Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | /// \file |
||
| 9 | /// |
||
| 10 | /// This file defines a set of templates that efficiently compute a dominator |
||
| 11 | /// tree over a generic graph. This is used typically in LLVM for fast |
||
| 12 | /// dominance queries on the CFG, but is fully generic w.r.t. the underlying |
||
| 13 | /// graph types. |
||
| 14 | /// |
||
| 15 | /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements |
||
| 16 | /// on the graph's NodeRef. The NodeRef should be a pointer and, |
||
| 17 | /// either NodeRef->getParent() must return the parent node that is also a |
||
| 18 | /// pointer or DomTreeNodeTraits needs to be specialized. |
||
| 19 | /// |
||
| 20 | /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits. |
||
| 21 | /// |
||
| 22 | //===----------------------------------------------------------------------===// |
||
| 23 | |||
| 24 | #ifndef LLVM_SUPPORT_GENERICDOMTREE_H |
||
| 25 | #define LLVM_SUPPORT_GENERICDOMTREE_H |
||
| 26 | |||
| 27 | #include "llvm/ADT/DenseMap.h" |
||
| 28 | #include "llvm/ADT/GraphTraits.h" |
||
| 29 | #include "llvm/ADT/STLExtras.h" |
||
| 30 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 31 | #include "llvm/ADT/SmallVector.h" |
||
| 32 | #include "llvm/Support/CFGDiff.h" |
||
| 33 | #include "llvm/Support/CFGUpdate.h" |
||
| 34 | #include "llvm/Support/raw_ostream.h" |
||
| 35 | #include <algorithm> |
||
| 36 | #include <cassert> |
||
| 37 | #include <cstddef> |
||
| 38 | #include <iterator> |
||
| 39 | #include <memory> |
||
| 40 | #include <type_traits> |
||
| 41 | #include <utility> |
||
| 42 | |||
| 43 | namespace llvm { |
||
| 44 | |||
| 45 | template <typename NodeT, bool IsPostDom> |
||
| 46 | class DominatorTreeBase; |
||
| 47 | |||
| 48 | namespace DomTreeBuilder { |
||
| 49 | template <typename DomTreeT> |
||
| 50 | struct SemiNCAInfo; |
||
| 51 | } // namespace DomTreeBuilder |
||
| 52 | |||
| 53 | /// Base class for the actual dominator tree node. |
||
| 54 | template <class NodeT> class DomTreeNodeBase { |
||
| 55 | friend class PostDominatorTree; |
||
| 56 | friend class DominatorTreeBase<NodeT, false>; |
||
| 57 | friend class DominatorTreeBase<NodeT, true>; |
||
| 58 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>; |
||
| 59 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>; |
||
| 60 | |||
| 61 | NodeT *TheBB; |
||
| 62 | DomTreeNodeBase *IDom; |
||
| 63 | unsigned Level; |
||
| 64 | SmallVector<DomTreeNodeBase *, 4> Children; |
||
| 65 | mutable unsigned DFSNumIn = ~0; |
||
| 66 | mutable unsigned DFSNumOut = ~0; |
||
| 67 | |||
| 68 | public: |
||
| 69 | DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom) |
||
| 70 | : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {} |
||
| 71 | |||
| 72 | using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator; |
||
| 73 | using const_iterator = |
||
| 74 | typename SmallVector<DomTreeNodeBase *, 4>::const_iterator; |
||
| 75 | |||
| 76 | iterator begin() { return Children.begin(); } |
||
| 77 | iterator end() { return Children.end(); } |
||
| 78 | const_iterator begin() const { return Children.begin(); } |
||
| 79 | const_iterator end() const { return Children.end(); } |
||
| 80 | |||
| 81 | DomTreeNodeBase *const &back() const { return Children.back(); } |
||
| 82 | DomTreeNodeBase *&back() { return Children.back(); } |
||
| 83 | |||
| 84 | iterator_range<iterator> children() { return make_range(begin(), end()); } |
||
| 85 | iterator_range<const_iterator> children() const { |
||
| 86 | return make_range(begin(), end()); |
||
| 87 | } |
||
| 88 | |||
| 89 | NodeT *getBlock() const { return TheBB; } |
||
| 90 | DomTreeNodeBase *getIDom() const { return IDom; } |
||
| 91 | unsigned getLevel() const { return Level; } |
||
| 92 | |||
| 93 | std::unique_ptr<DomTreeNodeBase> addChild( |
||
| 94 | std::unique_ptr<DomTreeNodeBase> C) { |
||
| 95 | Children.push_back(C.get()); |
||
| 96 | return C; |
||
| 97 | } |
||
| 98 | |||
| 99 | bool isLeaf() const { return Children.empty(); } |
||
| 100 | size_t getNumChildren() const { return Children.size(); } |
||
| 101 | |||
| 102 | void clearAllChildren() { Children.clear(); } |
||
| 103 | |||
| 104 | bool compare(const DomTreeNodeBase *Other) const { |
||
| 105 | if (getNumChildren() != Other->getNumChildren()) |
||
| 106 | return true; |
||
| 107 | |||
| 108 | if (Level != Other->Level) return true; |
||
| 109 | |||
| 110 | SmallPtrSet<const NodeT *, 4> OtherChildren; |
||
| 111 | for (const DomTreeNodeBase *I : *Other) { |
||
| 112 | const NodeT *Nd = I->getBlock(); |
||
| 113 | OtherChildren.insert(Nd); |
||
| 114 | } |
||
| 115 | |||
| 116 | for (const DomTreeNodeBase *I : *this) { |
||
| 117 | const NodeT *N = I->getBlock(); |
||
| 118 | if (OtherChildren.count(N) == 0) |
||
| 119 | return true; |
||
| 120 | } |
||
| 121 | return false; |
||
| 122 | } |
||
| 123 | |||
| 124 | void setIDom(DomTreeNodeBase *NewIDom) { |
||
| 125 | assert(IDom && "No immediate dominator?"); |
||
| 126 | if (IDom == NewIDom) return; |
||
| 127 | |||
| 128 | auto I = find(IDom->Children, this); |
||
| 129 | assert(I != IDom->Children.end() && |
||
| 130 | "Not in immediate dominator children set!"); |
||
| 131 | // I am no longer your child... |
||
| 132 | IDom->Children.erase(I); |
||
