Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(),
10
// cast_if_present<X>(), and dyn_cast_if_present<X>() templates.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_SUPPORT_CASTING_H
15
#define LLVM_SUPPORT_CASTING_H
16
 
17
#include "llvm/Support/Compiler.h"
18
#include "llvm/Support/type_traits.h"
19
#include <cassert>
20
#include <memory>
21
#include <optional>
22
#include <type_traits>
23
 
24
namespace llvm {
25
 
26
//===----------------------------------------------------------------------===//
27
// simplify_type
28
//===----------------------------------------------------------------------===//
29
 
30
/// Define a template that can be specialized by smart pointers to reflect the
31
/// fact that they are automatically dereferenced, and are not involved with the
32
/// template selection process...  the default implementation is a noop.
33
// TODO: rename this and/or replace it with other cast traits.
34
template <typename From> struct simplify_type {
35
  using SimpleType = From; // The real type this represents...
36
 
37
  // An accessor to get the real value...
38
  static SimpleType &getSimplifiedValue(From &Val) { return Val; }
39
};
40
 
41
template <typename From> struct simplify_type<const From> {
42
  using NonConstSimpleType = typename simplify_type<From>::SimpleType;
43
  using SimpleType = typename add_const_past_pointer<NonConstSimpleType>::type;
44
  using RetType =
45
      typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
 
47
  static RetType getSimplifiedValue(const From &Val) {
48
    return simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val));
49
  }
50
};
51
 
52
// TODO: add this namespace once everyone is switched to using the new
53
//       interface.
54
// namespace detail {
55
 
56
//===----------------------------------------------------------------------===//
57
// isa_impl
58
//===----------------------------------------------------------------------===//
59
 
60
// The core of the implementation of isa<X> is here; To and From should be
61
// the names of classes.  This template can be specialized to customize the
62
// implementation of isa<> without rewriting it from scratch.
63
template <typename To, typename From, typename Enabler = void> struct isa_impl {
64
  static inline bool doit(const From &Val) { return To::classof(&Val); }
65
};
66
 
67
// Always allow upcasts, and perform no dynamic check for them.
68
template <typename To, typename From>
69
struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
70
  static inline bool doit(const From &) { return true; }
71
};
72
 
73
template <typename To, typename From> struct isa_impl_cl {
74
  static inline bool doit(const From &Val) {
75
    return isa_impl<To, From>::doit(Val);
76
  }
77
};
78
 
79
template <typename To, typename From> struct isa_impl_cl<To, const From> {
80
  static inline bool doit(const From &Val) {
81
    return isa_impl<To, From>::doit(Val);
82
  }
83
};
84
 
85
template <typename To, typename From>
86
struct isa_impl_cl<To, const std::unique_ptr<From>> {
87
  static inline bool doit(const std::unique_ptr<From> &Val) {
88
    assert(Val && "isa<> used on a null pointer");
89
    return isa_impl_cl<To, From>::doit(*Val);
90
  }
91
};
92
 
93
template <typename To, typename From> struct isa_impl_cl<To, From *> {
94
  static inline bool doit(const From *Val) {
95
    assert(Val && "isa<> used on a null pointer");
96
    return isa_impl<To, From>::doit(*Val);
97
  }
98
};
99
 
100
template <typename To, typename From> struct isa_impl_cl<To, From *const> {
101
  static inline bool doit(const From *Val) {
102
    assert(Val && "isa<> used on a null pointer");
103
    return isa_impl<To, From>::doit(*Val);
104
  }
105
};
106
 
107
template <typename To, typename From> struct isa_impl_cl<To, const From *> {
108
  static inline bool doit(const From *Val) {
109
    assert(Val && "isa<> used on a null pointer");
110
    return isa_impl<To, From>::doit(*Val);
111
  }
112
};
113
 
114
template <typename To, typename From>
115
struct isa_impl_cl<To, const From *const> {
116
  static inline bool doit(const From *Val) {
117
    assert(Val && "isa<> used on a null pointer");
118
    return isa_impl<To, From>::doit(*Val);
119
  }
120
};
121
 
