent(A)); |
||
494 | if (A == &Entry || B == &Entry) |
||
495 | return &Entry; |
||
496 | } |
||
497 | |||
498 | DomTreeNodeBase<NodeT> *NodeA = getNode(A); |
||
499 | DomTreeNodeBase<NodeT> *NodeB = getNode(B); |
||
500 | assert(NodeA && "A must be in the tree"); |
||
501 | assert(NodeB && "B must be in the tree"); |
||
502 | |||
503 | // Use level information to go up the tree until the levels match. Then |
||
504 | // continue going up til we arrive at the same node. |
||
505 | while (NodeA != NodeB) { |
||
506 | if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB); |
||
507 | |||
508 | NodeA = NodeA->IDom; |
||
509 | } |
||
510 | |||
511 | return NodeA->getBlock(); |
||
512 | } |
||
513 | |||
514 | const NodeT *findNearestCommonDominator(const NodeT *A, |
||
515 | const NodeT *B) const { |
||
516 | // Cast away the const qualifiers here. This is ok since |
||
517 | // const is re-introduced on the return type. |
||
518 | return findNearestCommonDominator(const_cast<NodeT *>(A), |
||
519 | const_cast<NodeT *>(B)); |
||
520 | } |
||
521 | |||
522 | bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const { |
||
523 | return isPostDominator() && !A->getBlock(); |
||
524 | } |
||
525 | |||
526 | //===--------------------------------------------------------------------===// |
||
527 | // API to update (Post)DominatorTree information based on modifications to |
||
528 | // the CFG... |
||
529 | |||
530 | /// Inform the dominator tree about a sequence of CFG edge insertions and |
||
531 | /// deletions and perform a batch update on the tree. |
||
532 | /// |
||
533 | /// This function should be used when there were multiple CFG updates after |
||
534 | /// the last dominator tree update. It takes care of performing the updates |
||
535 | /// in sync with the CFG and optimizes away the redundant operations that |
||
536 | /// cancel each other. |
||
537 | /// The functions expects the sequence of updates to be balanced. Eg.: |
||
538 | /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because |
||
539 | /// logically it results in a single insertions. |
||
540 | /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make |
||
541 | /// sense to insert the same edge twice. |
||
542 | /// |
||
543 | /// What's more, the functions assumes that it's safe to ask every node in the |
||
544 | /// CFG about its children and inverse children. This implies that deletions |
||
545 | /// of CFG edges must not delete the CFG nodes before calling this function. |
||
546 | /// |
||
547 | /// The applyUpdates function can reorder the updates and remove redundant |
||
548 | /// ones internally (as long as it is done in a deterministic fashion). The |
||
549 | /// batch updater is also able to detect sequences of zero and exactly one |
||
550 | /// update -- it's optimized to do less work in these cases. |
||
551 | /// |
||
552 | /// Note that for postdominators it automatically takes care of applying |
||
553 | /// updates on reverse edges internally (so there's no need to swap the |
||
554 | /// From and To pointers when constructing DominatorTree::UpdateType). |
||
555 | /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T> |
||
556 | /// with the same template parameter T. |
||
557 | /// |
||
558 | /// \param Updates An ordered sequence of updates to perform. The current CFG |
||
559 | /// and the reverse of these updates provides the pre-view of the CFG. |
||
560 | /// |
||
561 | void applyUpdates(ArrayRef<UpdateType> Updates) { |
||
562 | GraphDiff<NodePtr, IsPostDominator> PreViewCFG( |
||
563 | Updates, /*ReverseApplyUpdates=*/true); |
||
564 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr); |
||
565 | } |
||
566 | |||
567 | /// \param Updates An ordered sequence of updates to perform. The current CFG |
||
568 | /// and the reverse of these updates provides the pre-view of the CFG. |
||
569 | /// \param PostViewUpdates An ordered sequence of update to perform in order |
||
570 | /// to obtain a post-view of the CFG. The DT will be updated assuming the |
||
571 | /// obtained PostViewCFG is the desired end state. |
||