| 133 | |||
| 134 | // Switch to new dominator |
||
| 135 | IDom = NewIDom; |
||
| 136 | IDom->Children.push_back(this); |
||
| 137 | |||
| 138 | UpdateLevel(); |
||
| 139 | } |
||
| 140 | |||
| 141 | /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes |
||
| 142 | /// in the dominator tree. They are only guaranteed valid if |
||
| 143 | /// updateDFSNumbers() has been called. |
||
| 144 | unsigned getDFSNumIn() const { return DFSNumIn; } |
||
| 145 | unsigned getDFSNumOut() const { return DFSNumOut; } |
||
| 146 | |||
| 147 | private: |
||
| 148 | // Return true if this node is dominated by other. Use this only if DFS info |
||
| 149 | // is valid. |
||
| 150 | bool DominatedBy(const DomTreeNodeBase *other) const { |
||
| 151 | return this->DFSNumIn >= other->DFSNumIn && |
||
| 152 | this->DFSNumOut <= other->DFSNumOut; |
||
| 153 | } |
||
| 154 | |||
| 155 | void UpdateLevel() { |
||
| 156 | assert(IDom); |
||
| 157 | if (Level == IDom->Level + 1) return; |
||
| 158 | |||
| 159 | SmallVector<DomTreeNodeBase *, 64> WorkStack = {this}; |
||
| 160 | |||
| 161 | while (!WorkStack.empty()) { |
||
| 162 | DomTreeNodeBase *Current = WorkStack.pop_back_val(); |
||
| 163 | Current->Level = Current->IDom->Level + 1; |
||
| 164 | |||
| 165 | for (DomTreeNodeBase *C : *Current) { |
||
| 166 | assert(C->IDom); |
||
| 167 | if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C); |
||
| 168 | } |
||
| 169 | } |
||
| 170 | } |
||
| 171 | }; |
||
| 172 | |||
| 173 | template <class NodeT> |
||
| 174 | raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) { |
||
| 175 | if (Node->getBlock()) |
||
| 176 | Node->getBlock()->printAsOperand(O, false); |
||
| 177 | else |
||
| 178 | O << " <<exit node>>"; |
||
| 179 | |||
| 180 | O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} [" |
||
| 181 | << Node->getLevel() << "]\n"; |
||
| 182 | |||
| 183 | return O; |
||
| 184 | } |
||
| 185 | |||
| 186 | template <class NodeT> |
||
| 187 | void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O, |
||
| 188 | unsigned Lev) { |
||
| 189 | O.indent(2 * Lev) << "[" << Lev << "] " << N; |
||
| 190 | for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), |
||
| 191 | E = N->end(); |
||
| 192 | I != E; ++I) |
||
| 193 | PrintDomTree<NodeT>(*I, O, Lev + 1); |
||
| 194 | } |
||
| 195 | |||
| 196 | namespace DomTreeBuilder { |
||
| 197 | // The routines below are provided in a separate header but referenced here. |
||
| 198 | template <typename DomTreeT> |
||
| 199 | void Calculate(DomTreeT &DT); |
||
| 200 | |||
| 201 | template <typename DomTreeT> |
||
| 202 | void CalculateWithUpdates(DomTreeT &DT, |
||
| 203 | ArrayRef<typename DomTreeT::UpdateType> Updates); |
||
| 204 | |||
| 205 | template <typename DomTreeT> |
||
| 206 | void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
||
| 207 | typename DomTreeT::NodePtr To); |
||
| 208 | |||
| 209 | template <typename DomTreeT> |
||
| 210 | void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
||
| 211 | typename DomTreeT::NodePtr To); |
||
| 212 | |||
| 213 | template <typename DomTreeT> |
||
| 214 | void ApplyUpdates(DomTreeT &DT, |
||
| 215 | GraphDiff<typename DomTreeT::NodePtr, |
||
| 216 | DomTreeT::IsPostDominator> &PreViewCFG, |
||
| 217 | GraphDiff<typename DomTreeT::NodePtr, |
||
| 218 | DomTreeT::IsPostDominator> *PostViewCFG); |
||
| 219 | |||
| 220 | template <typename DomTreeT> |
||
| 221 | bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL); |
||
| 222 | } // namespace DomTreeBuilder |
||
| 223 | |||
| 224 | /// Default DomTreeNode traits for NodeT. The default implementation assume a |
||
| 225 | /// Function-like NodeT. Can be specialized to support different node types. |
||
| 226 | template <typename NodeT> struct DomTreeNodeTraits { |
||
| 227 | using NodeType = NodeT; |
||
| 228 | using NodePtr = NodeT *; |
||
| 229 | using ParentPtr = decltype(std::declval<NodePtr>()->getParent()); |
||
| 230 | static_assert(std::is_pointer<ParentPtr>::value, |
||
| 231 | "Currently NodeT's parent must be a pointer type"); |
||
| 232 | using ParentType = std::remove_pointer_t<ParentPtr>; |
||
| 233 | |||
| 234 | static NodeT *getEntryNode(ParentPtr Parent) { return &Parent->front(); } |
||
| 235 | static ParentPtr getParent(NodePtr BB) { return BB->getParent(); } |
||
| 236 | }; |
||
| 237 | |||
| 238 | /// Core dominator tree base class. |
||
| 239 | /// |
||
| 240 | /// This class is a generic template over graph nodes. It is instantiated for |
||
| 241 | /// various graphs in the LLVM IR or in the code generator. |
||
| 242 | template <typename NodeT, bool IsPostDom> |
||
| 243 | class DominatorTreeBase { |
||
| 244 | public: |
||
| 245 | static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value, |
||
| 246 | "Currently DominatorTreeBase supports only pointer nodes"); |
||
| 247 | using NodeTrait = DomTreeNodeTraits<NodeT>; |
||
| 248 | using NodeType = typename NodeTrait::NodeType; |
||
| 249 | using NodePtr = typename NodeTrait::NodePtr; |
||
| 250 | using ParentPtr = typename NodeTrait::ParentPtr; |
||
| 251 | static_assert(std::is_pointer<ParentPtr>::value, |
||
| 252 | "Currently NodeT's parent must be a pointer type"); |
||
| 253 | using ParentType = std::remove_pointer_t<ParentPtr>; |
||
| 254 | static constexpr bool IsPostDominator = IsPostDom; |