122
template <typename To, typename From, typename SimpleFrom>
123
struct isa_impl_wrap {
124
  // When From != SimplifiedType, we can simplify the type some more by using
125
  // the simplify_type template.
126
  static bool doit(const From &Val) {
127
    return isa_impl_wrap<To, SimpleFrom,
128
                         typename simplify_type<SimpleFrom>::SimpleType>::
129
        doit(simplify_type<const From>::getSimplifiedValue(Val));
130
  }
131
};
132
 
133
template <typename To, typename FromTy>
134
struct isa_impl_wrap<To, FromTy, FromTy> {
135
  // When From == SimpleType, we are as simple as we are going to get.
136
  static bool doit(const FromTy &Val) {
137
    return isa_impl_cl<To, FromTy>::doit(Val);
138
  }
139
};
140
 
141
//===----------------------------------------------------------------------===//
142
// cast_retty + cast_retty_impl
143
//===----------------------------------------------------------------------===//
144
 
145
template <class To, class From> struct cast_retty;
146
 
147
// Calculate what type the 'cast' function should return, based on a requested
148
// type of To and a source type of From.
149
template <class To, class From> struct cast_retty_impl {
150
  using ret_type = To &; // Normal case, return Ty&
151
};
152
template <class To, class From> struct cast_retty_impl<To, const From> {
153
  using ret_type = const To &; // Normal case, return Ty&
154
};
155
 
156
template <class To, class From> struct cast_retty_impl<To, From *> {
157
  using ret_type = To *; // Pointer arg case, return Ty*
158
};
159
 
160
template <class To, class From> struct cast_retty_impl<To, const From *> {
161
  using ret_type = const To *; // Constant pointer arg case, return const Ty*
162
};
163
 
164
template <class To, class From> struct cast_retty_impl<To, const From *const> {
165
  using ret_type = const To *; // Constant pointer arg case, return const Ty*
166
};
167
 
168
template <class To, class From>
169
struct cast_retty_impl<To, std::unique_ptr<From>> {
170
private:
171
  using PointerType = typename cast_retty_impl<To, From *>::ret_type;
172
  using ResultType = std::remove_pointer_t<PointerType>;
173
 
174
public:
175
  using ret_type = std::unique_ptr<ResultType>;
176
};
177
 
178
template <class To, class From, class SimpleFrom> struct cast_retty_wrap {
179
  // When the simplified type and the from type are not the same, use the type
180
  // simplifier to reduce the type, then reuse cast_retty_impl to get the
181
  // resultant type.
182
  using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
183
};
184
 
185
template <class To, class FromTy> struct cast_retty_wrap<To, FromTy, FromTy> {
186
  // When the simplified type is equal to the from type, use it directly.
187
  using ret_type = typename cast_retty_impl<To, FromTy>::ret_type;
188
};
189
 
190
template <class To, class From> struct cast_retty {
191
  using ret_type = typename cast_retty_wrap<
192
      To, From, typename simplify_type<From>::SimpleType>::ret_type;
193
};
194
 
195
//===----------------------------------------------------------------------===//
196
// cast_convert_val
197
//===----------------------------------------------------------------------===//
198
 
199
// Ensure the non-simple values are converted using the simplify_type template
200
// that may be specialized by smart pointers...
201
//
202
template <class To, class From, class SimpleFrom> struct cast_convert_val {
203
  // This is not a simple type, use the template to simplify it...
204
  static typename cast_retty<To, From>::ret_type doit(const From &Val) {
205
    return cast_convert_val<To, SimpleFrom,
206
                            typename simplify_type<SimpleFrom>::SimpleType>::
207
        doit(simplify_type<From>::getSimplifiedValue(const_cast<From &>(Val)));
208
  }
209
};
210
 
211
template <class To, class FromTy> struct cast_convert_val<To, FromTy, FromTy> {
212
  // If it's a reference, switch to a pointer to do the cast and then deref it.
213
  static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
214
    return *(std::remove_reference_t<typename cast_retty<To, FromTy>::ret_type>
215
                 *)&const_cast<FromTy &>(Val);
216
  }
217
};
218
 