572 | void applyUpdates(ArrayRef<UpdateType> Updates, |
||
573 | ArrayRef<UpdateType> PostViewUpdates) { |
||
574 | if (Updates.empty()) { |
||
575 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); |
||
576 | DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG); |
||
577 | } else { |
||
578 | // PreViewCFG needs to merge Updates and PostViewCFG. The updates in |
||
579 | // Updates need to be reversed, and match the direction in PostViewCFG. |
||
580 | // The PostViewCFG is created with updates reversed (equivalent to changes |
||
581 | // made to the CFG), so the PreViewCFG needs all the updates reverse |
||
582 | // applied. |
||
583 | SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end()); |
||
584 | append_range(AllUpdates, PostViewUpdates); |
||
585 | GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates, |
||
586 | /*ReverseApplyUpdates=*/true); |
||
587 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); |
||
588 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG); |
||
589 | } |
||
590 | } |
||
591 | |||
592 | /// Inform the dominator tree about a CFG edge insertion and update the tree. |
||
593 | /// |
||
594 | /// This function has to be called just before or just after making the update |
||
595 | /// on the actual CFG. There cannot be any other updates that the dominator |
||
596 | /// tree doesn't know about. |
||
597 | /// |
||
598 | /// Note that for postdominators it automatically takes care of inserting |
||
599 | /// a reverse edge internally (so there's no need to swap the parameters). |
||
600 | /// |
||
601 | void insertEdge(NodeT *From, NodeT *To) { |
||
602 | assert(From); |
||
603 | assert(To); |
||
604 | assert(NodeTrait::getParent(From) == Parent); |
||
605 | assert(NodeTrait::getParent(To) == Parent); |
||
606 | DomTreeBuilder::InsertEdge(*this, From, To); |
||
607 | } |
||
608 | |||
609 | /// Inform the dominator tree about a CFG edge deletion and update the tree. |
||
610 | /// |
||
611 | /// This function has to be called just after making the update on the actual |
||
612 | /// CFG. An internal functions checks if the edge doesn't exist in the CFG in |
||
613 | /// DEBUG mode. There cannot be any other updates that the |
||
614 | /// dominator tree doesn't know about. |
||
615 | /// |
||
616 | /// Note that for postdominators it automatically takes care of deleting |
||
617 | /// a reverse edge internally (so there's no need to swap the parameters). |
||
618 | /// |
||
619 | void deleteEdge(NodeT *From, NodeT *To) { |
||
620 | assert(From); |
||
621 | assert(To); |
||
622 | assert(NodeTrait::getParent(From) == Parent); |
||
623 | assert(NodeTrait::getParent(To) == Parent); |
||
624 | DomTreeBuilder::DeleteEdge(*this, From, To); |
||
625 | } |
||
626 | |||
627 | /// Add a new node to the dominator tree information. |
||
628 | /// |
||
629 | /// This creates a new node as a child of DomBB dominator node, linking it |
||
630 | /// into the children list of the immediate dominator. |
||
631 | /// |
||
632 | /// \param BB New node in CFG. |
||
633 | /// \param DomBB CFG node that is dominator for BB. |
||
634 | /// \returns New dominator tree node that represents new CFG node. |
||
635 | /// |
||
636 | DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { |
||
637 | assert(getNode(BB) == nullptr && "Block already in dominator tree!"); |
||
638 | DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); |
||
639 | assert(IDomNode && "Not immediate dominator specified for block!"); |
||
640 | DFSInfoValid = false; |
||
641 | return createChild(BB, IDomNode); |
||
642 | } |
||
643 | |||
644 | /// Add a new node to the forward dominator tree and make it a new root. |
||
645 | /// |
||
646 | /// \param BB New node in CFG. |
||
647 | /// \returns New dominator tree node that represents new CFG node. |
||
648 | /// |
||
649 | DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) { |
||
650 | assert(getNode(BB) == nullptr && "Block already in dominator tree!"); |
||
651 | assert(!this->isPostDominator() && |
||
652 | "Cannot change root of post-dominator tree"); |
||
653 | DFSInfoValid = false; |