||
| 255 | |||
| 256 | using UpdateType = cfg::Update<NodePtr>; |
||
| 257 | using UpdateKind = cfg::UpdateKind; |
||
| 258 | static constexpr UpdateKind Insert = UpdateKind::Insert; |
||
| 259 | static constexpr UpdateKind Delete = UpdateKind::Delete; |
||
| 260 | |||
| 261 | enum class VerificationLevel { Fast, Basic, Full }; |
||
| 262 | |||
| 263 | protected: |
||
| 264 | // Dominators always have a single root, postdominators can have more. |
||
| 265 | SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots; |
||
| 266 | |||
| 267 | using DomTreeNodeMapType = |
||
| 268 | DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>; |
||
| 269 | DomTreeNodeMapType DomTreeNodes; |
||
| 270 | DomTreeNodeBase<NodeT> *RootNode = nullptr; |
||
| 271 | ParentPtr Parent = nullptr; |
||
| 272 | |||
| 273 | mutable bool DFSInfoValid = false; |
||
| 274 | mutable unsigned int SlowQueries = 0; |
||
| 275 | |||
| 276 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>; |
||
| 277 | |||
| 278 | public: |
||
| 279 | DominatorTreeBase() = default; |
||
| 280 | |||
| 281 | DominatorTreeBase(DominatorTreeBase &&Arg) |
||
| 282 | : Roots(std::move(Arg.Roots)), |
||
| 283 | DomTreeNodes(std::move(Arg.DomTreeNodes)), |
||
| 284 | RootNode(Arg.RootNode), |
||
| 285 | Parent(Arg.Parent), |
||
| 286 | DFSInfoValid(Arg.DFSInfoValid), |
||
| 287 | SlowQueries(Arg.SlowQueries) { |
||
| 288 | Arg.wipe(); |
||
| 289 | } |
||
| 290 | |||
| 291 | DominatorTreeBase &operator=(DominatorTreeBase &&RHS) { |
||
| 292 | Roots = std::move(RHS.Roots); |
||
| 293 | DomTreeNodes = std::move(RHS.DomTreeNodes); |
||
| 294 | RootNode = RHS.RootNode; |
||
| 295 | Parent = RHS.Parent; |
||
| 296 | DFSInfoValid = RHS.DFSInfoValid; |
||
| 297 | SlowQueries = RHS.SlowQueries; |
||
| 298 | RHS.wipe(); |
||
| 299 | return *this; |
||
| 300 | } |
||
| 301 | |||
| 302 | DominatorTreeBase(const DominatorTreeBase &) = delete; |
||
| 303 | DominatorTreeBase &operator=(const DominatorTreeBase &) = delete; |
||
| 304 | |||
| 305 | /// Iteration over roots. |
||
| 306 | /// |
||
| 307 | /// This may include multiple blocks if we are computing post dominators. |
||
| 308 | /// For forward dominators, this will always be a single block (the entry |
||
| 309 | /// block). |
||
| 310 | using root_iterator = typename SmallVectorImpl<NodeT *>::iterator; |
||
| 311 | using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator; |
||
| 312 | |||
| 313 | root_iterator root_begin() { return Roots.begin(); } |
||
| 314 | const_root_iterator root_begin() const { return Roots.begin(); } |
||
| 315 | root_iterator root_end() { return Roots.end(); } |
||
| 316 | const_root_iterator root_end() const { return Roots.end(); } |
||
| 317 | |||
| 318 | size_t root_size() const { return Roots.size(); } |
||
| 319 | |||
| 320 | iterator_range<root_iterator> roots() { |
||
| 321 | return make_range(root_begin(), root_end()); |
||
| 322 | } |
||
| 323 | iterator_range<const_root_iterator> roots() const { |
||
| 324 | return make_range(root_begin(), root_end()); |
||
| 325 | } |
||
| 326 | |||
| 327 | /// isPostDominator - Returns true if analysis based of postdoms |
||
| 328 | /// |
||
| 329 | bool isPostDominator() const { return IsPostDominator; } |
||
| 330 | |||
| 331 | /// compare - Return false if the other dominator tree base matches this |
||
| 332 | /// dominator tree base. Otherwise return true. |
||
| 333 | bool compare(const DominatorTreeBase &Other) const { |
||
| 334 | if (Parent != Other.Parent) return true; |
||
| 335 | |||
| 336 | if (Roots.size() != Other.Roots.size()) |
||
| 337 | return true; |
||
| 338 | |||
| 339 | if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin())) |
||
| 340 | return true; |
||
| 341 | |||
| 342 | const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; |
||
| 343 | if (DomTreeNodes.size() != OtherDomTreeNodes.size()) |
||
| 344 | return true; |
||
| 345 | |||
| 346 | for (const auto &DomTreeNode : DomTreeNodes) { |
||
| 347 | NodeT *BB = DomTreeNode.first; |
||
| 348 | typename DomTreeNodeMapType::const_iterator OI = |
||
| 349 | OtherDomTreeNodes.find(BB); |
||
| 350 | if (OI == OtherDomTreeNodes.end()) |
||
| 351 | return true; |
||
| 352 | |||
| 353 | DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second; |
||
| 354 | DomTreeNodeBase<NodeT> &OtherNd = *OI->second; |
||
| 355 | |||
| 356 | if (MyNd.compare(&OtherNd)) |
||
| 357 | return true; |
||
| 358 | } |
||
| 359 | |||
| 360 | return false; |
||
| 361 | } |
||
| 362 | |||
| 363 | /// getNode - return the (Post)DominatorTree node for the specified basic |
||
| 364 | /// block. This is the same as using operator[] on this class. The result |
||
| 365 | /// may (but is not required to) be null for a forward (backwards) |
||
| 366 | /// statically unreachable block. |
||
| 367 | DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const { |
||
| 368 | auto I = DomTreeNodes.find(BB); |
||
| 369 | if (I != DomTreeNodes.end()) |
||
| 370 | return I->second.get(); |
||
| 371 | return nullptr; |
||
| 372 | } |
||
| 373 | |||
| 374 | /// See getNode. |
||
| 375 | DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const { |
||
| 376 | return getNode(BB); |
||
| 377 | } |
||
| 378 | |||
| 379 | /// getRootNode - This returns the entry node for the CFG of the function. If |