219
template <class To, class FromTy>
220
struct cast_convert_val<To, FromTy *, FromTy *> {
221
  // If it's a pointer, we can use c-style casting directly.
222
  static typename cast_retty<To, FromTy *>::ret_type doit(const FromTy *Val) {
223
    return (typename cast_retty<To, FromTy *>::ret_type) const_cast<FromTy *>(
224
        Val);
225
  }
226
};
227
 
228
//===----------------------------------------------------------------------===//
229
// is_simple_type
230
//===----------------------------------------------------------------------===//
231
 
232
template <class X> struct is_simple_type {
233
  static const bool value =
234
      std::is_same<X, typename simplify_type<X>::SimpleType>::value;
235
};
236
 
237
// } // namespace detail
238
 
239
//===----------------------------------------------------------------------===//
240
// CastIsPossible
241
//===----------------------------------------------------------------------===//
242
 
243
/// This struct provides a way to check if a given cast is possible. It provides
244
/// a static function called isPossible that is used to check if a cast can be
245
/// performed. It should be overridden like this:
246
///
247
/// template<> struct CastIsPossible<foo, bar> {
248
///   static inline bool isPossible(const bar &b) {
249
///     return bar.isFoo();
250
///   }
251
/// };
252
template <typename To, typename From, typename Enable = void>
253
struct CastIsPossible {
254
  static inline bool isPossible(const From &f) {
255
    return isa_impl_wrap<
256
        To, const From,
257
        typename simplify_type<const From>::SimpleType>::doit(f);
258
  }
259
};
260
 
261
// Needed for optional unwrapping. This could be implemented with isa_impl, but
262
// we want to implement things in the new method and move old implementations
263
// over. In fact, some of the isa_impl templates should be moved over to
264
// CastIsPossible.
265
template <typename To, typename From>
266
struct CastIsPossible<To, std::optional<From>> {
267
  static inline bool isPossible(const std::optional<From> &f) {
268
    assert(f && "CastIsPossible::isPossible called on a nullopt!");
269
    return isa_impl_wrap<
270
        To, const From,
271
        typename simplify_type<const From>::SimpleType>::doit(*f);
272
  }
273
};
274
 
275
/// Upcasting (from derived to base) and casting from a type to itself should
276
/// always be possible.
277
template <typename To, typename From>
278
struct CastIsPossible<To, From,
279
                      std::enable_if_t<std::is_base_of<To, From>::value>> {
280
  static inline bool isPossible(const From &f) { return true; }
281
};
282
 
283
//===----------------------------------------------------------------------===//
284
// Cast traits
285
//===----------------------------------------------------------------------===//
286
 
287
/// All of these cast traits are meant to be implementations for useful casts
288
/// that users may want to use that are outside the standard behavior. An
289
/// example of how to use a special cast called `CastTrait` is:
290
///
291
/// template<> struct CastInfo<foo, bar> : public CastTrait<foo, bar> {};
292
///
293
/// Essentially, if your use case falls directly into one of the use cases
294
/// supported by a given cast trait, simply inherit your special CastInfo
295
/// directly from one of these to avoid having to reimplement the boilerplate
296
/// `isPossible/castFailed/doCast/doCastIfPossible`. A cast trait can also
297
/// provide a subset of those functions.
298
 
299
/// This cast trait just provides castFailed for the specified `To` type to make
300
/// CastInfo specializations more declarative. In order to use this, the target
301
/// result type must be `To` and `To` must be constructible from `nullptr`.
302
template <typename To> struct NullableValueCastFailed {
303
  static To castFailed() { return To(nullptr); }
304
};
305
 
306
/// This cast trait just provides the default implementation of doCastIfPossible
307
/// to make CastInfo specializations more declarative. The `Derived` template
308
/// parameter *must* be provided for forwarding castFailed and doCast.
309
template <typename To, typename From, typename Derived>
310
struct DefaultDoCastIfPossible {
311
  static To doCastIfPossible(From f) {
312
    if (!Derived::isPossible(f))
313
      return Derived::castFailed();
314
    return Derived::doCast(f);
315
  }
316
};
317
 