||
654 | DomTreeNodeBase<NodeT> *NewNode = createNode(BB); |
||
655 | if (Roots.empty()) { |
||
656 | addRoot(BB); |
||
657 | } else { |
||
658 | assert(Roots.size() == 1); |
||
659 | NodeT *OldRoot = Roots.front(); |
||
660 | auto &OldNode = DomTreeNodes[OldRoot]; |
||
661 | OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot])); |
||
662 | OldNode->IDom = NewNode; |
||
663 | OldNode->UpdateLevel(); |
||
664 | Roots[0] = BB; |
||
665 | } |
||
666 | return RootNode = NewNode; |
||
667 | } |
||
668 | |||
669 | /// changeImmediateDominator - This method is used to update the dominator |
||
670 | /// tree information when a node's immediate dominator changes. |
||
671 | /// |
||
672 | void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, |
||
673 | DomTreeNodeBase<NodeT> *NewIDom) { |
||
674 | assert(N && NewIDom && "Cannot change null node pointers!"); |
||
675 | DFSInfoValid = false; |
||
676 | N->setIDom(NewIDom); |
||
677 | } |
||
678 | |||
679 | void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { |
||
680 | changeImmediateDominator(getNode(BB), getNode(NewBB)); |
||
681 | } |
||
682 | |||
683 | /// eraseNode - Removes a node from the dominator tree. Block must not |
||
684 | /// dominate any other blocks. Removes node from its immediate dominator's |
||
685 | /// children list. Deletes dominator node associated with basic block BB. |
||
686 | void eraseNode(NodeT *BB) { |
||
687 | DomTreeNodeBase<NodeT> *Node = getNode(BB); |
||
688 | assert(Node && "Removing node that isn't in dominator tree."); |
||
689 | assert(Node->isLeaf() && "Node is not a leaf node."); |
||
690 | |||
691 | DFSInfoValid = false; |
||
692 | |||
693 | // Remove node from immediate dominator's children list. |
||
694 | DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); |
||
695 | if (IDom) { |
||
696 | const auto I = find(IDom->Children, Node); |
||
697 | assert(I != IDom->Children.end() && |
||
698 | "Not in immediate dominator children set!"); |
||
699 | // I am no longer your child... |
||
700 | IDom->Children.erase(I); |
||
701 | } |
||
702 | |||
703 | DomTreeNodes.erase(BB); |
||
704 | |||
705 | if (!IsPostDom) return; |
||
706 | |||
707 | // Remember to update PostDominatorTree roots. |
||
708 | auto RIt = llvm::find(Roots, BB); |
||
709 | if (RIt != Roots.end()) { |
||
710 | std::swap(*RIt, Roots.back()); |
||
711 | Roots.pop_back(); |
||
712 | } |
||
713 | } |
||
714 | |||
715 | /// splitBlock - BB is split and now it has one successor. Update dominator |
||
716 | /// tree to reflect this change. |
||
717 | void splitBlock(NodeT *NewBB) { |
||
718 | if (IsPostDominator) |
||
719 | Split<Inverse<NodeT *>>(NewBB); |
||
720 | else |
||
721 | Split<NodeT *>(NewBB); |
||
722 | } |
||
723 | |||
724 | /// print - Convert to human readable form |
||
725 | /// |
||
726 | void print(raw_ostream &O) const { |
||
727 | O << "=============================--------------------------------\n"; |
||
728 | if (IsPostDominator) |
||
729 | O << "Inorder PostDominator Tree: "; |
||
730 | else |
||
731 | O << "Inorder Dominator Tree: "; |
||
732 | if (!DFSInfoValid) |
||
733 | O << "DFSNumbers invalid: " << SlowQueries << " slow queries."; |
||
734 | O << "\n"; |
||
735 | |||
736 | // The postdom tree can have a null root if there are no returns. |
||
737 | if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1); |
||
738 | O << "Roots: "; |
||
739 | for (const NodePtr Block : Roots) { |
||
740 | Block->printAsOperand(O, false); |
||
741 | O << " "; |
||
742 | } |
||
743 | O << "\n"; |
||
744 | } |
||
745 | |||
746 | public: |
||
747 | /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking |
||
748 | /// dominator tree in dfs order. |
||
749 | void updateDFSNumbers() const { |
||
750 | if (DFSInfoValid) { |
||
751 | SlowQueries = 0; |
||
752 | return; |
||
753 | } |
||
754 | |||
755 | SmallVector<std::pair<const DomTreeNodeBase<NodeT> *, |
||
756 | typename DomTreeNodeBase<NodeT>::const_iterator>, |
||
757 | 32> WorkStack; |
||
758 | |||
759 | const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); |
||
760 | assert((!Parent || ThisRoot) && "Empty constructed DomTree"); |