||
| 380 | /// this tree represents the post-dominance relations for a function, however, |
||
| 381 | /// this root may be a node with the block == NULL. This is the case when |
||
| 382 | /// there are multiple exit nodes from a particular function. Consumers of |
||
| 383 | /// post-dominance information must be capable of dealing with this |
||
| 384 | /// possibility. |
||
| 385 | /// |
||
| 386 | DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } |
||
| 387 | const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } |
||
| 388 | |||
| 389 | /// Get all nodes dominated by R, including R itself. |
||
| 390 | void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const { |
||
| 391 | Result.clear(); |
||
| 392 | const DomTreeNodeBase<NodeT> *RN = getNode(R); |
||
| 393 | if (!RN) |
||
| 394 | return; // If R is unreachable, it will not be present in the DOM tree. |
||
| 395 | SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL; |
||
| 396 | WL.push_back(RN); |
||
| 397 | |||
| 398 | while (!WL.empty()) { |
||
| 399 | const DomTreeNodeBase<NodeT> *N = WL.pop_back_val(); |
||
| 400 | Result.push_back(N->getBlock()); |
||
| 401 | WL.append(N->begin(), N->end()); |
||
| 402 | } |
||
| 403 | } |
||
| 404 | |||
| 405 | /// properlyDominates - Returns true iff A dominates B and A != B. |
||
| 406 | /// Note that this is not a constant time operation! |
||
| 407 | /// |
||
| 408 | bool properlyDominates(const DomTreeNodeBase<NodeT> *A, |
||
| 409 | const DomTreeNodeBase<NodeT> *B) const { |
||
| 410 | if (!A || !B) |
||
| 411 | return false; |
||
| 412 | if (A == B) |
||
| 413 | return false; |
||
| 414 | return dominates(A, B); |
||
| 415 | } |
||
| 416 | |||
| 417 | bool properlyDominates(const NodeT *A, const NodeT *B) const; |
||
| 418 | |||
| 419 | /// isReachableFromEntry - Return true if A is dominated by the entry |
||
| 420 | /// block of the function containing it. |
||
| 421 | bool isReachableFromEntry(const NodeT *A) const { |
||
| 422 | assert(!this->isPostDominator() && |
||
| 423 | "This is not implemented for post dominators"); |
||
| 424 | return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); |
||
| 425 | } |
||
| 426 | |||
| 427 | bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; } |
||
| 428 | |||
| 429 | /// dominates - Returns true iff A dominates B. Note that this is not a |
||
| 430 | /// constant time operation! |
||
| 431 | /// |
||
| 432 | bool dominates(const DomTreeNodeBase<NodeT> *A, |
||
| 433 | const DomTreeNodeBase<NodeT> *B) const { |
||
| 434 | // A node trivially dominates itself. |
||
| 435 | if (B == A) |
||
| 436 | return true; |
||
| 437 | |||
| 438 | // An unreachable node is dominated by anything. |
||
| 439 | if (!isReachableFromEntry(B)) |
||
| 440 | return true; |
||
| 441 | |||
| 442 | // And dominates nothing. |
||
| 443 | if (!isReachableFromEntry(A)) |
||
| 444 | return false; |
||
| 445 | |||
| 446 | if (B->getIDom() == A) return true; |
||
| 447 | |||
| 448 | if (A->getIDom() == B) return false; |
||
| 449 | |||
| 450 | // A can only dominate B if it is higher in the tree. |
||
| 451 | if (A->getLevel() >= B->getLevel()) return false; |
||
| 452 | |||
| 453 | // Compare the result of the tree walk and the dfs numbers, if expensive |
||
| 454 | // checks are enabled. |
||
| 455 | #ifdef EXPENSIVE_CHECKS |
||
| 456 | assert((!DFSInfoValid || |
||
| 457 | (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && |
||
| 458 | "Tree walk disagrees with dfs numbers!"); |
||
| 459 | #endif |
||
| 460 | |||
| 461 | if (DFSInfoValid) |
||
| 462 | return B->DominatedBy(A); |
||
| 463 | |||
| 464 | // If we end up with too many slow queries, just update the |
||
| 465 | // DFS numbers on the theory that we are going to keep querying. |
||
| 466 | SlowQueries++; |
||
| 467 | if (SlowQueries > 32) { |
||
| 468 | updateDFSNumbers(); |
||
| 469 | return B->DominatedBy(A); |
||
| 470 | } |
||
| 471 | |||
| 472 | return dominatedBySlowTreeWalk(A, B); |
||
| 473 | } |
||
| 474 | |||
| 475 | bool dominates(const NodeT *A, const NodeT *B) const; |
||
| 476 | |||
| 477 | NodeT *getRoot() const { |
||
| 478 | assert(this->Roots.size() == 1 && "Should always have entry node!"); |
||
| 479 | return this->Roots[0]; |
||
| 480 | } |
||
| 481 | |||
| 482 | /// Find nearest common dominator basic block for basic block A and B. A and B |
||
| 483 | /// must have tree nodes. |
||
| 484 | NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const { |
||
| 485 | assert(A && B && "Pointers are not valid"); |
||
| 486 | assert(NodeTrait::getParent(A) == NodeTrait::getParent(B) && |
||
| 487 | "Two blocks are not in same function"); |
||
| 488 | |||
| 489 | // If either A or B is a entry block then it is nearest common dominator |
||
| 490 | // (for forward-dominators). |
||
| 491 | if (!isPostDominator()) { |
||
| 492 | NodeT &Entry = |
||
| 493 | *DomTreeNodeTraits<NodeT>::getEntryNode(NodeTrait::getParent(A)); |
||
| 494 | if (A == &Entry || B == &Entry) |
||
| 495 | return &Entry; |
||
| 496 | } |
||
| 497 | |||
| 498 | DomTreeNodeBase<NodeT> *NodeA = getNode(A); |
||
| 499 | DomTreeNodeBase<NodeT> *NodeB = getNode(B); |
||
| 500 | assert(NodeA && "A must be in the tree"); |
||
| 501 | assert(NodeB && "B must be in the tree"); |