318
namespace detail {
319
/// A helper to derive the type to use with `Self` for cast traits, when the
320
/// provided CRTP derived type is allowed to be void.
321
template <typename OptionalDerived, typename Default>
322
using SelfType = std::conditional_t<std::is_same<OptionalDerived, void>::value,
323
                                    Default, OptionalDerived>;
324
} // namespace detail
325
 
326
/// This cast trait provides casting for the specific case of casting to a
327
/// value-typed object from a pointer-typed object. Note that `To` must be
328
/// nullable/constructible from a pointer to `From` to use this cast.
329
template <typename To, typename From, typename Derived = void>
330
struct ValueFromPointerCast
331
    : public CastIsPossible<To, From *>,
332
      public NullableValueCastFailed<To>,
333
      public DefaultDoCastIfPossible<
334
          To, From *,
335
          detail::SelfType<Derived, ValueFromPointerCast<To, From>>> {
336
  static inline To doCast(From *f) { return To(f); }
337
};
338
 
339
/// This cast trait provides std::unique_ptr casting. It has the semantics of
340
/// moving the contents of the input unique_ptr into the output unique_ptr
341
/// during the cast. It's also a good example of how to implement a move-only
342
/// cast.
343
template <typename To, typename From, typename Derived = void>
344
struct UniquePtrCast : public CastIsPossible<To, From *> {
345
  using Self = detail::SelfType<Derived, UniquePtrCast<To, From>>;
346
  using CastResultType = std::unique_ptr<
347
      std::remove_reference_t<typename cast_retty<To, From>::ret_type>>;
348
 
349
  static inline CastResultType doCast(std::unique_ptr<From> &&f) {
350
    return CastResultType((typename CastResultType::element_type *)f.release());
351
  }
352
 
353
  static inline CastResultType castFailed() { return CastResultType(nullptr); }
354
 
355
  static inline CastResultType doCastIfPossible(std::unique_ptr<From> &&f) {
356
    if (!Self::isPossible(f))
357
      return castFailed();
358
    return doCast(f);
359
  }
360
};
361
 
362
/// This cast trait provides std::optional<T> casting. This means that if you
363
/// have a value type, you can cast it to another value type and have dyn_cast
364
/// return an std::optional<T>.
365
template <typename To, typename From, typename Derived = void>
366
struct OptionalValueCast
367
    : public CastIsPossible<To, From>,
368
      public DefaultDoCastIfPossible<
369
          std::optional<To>, From,
370
          detail::SelfType<Derived, OptionalValueCast<To, From>>> {
371
  static inline std::optional<To> castFailed() { return std::optional<To>{}; }
372
 
373
  static inline std::optional<To> doCast(const From &f) { return To(f); }
374
};
375
 
376
/// Provides a cast trait that strips `const` from types to make it easier to
377
/// implement a const-version of a non-const cast. It just removes boilerplate
378
/// and reduces the amount of code you as the user need to implement. You can
379
/// use it like this:
380
///
381
/// template<> struct CastInfo<foo, bar> {
382
///   ...verbose implementation...
383
/// };
384
///
385
/// template<> struct CastInfo<foo, const bar> : public
386
///        ConstStrippingForwardingCast<foo, const bar, CastInfo<foo, bar>> {};
387
///
388
template <typename To, typename From, typename ForwardTo>
389
struct ConstStrippingForwardingCast {
390
  // Remove the pointer if it exists, then we can get rid of consts/volatiles.
391
  using DecayedFrom = std::remove_cv_t<std::remove_pointer_t<From>>;
392
  // Now if it's a pointer, add it back. Otherwise, we want a ref.
393
  using NonConstFrom = std::conditional_t<std::is_pointer<From>::value,
394
                                          DecayedFrom *, DecayedFrom &>;
395
 
396
  static inline bool isPossible(const From &f) {
397
    return ForwardTo::isPossible(const_cast<NonConstFrom>(f));
398
  }
399
 
400
  static inline decltype(auto) castFailed() { return ForwardTo::castFailed(); }
401
 
402
  static inline decltype(auto) doCast(const From &f) {
403
    return ForwardTo::doCast(const_cast<NonConstFrom>(f));
404
  }
405
 
406
  static inline decltype(auto) doCastIfPossible(const From &f) {
407
    return ForwardTo::doCastIfPossible(const_cast<NonConstFrom>(f));
408
  }
409
};
410
 