||
761 | if (!ThisRoot) |
||
762 | return; |
||
763 | |||
764 | // Both dominators and postdominators have a single root node. In the case |
||
765 | // case of PostDominatorTree, this node is a virtual root. |
||
766 | WorkStack.push_back({ThisRoot, ThisRoot->begin()}); |
||
767 | |||
768 | unsigned DFSNum = 0; |
||
769 | ThisRoot->DFSNumIn = DFSNum++; |
||
770 | |||
771 | while (!WorkStack.empty()) { |
||
772 | const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; |
||
773 | const auto ChildIt = WorkStack.back().second; |
||
774 | |||
775 | // If we visited all of the children of this node, "recurse" back up the |
||
776 | // stack setting the DFOutNum. |
||
777 | if (ChildIt == Node->end()) { |
||
778 | Node->DFSNumOut = DFSNum++; |
||
779 | WorkStack.pop_back(); |
||
780 | } else { |
||
781 | // Otherwise, recursively visit this child. |
||
782 | const DomTreeNodeBase<NodeT> *Child = *ChildIt; |
||
783 | ++WorkStack.back().second; |
||
784 | |||
785 | WorkStack.push_back({Child, Child->begin()}); |
||
786 | Child->DFSNumIn = DFSNum++; |
||
787 | } |
||
788 | } |
||
789 | |||
790 | SlowQueries = 0; |
||
791 | DFSInfoValid = true; |
||
792 | } |
||
793 | |||
794 | /// recalculate - compute a dominator tree for the given function |
||
795 | void recalculate(ParentType &Func) { |
||
796 | Parent = &Func; |
||
797 | DomTreeBuilder::Calculate(*this); |
||
798 | } |
||
799 | |||
800 | void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) { |
||
801 | Parent = &Func; |
||
802 | DomTreeBuilder::CalculateWithUpdates(*this, Updates); |
||
803 | } |
||
804 | |||
805 | /// verify - checks if the tree is correct. There are 3 level of verification: |
||
806 | /// - Full -- verifies if the tree is correct by making sure all the |
||
807 | /// properties (including the parent and the sibling property) |
||
808 | /// hold. |
||
809 | /// Takes O(N^3) time. |
||
810 | /// |
||
811 | /// - Basic -- checks if the tree is correct, but compares it to a freshly |
||
812 | /// constructed tree instead of checking the sibling property. |
||
813 | /// Takes O(N^2) time. |
||
814 | /// |
||
815 | /// - Fast -- checks basic tree structure and compares it with a freshly |
||
816 | /// constructed tree. |
||
817 | /// Takes O(N^2) time worst case, but is faster in practise (same |
||
818 | /// as tree construction). |
||
819 | bool verify(VerificationLevel VL = VerificationLevel::Full) const { |
||
820 | return DomTreeBuilder::Verify(*this, VL); |
||
821 | } |
||
822 | |||
823 | void reset() { |
||
824 | DomTreeNodes.clear(); |
||
825 | Roots.clear(); |
||
826 | RootNode = nullptr; |
||
827 | Parent = nullptr; |
||
828 | DFSInfoValid = false; |
||
829 | SlowQueries = 0; |
||
830 | } |
||
831 | |||
832 | protected: |
||
833 | void addRoot(NodeT *BB) { this->Roots.push_back(BB); } |
||
834 | |||
835 | DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) { |
||
836 | return (DomTreeNodes[BB] = IDom->addChild( |
||
837 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom))) |
||
838 | .get(); |
||
839 | } |
||
840 | |||
841 | DomTreeNodeBase<NodeT> *createNode(NodeT *BB) { |
||
842 | return (DomTreeNodes[BB] = |
||
843 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)) |
||
844 | .get(); |
||
845 | } |
||
846 | |||
847 | // NewBB is split and now it has one successor. Update dominator tree to |
||
848 | // reflect this change. |
||
849 | template <class N> |
||
850 | void Split(typename GraphTraits<N>::NodeRef NewBB) { |
||
851 | using GraphT = GraphTraits<N>; |
||
852 | using NodeRef = typename GraphT::NodeRef; |
||
853 | assert(std::distance(GraphT::child_begin(NewBB), |
||
854 | GraphT::child_end(NewBB)) == 1 && |
||
855 | "NewBB should have a single successor!"); |
||
856 | NodeRef NewBBSucc = *GraphT::child_begin(NewBB); |
||
857 | |||
858 | SmallVector<NodeRef, 4> PredBlocks(children<Inverse<N>>(NewBB)); |
||
859 | |||
860 | assert(!PredBlocks.empty() && "No predblocks?"); |
||
861 | |||
862 | bool NewBBDominatesNewBBSucc = true; |
||
863 | for (auto *Pred : children<Inverse<N>>(NewBBSucc)) { |
||