||
| 502 | |||
| 503 | // Use level information to go up the tree until the levels match. Then |
||
| 504 | // continue going up til we arrive at the same node. |
||
| 505 | while (NodeA != NodeB) { |
||
| 506 | if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB); |
||
| 507 | |||
| 508 | NodeA = NodeA->IDom; |
||
| 509 | } |
||
| 510 | |||
| 511 | return NodeA->getBlock(); |
||
| 512 | } |
||
| 513 | |||
| 514 | const NodeT *findNearestCommonDominator(const NodeT *A, |
||
| 515 | const NodeT *B) const { |
||
| 516 | // Cast away the const qualifiers here. This is ok since |
||
| 517 | // const is re-introduced on the return type. |
||
| 518 | return findNearestCommonDominator(const_cast<NodeT *>(A), |
||
| 519 | const_cast<NodeT *>(B)); |
||
| 520 | } |
||
| 521 | |||
| 522 | bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const { |
||
| 523 | return isPostDominator() && !A->getBlock(); |
||
| 524 | } |
||
| 525 | |||
| 526 | //===--------------------------------------------------------------------===// |
||
| 527 | // API to update (Post)DominatorTree information based on modifications to |
||
| 528 | // the CFG... |
||
| 529 | |||
| 530 | /// Inform the dominator tree about a sequence of CFG edge insertions and |
||
| 531 | /// deletions and perform a batch update on the tree. |
||
| 532 | /// |
||
| 533 | /// This function should be used when there were multiple CFG updates after |
||
| 534 | /// the last dominator tree update. It takes care of performing the updates |
||
| 535 | /// in sync with the CFG and optimizes away the redundant operations that |
||
| 536 | /// cancel each other. |
||
| 537 | /// The functions expects the sequence of updates to be balanced. Eg.: |
||
| 538 | /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because |
||
| 539 | /// logically it results in a single insertions. |
||
| 540 | /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make |
||
| 541 | /// sense to insert the same edge twice. |
||
| 542 | /// |
||
| 543 | /// What's more, the functions assumes that it's safe to ask every node in the |
||
| 544 | /// CFG about its children and inverse children. This implies that deletions |
||
| 545 | /// of CFG edges must not delete the CFG nodes before calling this function. |
||
| 546 | /// |
||
| 547 | /// The applyUpdates function can reorder the updates and remove redundant |
||
| 548 | /// ones internally (as long as it is done in a deterministic fashion). The |
||
| 549 | /// batch updater is also able to detect sequences of zero and exactly one |
||
| 550 | /// update -- it's optimized to do less work in these cases. |
||
| 551 | /// |
||
| 552 | /// Note that for postdominators it automatically takes care of applying |
||
| 553 | /// updates on reverse edges internally (so there's no need to swap the |
||
| 554 | /// From and To pointers when constructing DominatorTree::UpdateType). |
||
| 555 | /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T> |
||
| 556 | /// with the same template parameter T. |
||
| 557 | /// |
||
| 558 | /// \param Updates An ordered sequence of updates to perform. The current CFG |
||
| 559 | /// and the reverse of these updates provides the pre-view of the CFG. |
||
| 560 | /// |
||
| 561 | void applyUpdates(ArrayRef<UpdateType> Updates) { |
||
| 562 | GraphDiff<NodePtr, IsPostDominator> PreViewCFG( |
||
| 563 | Updates, /*ReverseApplyUpdates=*/true); |
||
| 564 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr); |
||
| 565 | } |
||
| 566 | |||
| 567 | /// \param Updates An ordered sequence of updates to perform. The current CFG |
||
| 568 | /// and the reverse of these updates provides the pre-view of the CFG. |
||
| 569 | /// \param PostViewUpdates An ordered sequence of update to perform in order |
||
| 570 | /// to obtain a post-view of the CFG. The DT will be updated assuming the |
||
| 571 | /// obtained PostViewCFG is the desired end state. |
||
| 572 | void applyUpdates(ArrayRef<UpdateType> Updates, |
||
| 573 | ArrayRef<UpdateType> PostViewUpdates) { |
||
| 574 | if (Updates.empty()) { |
||
| 575 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); |
||
| 576 | DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG); |
||
| 577 | } else { |
||
| 578 | // PreViewCFG needs to merge Updates and PostViewCFG. The updates in |
||
| 579 | // Updates need to be reversed, and match the direction in PostViewCFG. |
||
| 580 | // The PostViewCFG is created with updates reversed (equivalent to changes |
||
| 581 | // made to the CFG), so the PreViewCFG needs all the updates reverse |
||
| 582 | // applied. |
||
| 583 | SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end()); |
||
| 584 | append_range(AllUpdates, PostViewUpdates); |
||
| 585 | GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates, |
||
| 586 | /*ReverseApplyUpdates=*/true); |
||
| 587 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); |
||
| 588 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG); |
||
| 589 | } |
||
| 590 | } |
||
| 591 | |||
| 592 | /// Inform the dominator tree about a CFG edge insertion and update the tree. |
||
| 593 | /// |
||
| 594 | /// This function has to be called just before or just after making the update |
||
| 595 | /// on the actual CFG. There cannot be any other updates that the dominator |