411
/// Provides a cast trait that uses a defined pointer to pointer cast as a base
412
/// for reference-to-reference casts. Note that it does not provide castFailed
413
/// and doCastIfPossible because a pointer-to-pointer cast would likely just
414
/// return `nullptr` which could cause nullptr dereference. You can use it like
415
/// this:
416
///
417
///   template <> struct CastInfo<foo, bar *> { ... verbose implementation... };
418
///
419
///   template <>
420
///   struct CastInfo<foo, bar>
421
///       : public ForwardToPointerCast<foo, bar, CastInfo<foo, bar *>> {};
422
///
423
template <typename To, typename From, typename ForwardTo>
424
struct ForwardToPointerCast {
425
  static inline bool isPossible(const From &f) {
426
    return ForwardTo::isPossible(&f);
427
  }
428
 
429
  static inline decltype(auto) doCast(const From &f) {
430
    return *ForwardTo::doCast(&f);
431
  }
432
};
433
 
434
//===----------------------------------------------------------------------===//
435
// CastInfo
436
//===----------------------------------------------------------------------===//
437
 
438
/// This struct provides a method for customizing the way a cast is performed.
439
/// It inherits from CastIsPossible, to support the case of declaring many
440
/// CastIsPossible specializations without having to specialize the full
441
/// CastInfo.
442
///
443
/// In order to specialize different behaviors, specify different functions in
444
/// your CastInfo specialization.
445
/// For isa<> customization, provide:
446
///
447
///   `static bool isPossible(const From &f)`
448
///
449
/// For cast<> customization, provide:
450
///
451
///  `static To doCast(const From &f)`
452
///
453
/// For dyn_cast<> and the *_if_present<> variants' customization, provide:
454
///
455
///  `static To castFailed()` and `static To doCastIfPossible(const From &f)`
456
///
457
/// Your specialization might look something like this:
458
///
459
///  template<> struct CastInfo<foo, bar> : public CastIsPossible<foo, bar> {
460
///    static inline foo doCast(const bar &b) {
461
///      return foo(const_cast<bar &>(b));
462
///    }
463
///    static inline foo castFailed() { return foo(); }
464
///    static inline foo doCastIfPossible(const bar &b) {
465
///      if (!CastInfo<foo, bar>::isPossible(b))
466
///        return castFailed();
467
///      return doCast(b);
468
///    }
469
///  };
470
 
471
// The default implementations of CastInfo don't use cast traits for now because
472
// we need to specify types all over the place due to the current expected
473
// casting behavior and the way cast_retty works. New use cases can and should
474
// take advantage of the cast traits whenever possible!
475
 
476
template <typename To, typename From, typename Enable = void>
477
struct CastInfo : public CastIsPossible<To, From> {
478
  using Self = CastInfo<To, From, Enable>;
479
 
480
  using CastReturnType = typename cast_retty<To, From>::ret_type;
481
 
482
  static inline CastReturnType doCast(const From &f) {
483
    return cast_convert_val<
484
        To, From,
485
        typename simplify_type<From>::SimpleType>::doit(const_cast<From &>(f));
486
  }
487
 
488
  // This assumes that you can construct the cast return type from `nullptr`.
489
  // This is largely to support legacy use cases - if you don't want this
490
  // behavior you should specialize CastInfo for your use case.
491
  static inline CastReturnType castFailed() { return CastReturnType(nullptr); }
492
 
493
  static inline CastReturnType doCastIfPossible(const From &f) {
494
    if (!Self::isPossible(f))
495
      return castFailed();
496
    return doCast(f);
497
  }
498
};
499
 
500
/// This struct provides an overload for CastInfo where From has simplify_type
501
/// defined. This simply forwards to the appropriate CastInfo with the
502
/// simplified type/value, so you don't have to implement both.
503
template <typename To, typename From>
504
struct CastInfo<To, From, std::enable_if_t<!is_simple_type<From>::value>> {
505
  using Self = CastInfo<To, From>;
506
  using SimpleFrom = typename simplify_type<From>::SimpleType;
507
  using SimplifiedSelf = CastInfo<To, SimpleFrom>;
508
 