864 | if (Pred != NewBB && !dominates(NewBBSucc, Pred) && |
||
865 | isReachableFromEntry(Pred)) { |
||
866 | NewBBDominatesNewBBSucc = false; |
||
867 | break; |
||
868 | } |
||
869 | } |
||
870 | |||
871 | // Find NewBB's immediate dominator and create new dominator tree node for |
||
872 | // NewBB. |
||
873 | NodeT *NewBBIDom = nullptr; |
||
874 | unsigned i = 0; |
||
875 | for (i = 0; i < PredBlocks.size(); ++i) |
||
876 | if (isReachableFromEntry(PredBlocks[i])) { |
||
877 | NewBBIDom = PredBlocks[i]; |
||
878 | break; |
||
879 | } |
||
880 | |||
881 | // It's possible that none of the predecessors of NewBB are reachable; |
||
882 | // in that case, NewBB itself is unreachable, so nothing needs to be |
||
883 | // changed. |
||
884 | if (!NewBBIDom) return; |
||
885 | |||
886 | for (i = i + 1; i < PredBlocks.size(); ++i) { |
||
887 | if (isReachableFromEntry(PredBlocks[i])) |
||
888 | NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); |
||
889 | } |
||
890 | |||
891 | // Create the new dominator tree node... and set the idom of NewBB. |
||
892 | DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom); |
||
893 | |||
894 | // If NewBB strictly dominates other blocks, then it is now the immediate |
||
895 | // dominator of NewBBSucc. Update the dominator tree as appropriate. |
||
896 | if (NewBBDominatesNewBBSucc) { |
||
897 | DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc); |
||
898 | changeImmediateDominator(NewBBSuccNode, NewBBNode); |
||
899 | } |
||
900 | } |
||
901 | |||
902 | private: |
||
903 | bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, |
||
904 | const DomTreeNodeBase<NodeT> *B) const { |
||
905 | assert(A != B); |
||
906 | assert(isReachableFromEntry(B)); |
||
907 | assert(isReachableFromEntry(A)); |
||
908 | |||
909 | const unsigned ALevel = A->getLevel(); |
||
910 | const DomTreeNodeBase<NodeT> *IDom; |
||
911 | |||
912 | // Don't walk nodes above A's subtree. When we reach A's level, we must |
||
913 | // either find A or be in some other subtree not dominated by A. |
||
914 | while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel) |
||
915 | B = IDom; // Walk up the tree |
||
916 | |||
917 | return B == A; |
||
918 | } |
||
919 | |||
920 | /// Wipe this tree's state without releasing any resources. |
||
921 | /// |
||
922 | /// This is essentially a post-move helper only. It leaves the object in an |
||
923 | /// assignable and destroyable state, but otherwise invalid. |
||
924 | void wipe() { |
||
925 | DomTreeNodes.clear(); |
||
926 | RootNode = nullptr; |
||
927 | Parent = nullptr; |
||
928 | } |
||
929 | }; |
||
930 | |||
931 | template <typename T> |
||
932 | using DomTreeBase = DominatorTreeBase<T, false>; |
||
933 | |||
934 | template <typename T> |
||
935 | using PostDomTreeBase = DominatorTreeBase<T, true>; |
||
936 | |||
937 | // These two functions are declared out of line as a workaround for building |
||
938 | // with old (< r147295) versions of clang because of pr11642. |
||
939 | template <typename NodeT, bool IsPostDom> |
||
940 | bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A, |
||
941 | const NodeT *B) const { |
||
942 | if (A == B) |
||
943 | return true; |
||
944 | |||
945 | // Cast away the const qualifiers here. This is ok since |
||
946 | // this function doesn't actually return the values returned |
||
947 | // from getNode. |
||
948 | return dominates(getNode(const_cast<NodeT *>(A)), |
||
949 | getNode(const_cast<NodeT *>(B))); |
||
950 | } |
||
951 | template <typename NodeT, bool IsPostDom> |
||
952 | bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates( |
||
953 | const NodeT *A, const NodeT *B) const { |
||
954 | if (A == B) |
||
955 | return false; |
||
956 | |||
957 | // Cast away the const qualifiers here. This is ok since |
||
958 | // this function doesn't actually return the values returned |
||
959 | // from getNode. |
||
960 | return dominates(getNode(const_cast<NodeT *>(A)), |
||
961 | getNode(const_cast<NodeT *>(B))); |
||
962 | } |
||
963 | |||
964 | } // end namespace llvm |
||
965 | |||
966 | #endif // LLVM_SUPPORT_GENERICDOMTREE_H |