||
| 596 | /// tree doesn't know about. |
||
| 597 | /// |
||
| 598 | /// Note that for postdominators it automatically takes care of inserting |
||
| 599 | /// a reverse edge internally (so there's no need to swap the parameters). |
||
| 600 | /// |
||
| 601 | void insertEdge(NodeT *From, NodeT *To) { |
||
| 602 | assert(From); |
||
| 603 | assert(To); |
||
| 604 | assert(NodeTrait::getParent(From) == Parent); |
||
| 605 | assert(NodeTrait::getParent(To) == Parent); |
||
| 606 | DomTreeBuilder::InsertEdge(*this, From, To); |
||
| 607 | } |
||
| 608 | |||
| 609 | /// Inform the dominator tree about a CFG edge deletion and update the tree. |
||
| 610 | /// |
||
| 611 | /// This function has to be called just after making the update on the actual |
||
| 612 | /// CFG. An internal functions checks if the edge doesn't exist in the CFG in |
||
| 613 | /// DEBUG mode. There cannot be any other updates that the |
||
| 614 | /// dominator tree doesn't know about. |
||
| 615 | /// |
||
| 616 | /// Note that for postdominators it automatically takes care of deleting |
||
| 617 | /// a reverse edge internally (so there's no need to swap the parameters). |
||
| 618 | /// |
||
| 619 | void deleteEdge(NodeT *From, NodeT *To) { |
||
| 620 | assert(From); |
||
| 621 | assert(To); |
||
| 622 | assert(NodeTrait::getParent(From) == Parent); |
||
| 623 | assert(NodeTrait::getParent(To) == Parent); |
||
| 624 | DomTreeBuilder::DeleteEdge(*this, From, To); |
||
| 625 | } |
||
| 626 | |||
| 627 | /// Add a new node to the dominator tree information. |
||
| 628 | /// |
||
| 629 | /// This creates a new node as a child of DomBB dominator node, linking it |
||
| 630 | /// into the children list of the immediate dominator. |
||
| 631 | /// |
||
| 632 | /// \param BB New node in CFG. |
||
| 633 | /// \param DomBB CFG node that is dominator for BB. |
||
| 634 | /// \returns New dominator tree node that represents new CFG node. |
||
| 635 | /// |
||
| 636 | DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { |
||
| 637 | assert(getNode(BB) == nullptr && "Block already in dominator tree!"); |
||
| 638 | DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); |
||
| 639 | assert(IDomNode && "Not immediate dominator specified for block!"); |
||
| 640 | DFSInfoValid = false; |
||
| 641 | return createChild(BB, IDomNode); |
||
| 642 | } |
||
| 643 | |||
| 644 | /// Add a new node to the forward dominator tree and make it a new root. |
||
| 645 | /// |
||
| 646 | /// \param BB New node in CFG. |
||
| 647 | /// \returns New dominator tree node that represents new CFG node. |
||
| 648 | /// |
||
| 649 | DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) { |
||
| 650 | assert(getNode(BB) == nullptr && "Block already in dominator tree!"); |
||
| 651 | assert(!this->isPostDominator() && |
||
| 652 | "Cannot change root of post-dominator tree"); |
||
| 653 | DFSInfoValid = false; |
||
| 654 | DomTreeNodeBase<NodeT> *NewNode = createNode(BB); |
||
| 655 | if (Roots.empty()) { |
||
| 656 | addRoot(BB); |
||
| 657 | } else { |
||
| 658 | assert(Roots.size() == 1); |
||
| 659 | NodeT *OldRoot = Roots.front(); |
||
| 660 | auto &OldNode = DomTreeNodes[OldRoot]; |
||
| 661 | OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot])); |
||
| 662 | OldNode->IDom = NewNode; |
||
| 663 | OldNode->UpdateLevel(); |
||
| 664 | Roots[0] = BB; |
||
| 665 | } |
||
| 666 | return RootNode = NewNode; |
||
| 667 | } |
||
| 668 | |||
| 669 | /// changeImmediateDominator - This method is used to update the dominator |
||
| 670 | /// tree information when a node's immediate dominator changes. |
||
| 671 | /// |
||
| 672 | void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, |
||
| 673 | DomTreeNodeBase<NodeT> *NewIDom) { |
||
| 674 | assert(N && NewIDom && "Cannot change null node pointers!"); |
||
| 675 | DFSInfoValid = false; |
||
| 676 | N->setIDom(NewIDom); |
||
| 677 | } |
||
| 678 | |||
| 679 | void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { |
||
| 680 | changeImmediateDominator(getNode(BB), getNode(NewBB)); |
||
| 681 | } |
||
| 682 | |||
| 683 | /// eraseNode - Removes a node from the dominator tree. Block must not |
||
| 684 | /// dominate any other blocks. Removes node from its immediate dominator's |
||
| 685 | /// children list. Deletes dominator node associated with basic block BB. |
||
| 686 | void eraseNode(NodeT *BB) { |
||
| 687 | DomTreeNodeBase<NodeT> *Node = getNode(BB); |
||
| 688 | assert(Node && "Removing node that isn't in dominator tree."); |
||
| 689 | assert(Node->isLeaf() && "Node is not a leaf node."); |
||
| 690 | |||
| 691 | DFSInfoValid = false; |
||
| 692 | |||
| 693 | // Remove node from immediate dominator's children list. |
||
| 694 | DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); |
||
| 695 | if (IDom) { |
||
| 696 | const auto I = find(IDom->Children, Node); |
||
| 697 | assert(I != IDom->Children.end() && |
||
| 698 | "Not in immediate dominator children set!"); |
||
| 699 | // I am no longer your child... |
||
| 700 | IDom->Children.erase(I); |
||
| 701 | } |
||
| 702 | |||
| 703 | DomTreeNodes.erase(BB); |
||
| 704 | |||
| 705 | if (!IsPostDom) return; |
||
| 706 | |||
| 707 | // Remember to update PostDominatorTree roots. |
||
| 708 | auto RIt = llvm::find(Roots, BB); |