509
  static inline bool isPossible(From &f) {
510
    return SimplifiedSelf::isPossible(
511
        simplify_type<From>::getSimplifiedValue(f));
512
  }
513
 
514
  static inline decltype(auto) doCast(From &f) {
515
    return SimplifiedSelf::doCast(simplify_type<From>::getSimplifiedValue(f));
516
  }
517
 
518
  static inline decltype(auto) castFailed() {
519
    return SimplifiedSelf::castFailed();
520
  }
521
 
522
  static inline decltype(auto) doCastIfPossible(From &f) {
523
    return SimplifiedSelf::doCastIfPossible(
524
        simplify_type<From>::getSimplifiedValue(f));
525
  }
526
};
527
 
528
//===----------------------------------------------------------------------===//
529
// Pre-specialized CastInfo
530
//===----------------------------------------------------------------------===//
531
 
532
/// Provide a CastInfo specialized for std::unique_ptr.
533
template <typename To, typename From>
534
struct CastInfo<To, std::unique_ptr<From>> : public UniquePtrCast<To, From> {};
535
 
536
/// Provide a CastInfo specialized for std::optional<From>. It's assumed that if
537
/// the input is std::optional<From> that the output can be std::optional<To>.
538
/// If that's not the case, specialize CastInfo for your use case.
539
template <typename To, typename From>
540
struct CastInfo<To, std::optional<From>> : public OptionalValueCast<To, From> {
541
};
542
 
543
/// isa<X> - Return true if the parameter to the template is an instance of one
544
/// of the template type arguments.  Used like this:
545
///
546
///  if (isa<Type>(myVal)) { ... }
547
///  if (isa<Type0, Type1, Type2>(myVal)) { ... }
548
template <typename To, typename From>
549
[[nodiscard]] inline bool isa(const From &Val) {
550
  return CastInfo<To, const From>::isPossible(Val);
551
}
552
 
553
template <typename First, typename Second, typename... Rest, typename From>
554
[[nodiscard]] inline bool isa(const From &Val) {
555
  return isa<First>(Val) || isa<Second, Rest...>(Val);
556
}
557
 
558
/// cast<X> - Return the argument parameter cast to the specified type.  This
559
/// casting operator asserts that the type is correct, so it does not return
560
/// null on failure.  It does not allow a null argument (use cast_if_present for
561
/// that). It is typically used like this:
562
///
563
///  cast<Instruction>(myVal)->getParent()
564
 
565
template <typename To, typename From>
566
[[nodiscard]] inline decltype(auto) cast(const From &Val) {
567
  assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!");
568
  return CastInfo<To, const From>::doCast(Val);
569
}
570
 
571
template <typename To, typename From>
572
[[nodiscard]] inline decltype(auto) cast(From &Val) {
573
  assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!");
574
  return CastInfo<To, From>::doCast(Val);
575
}
576
 
577
template <typename To, typename From>
578
[[nodiscard]] inline decltype(auto) cast(From *Val) {
579
  assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!");
580
  return CastInfo<To, From *>::doCast(Val);
581
}
582
 
583
template <typename To, typename From>
584
[[nodiscard]] inline decltype(auto) cast(std::unique_ptr<From> &&Val) {
585
  assert(isa<To>(Val) && "cast<Ty>() argument of incompatible type!");
586
  return CastInfo<To, std::unique_ptr<From>>::doCast(std::move(Val));
587
}
588
 
589
//===----------------------------------------------------------------------===//
590
// ValueIsPresent
591
//===----------------------------------------------------------------------===//
592
 
593
template <typename T>
594
constexpr bool IsNullable =
595
    std::is_pointer_v<T> || std::is_constructible_v<T, std::nullptr_t>;
596
 
597
/// ValueIsPresent provides a way to check if a value is, well, present. For
598
/// pointers, this is the equivalent of checking against nullptr, for Optionals
599
/// this is the equivalent of checking hasValue(). It also provides a method for
600
/// unwrapping a value (think calling .value() on an optional).
601
 