||
| 709 | if (RIt != Roots.end()) { |
||
| 710 | std::swap(*RIt, Roots.back()); |
||
| 711 | Roots.pop_back(); |
||
| 712 | } |
||
| 713 | } |
||
| 714 | |||
| 715 | /// splitBlock - BB is split and now it has one successor. Update dominator |
||
| 716 | /// tree to reflect this change. |
||
| 717 | void splitBlock(NodeT *NewBB) { |
||
| 718 | if (IsPostDominator) |
||
| 719 | Split<Inverse<NodeT *>>(NewBB); |
||
| 720 | else |
||
| 721 | Split<NodeT *>(NewBB); |
||
| 722 | } |
||
| 723 | |||
| 724 | /// print - Convert to human readable form |
||
| 725 | /// |
||
| 726 | void print(raw_ostream &O) const { |
||
| 727 | O << "=============================--------------------------------\n"; |
||
| 728 | if (IsPostDominator) |
||
| 729 | O << "Inorder PostDominator Tree: "; |
||
| 730 | else |
||
| 731 | O << "Inorder Dominator Tree: "; |
||
| 732 | if (!DFSInfoValid) |
||
| 733 | O << "DFSNumbers invalid: " << SlowQueries << " slow queries."; |
||
| 734 | O << "\n"; |
||
| 735 | |||
| 736 | // The postdom tree can have a null root if there are no returns. |
||
| 737 | if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1); |
||
| 738 | O << "Roots: "; |
||
| 739 | for (const NodePtr Block : Roots) { |
||
| 740 | Block->printAsOperand(O, false); |
||
| 741 | O << " "; |
||
| 742 | } |
||
| 743 | O << "\n"; |
||
| 744 | } |
||
| 745 | |||
| 746 | public: |
||
| 747 | /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking |
||
| 748 | /// dominator tree in dfs order. |
||
| 749 | void updateDFSNumbers() const { |
||
| 750 | if (DFSInfoValid) { |
||
| 751 | SlowQueries = 0; |
||
| 752 | return; |
||
| 753 | } |
||
| 754 | |||
| 755 | SmallVector<std::pair<const DomTreeNodeBase<NodeT> *, |
||
| 756 | typename DomTreeNodeBase<NodeT>::const_iterator>, |
||
| 757 | 32> WorkStack; |
||
| 758 | |||
| 759 | const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); |
||
| 760 | assert((!Parent || ThisRoot) && "Empty constructed DomTree"); |
||
| 761 | if (!ThisRoot) |
||
| 762 | return; |
||
| 763 | |||
| 764 | // Both dominators and postdominators have a single root node. In the case |
||
| 765 | // case of PostDominatorTree, this node is a virtual root. |
||
| 766 | WorkStack.push_back({ThisRoot, ThisRoot->begin()}); |
||
| 767 | |||
| 768 | unsigned DFSNum = 0; |
||
| 769 | ThisRoot->DFSNumIn = DFSNum++; |
||
| 770 | |||
| 771 | while (!WorkStack.empty()) { |
||
| 772 | const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; |
||
| 773 | const auto ChildIt = WorkStack.back().second; |
||
| 774 | |||
| 775 | // If we visited all of the children of this node, "recurse" back up the |
||
| 776 | // stack setting the DFOutNum. |
||
| 777 | if (ChildIt == Node->end()) { |
||
| 778 | Node->DFSNumOut = DFSNum++; |
||
| 779 | WorkStack.pop_back(); |
||
| 780 | } else { |
||
| 781 | // Otherwise, recursively visit this child. |
||
| 782 | const DomTreeNodeBase<NodeT> *Child = *ChildIt; |
||
| 783 | ++WorkStack.back().second; |
||
| 784 | |||
| 785 | WorkStack.push_back({Child, Child->begin()}); |
||
| 786 | Child->DFSNumIn = DFSNum++; |
||
| 787 | } |
||
| 788 | } |
||
| 789 | |||
| 790 | SlowQueries = 0; |
||
| 791 | DFSInfoValid = true; |
||
| 792 | } |
||
| 793 | |||
| 794 | /// recalculate - compute a dominator tree for the given function |
||
| 795 | void recalculate(ParentType &Func) { |
||
| 796 | Parent = &Func; |
||
| 797 | DomTreeBuilder::Calculate(*this); |
||
| 798 | } |
||
| 799 | |||
| 800 | void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) { |
||
| 801 | Parent = &Func; |
||
| 802 | DomTreeBuilder::CalculateWithUpdates(*this, Updates); |
||
| 803 | } |
||
| 804 | |||
| 805 | /// verify - checks if the tree is correct. There are 3 level of verification: |
||
| 806 | /// - Full -- verifies if the tree is correct by making sure all the |
||
| 807 | /// properties (including the parent and the sibling property) |
||
| 808 | /// hold. |
||
| 809 | /// Takes O(N^3) time. |
||
| 810 | /// |
||
| 811 | /// - Basic -- checks if the tree is correct, but compares it to a freshly |
||
| 812 | /// constructed tree instead of checking the sibling property. |
||
| 813 | /// Takes O(N^2) time. |
||
| 814 | /// |
||
| 815 | /// - Fast -- checks basic tree structure and compares it with a freshly |
||
| 816 | /// constructed tree. |
||
| 817 | /// Takes O(N^2) time worst case, but is faster in practise (same |
||
| 818 | /// as tree construction). |
||
| 819 | bool verify(VerificationLevel VL = VerificationLevel::Full) const { |
||
| 820 | return DomTreeBuilder::Verify(*this, VL); |
||
| 821 | } |
||
| 822 | |||
| 823 | void reset() { |
||
| 824 | DomTreeNodes.clear(); |
||
| 825 | Roots.clear(); |
||
| 826 | RootNode = nullptr; |
||
| 827 | Parent = nullptr; |
||
| 828 | DFSInfoValid = false; |
||
| 829 | SlowQueries = 0; |
||
| 830 | } |
||
| 831 | |||
| 832 | protected: |
||
| 833 | void addRoot(NodeT *BB) { this->Roots.push_back(BB); } |
||
| 834 | |||
| 835 | DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) { |
||
| 836 | return (DomTreeNodes[BB] = IDom->addChild( |
||
| 837 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom))) |
||
| 838 | .get(); |
||
| 839 | } |
||
| 840 | |||
| 841 | DomTreeNodeBase<NodeT> *createNode(NodeT *BB) { |
||
| 842 | return (DomTreeNodes[BB] = |