602
// Generic values can't *not* be present.
603
template <typename T, typename Enable = void> struct ValueIsPresent {
604
  using UnwrappedType = T;
605
  static inline bool isPresent(const T &t) { return true; }
606
  static inline decltype(auto) unwrapValue(T &t) { return t; }
607
};
608
 
609
// Optional provides its own way to check if something is present.
610
template <typename T> struct ValueIsPresent<std::optional<T>> {
611
  using UnwrappedType = T;
612
  static inline bool isPresent(const std::optional<T> &t) {
613
    return t.has_value();
614
  }
615
  static inline decltype(auto) unwrapValue(std::optional<T> &t) { return *t; }
616
};
617
 
618
// If something is "nullable" then we just compare it to nullptr to see if it
619
// exists.
620
template <typename T>
621
struct ValueIsPresent<T, std::enable_if_t<IsNullable<T>>> {
622
  using UnwrappedType = T;
623
  static inline bool isPresent(const T &t) { return t != T(nullptr); }
624
  static inline decltype(auto) unwrapValue(T &t) { return t; }
625
};
626
 
627
namespace detail {
628
// Convenience function we can use to check if a value is present. Because of
629
// simplify_type, we have to call it on the simplified type for now.
630
template <typename T> inline bool isPresent(const T &t) {
631
  return ValueIsPresent<typename simplify_type<T>::SimpleType>::isPresent(
632
      simplify_type<T>::getSimplifiedValue(const_cast<T &>(t)));
633
}
634
 
635
// Convenience function we can use to unwrap a value.
636
template <typename T> inline decltype(auto) unwrapValue(T &t) {
637
  return ValueIsPresent<T>::unwrapValue(t);
638
}
639
} // namespace detail
640
 
641
/// dyn_cast<X> - Return the argument parameter cast to the specified type. This
642
/// casting operator returns null if the argument is of the wrong type, so it
643
/// can be used to test for a type as well as cast if successful. The value
644
/// passed in must be present, if not, use dyn_cast_if_present. This should be
645
/// used in the context of an if statement like this:
646
///
647
///  if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
648
 
649
template <typename To, typename From>
650
[[nodiscard]] inline decltype(auto) dyn_cast(const From &Val) {
651
  assert(detail::isPresent(Val) && "dyn_cast on a non-existent value");
652
  return CastInfo<To, const From>::doCastIfPossible(Val);
653
}
654
 
655
template <typename To, typename From>
656
[[nodiscard]] inline decltype(auto) dyn_cast(From &Val) {
657
  assert(detail::isPresent(Val) && "dyn_cast on a non-existent value");
658
  return CastInfo<To, From>::doCastIfPossible(Val);
659
}
660
 
661
template <typename To, typename From>
662
[[nodiscard]] inline decltype(auto) dyn_cast(From *Val) {
663
  assert(detail::isPresent(Val) && "dyn_cast on a non-existent value");
664
  return CastInfo<To, From *>::doCastIfPossible(Val);
665
}
666
 
667
template <typename To, typename From>
668
[[nodiscard]] inline decltype(auto) dyn_cast(std::unique_ptr<From> &&Val) {
669
  assert(detail::isPresent(Val) && "dyn_cast on a non-existent value");
670
  return CastInfo<To, std::unique_ptr<From>>::doCastIfPossible(
671
      std::forward<std::unique_ptr<From> &&>(Val));
672
}
673
 
674
/// isa_and_present<X> - Functionally identical to isa, except that a null value
675
/// is accepted.
676
template <typename... X, class Y>
677
[[nodiscard]] inline bool isa_and_present(const Y &Val) {
678
  if (!detail::isPresent(Val))
679
    return false;
680
  return isa<X...>(Val);
681
}
682
 
683
template <typename... X, class Y>
684
[[nodiscard]] inline bool isa_and_nonnull(const Y &Val) {
685
  return isa_and_present<X...>(Val);
686
}
687
 
688
/// cast_if_present<X> - Functionally identical to cast, except that a null
689
/// value is accepted.
690
template <class X, class Y>
691
[[nodiscard]] inline auto cast_if_present(const Y &Val) {
692
  if (!detail::isPresent(Val))
693
    return CastInfo<X, const Y>::castFailed();
694
  assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!");
695
  return cast<X>(detail::unwrapValue(Val));
696
}
697
 