||
| 843 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)) |
||
| 844 | .get(); |
||
| 845 | } |
||
| 846 | |||
| 847 | // NewBB is split and now it has one successor. Update dominator tree to |
||
| 848 | // reflect this change. |
||
| 849 | template <class N> |
||
| 850 | void Split(typename GraphTraits<N>::NodeRef NewBB) { |
||
| 851 | using GraphT = GraphTraits<N>; |
||
| 852 | using NodeRef = typename GraphT::NodeRef; |
||
| 853 | assert(std::distance(GraphT::child_begin(NewBB), |
||
| 854 | GraphT::child_end(NewBB)) == 1 && |
||
| 855 | "NewBB should have a single successor!"); |
||
| 856 | NodeRef NewBBSucc = *GraphT::child_begin(NewBB); |
||
| 857 | |||
| 858 | SmallVector<NodeRef, 4> PredBlocks(children<Inverse<N>>(NewBB)); |
||
| 859 | |||
| 860 | assert(!PredBlocks.empty() && "No predblocks?"); |
||
| 861 | |||
| 862 | bool NewBBDominatesNewBBSucc = true; |
||
| 863 | for (auto *Pred : children<Inverse<N>>(NewBBSucc)) { |
||
| 864 | if (Pred != NewBB && !dominates(NewBBSucc, Pred) && |
||
| 865 | isReachableFromEntry(Pred)) { |
||
| 866 | NewBBDominatesNewBBSucc = false; |
||
| 867 | break; |
||
| 868 | } |
||
| 869 | } |
||
| 870 | |||
| 871 | // Find NewBB's immediate dominator and create new dominator tree node for |
||
| 872 | // NewBB. |
||
| 873 | NodeT *NewBBIDom = nullptr; |
||
| 874 | unsigned i = 0; |
||
| 875 | for (i = 0; i < PredBlocks.size(); ++i) |
||
| 876 | if (isReachableFromEntry(PredBlocks[i])) { |
||
| 877 | NewBBIDom = PredBlocks[i]; |
||
| 878 | break; |
||
| 879 | } |
||
| 880 | |||
| 881 | // It's possible that none of the predecessors of NewBB are reachable; |
||
| 882 | // in that case, NewBB itself is unreachable, so nothing needs to be |
||
| 883 | // changed. |
||
| 884 | if (!NewBBIDom) return; |
||
| 885 | |||
| 886 | for (i = i + 1; i < PredBlocks.size(); ++i) { |
||
| 887 | if (isReachableFromEntry(PredBlocks[i])) |
||
| 888 | NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); |
||
| 889 | } |
||
| 890 | |||
| 891 | // Create the new dominator tree node... and set the idom of NewBB. |
||
| 892 | DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom); |
||
| 893 | |||
| 894 | // If NewBB strictly dominates other blocks, then it is now the immediate |
||
| 895 | // dominator of NewBBSucc. Update the dominator tree as appropriate. |
||
| 896 | if (NewBBDominatesNewBBSucc) { |
||
| 897 | DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc); |
||
| 898 | changeImmediateDominator(NewBBSuccNode, NewBBNode); |
||
| 899 | } |
||
| 900 | } |
||
| 901 | |||
| 902 | private: |
||
| 903 | bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, |
||
| 904 | const DomTreeNodeBase<NodeT> *B) const { |
||
| 905 | assert(A != B); |
||
| 906 | assert(isReachableFromEntry(B)); |
||
| 907 | assert(isReachableFromEntry(A)); |
||
| 908 | |||
| 909 | const unsigned ALevel = A->getLevel(); |
||
| 910 | const DomTreeNodeBase<NodeT> *IDom; |
||
| 911 | |||
| 912 | // Don't walk nodes above A's subtree. When we reach A's level, we must |
||
| 913 | // either find A or be in some other subtree not dominated by A. |
||
| 914 | while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel) |
||
| 915 | B = IDom; // Walk up the tree |
||
| 916 | |||
| 917 | return B == A; |
||
| 918 | } |
||
| 919 | |||
| 920 | /// Wipe this tree's state without releasing any resources. |
||
| 921 | /// |
||
| 922 | /// This is essentially a post-move helper only. It leaves the object in an |
||
| 923 | /// assignable and destroyable state, but otherwise invalid. |
||
| 924 | void wipe() { |
||
| 925 | DomTreeNodes.clear(); |
||
| 926 | RootNode = nullptr; |
||
| 927 | Parent = nullptr; |
||
| 928 | } |
||
| 929 | }; |
||
| 930 | |||
| 931 | template <typename T> |
||
| 932 | using DomTreeBase = DominatorTreeBase<T, false>; |
||
| 933 | |||
| 934 | template <typename T> |
||
| 935 | using PostDomTreeBase = DominatorTreeBase<T, true>; |
||
| 936 | |||
| 937 | // These two functions are declared out of line as a workaround for building |
||
| 938 | // with old (< r147295) versions of clang because of pr11642. |
||
| 939 | template <typename NodeT, bool IsPostDom> |
||
| 940 | bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A, |
||
| 941 | const NodeT *B) const { |
||
| 942 | if (A == B) |
||
| 943 | return true; |
||
| 944 | |||
| 945 | // Cast away the const qualifiers here. This is ok since |
||
| 946 | // this function doesn't actually return the values returned |
||
| 947 | // from getNode. |
||
| 948 | return dominates(getNode(const_cast<NodeT *>(A)), |
||
| 949 | getNode(const_cast<NodeT *>(B))); |
||
| 950 | } |
||
| 951 | template <typename NodeT, bool IsPostDom> |
||
| 952 | bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates( |
||
| 953 | const NodeT *A, const NodeT *B) const { |
||
| 954 | if (A == B) |
||
| 955 | return false; |
||
| 956 | |||
| 957 | // Cast away the const qualifiers here. This is ok since |
||
| 958 | // this function doesn't actually return the values returned |
||
| 959 | // from getNode. |
||
| 960 | return dominates(getNode(const_cast<NodeT *>(A)), |
||
| 961 | getNode(const_cast<NodeT *>(B))); |
||
| 962 | } |
||
| 963 | |||
| 964 | } // end namespace llvm |
||
| 965 | |||
| 966 | #endif // LLVM_SUPPORT_GENERICDOMTREE_H |