698
template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y &Val) {
699
  if (!detail::isPresent(Val))
700
    return CastInfo<X, Y>::castFailed();
701
  assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!");
702
  return cast<X>(detail::unwrapValue(Val));
703
}
704
 
705
template <class X, class Y> [[nodiscard]] inline auto cast_if_present(Y *Val) {
706
  if (!detail::isPresent(Val))
707
    return CastInfo<X, Y *>::castFailed();
708
  assert(isa<X>(Val) && "cast_if_present<Ty>() argument of incompatible type!");
709
  return cast<X>(detail::unwrapValue(Val));
710
}
711
 
712
template <class X, class Y>
713
[[nodiscard]] inline auto cast_if_present(std::unique_ptr<Y> &&Val) {
714
  if (!detail::isPresent(Val))
715
    return UniquePtrCast<X, Y>::castFailed();
716
  return UniquePtrCast<X, Y>::doCast(std::move(Val));
717
}
718
 
719
// Provide a forwarding from cast_or_null to cast_if_present for current
720
// users. This is deprecated and will be removed in a future patch, use
721
// cast_if_present instead.
722
template <class X, class Y> auto cast_or_null(const Y &Val) {
723
  return cast_if_present<X>(Val);
724
}
725
 
726
template <class X, class Y> auto cast_or_null(Y &Val) {
727
  return cast_if_present<X>(Val);
728
}
729
 
730
template <class X, class Y> auto cast_or_null(Y *Val) {
731
  return cast_if_present<X>(Val);
732
}
733
 
734
template <class X, class Y> auto cast_or_null(std::unique_ptr<Y> &&Val) {
735
  return cast_if_present<X>(std::move(Val));
736
}
737
 
738
/// dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a
739
/// null (or none in the case of optionals) value is accepted.
740
template <class X, class Y> auto dyn_cast_if_present(const Y &Val) {
741
  if (!detail::isPresent(Val))
742
    return CastInfo<X, const Y>::castFailed();
743
  return CastInfo<X, const Y>::doCastIfPossible(detail::unwrapValue(Val));
744
}
745
 
746
template <class X, class Y> auto dyn_cast_if_present(Y &Val) {
747
  if (!detail::isPresent(Val))
748
    return CastInfo<X, Y>::castFailed();
749
  return CastInfo<X, Y>::doCastIfPossible(detail::unwrapValue(Val));
750
}
751
 
752
template <class X, class Y> auto dyn_cast_if_present(Y *Val) {
753
  if (!detail::isPresent(Val))
754
    return CastInfo<X, Y *>::castFailed();
755
  return CastInfo<X, Y *>::doCastIfPossible(detail::unwrapValue(Val));
756
}
757
 
758
// Forwards to dyn_cast_if_present to avoid breaking current users. This is
759
// deprecated and will be removed in a future patch, use
760
// cast_if_present instead.
761
template <class X, class Y> auto dyn_cast_or_null(const Y &Val) {
762
  return dyn_cast_if_present<X>(Val);
763
}
764
 
765
template <class X, class Y> auto dyn_cast_or_null(Y &Val) {
766
  return dyn_cast_if_present<X>(Val);
767
}
768
 
769
template <class X, class Y> auto dyn_cast_or_null(Y *Val) {
770
  return dyn_cast_if_present<X>(Val);
771
}
772
 
773
/// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
774
/// taking ownership of the input pointer iff isa<X>(Val) is true.  If the
775
/// cast is successful, From refers to nullptr on exit and the casted value
776
/// is returned.  If the cast is unsuccessful, the function returns nullptr
777
/// and From is unchanged.
778
template <class X, class Y>
779
[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
780
unique_dyn_cast(std::unique_ptr<Y> &Val) {
781
  if (!isa<X>(Val))
782
    return nullptr;
783
  return cast<X>(std::move(Val));
784
}
785
 
786
template <class X, class Y>
787
[[nodiscard]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
788
  return unique_dyn_cast<X, Y>(Val);
789
}
790
 
791
// unique_dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast,
792
// except that a null value is accepted.
793
template <class X, class Y>
794
[[nodiscard]] inline typename CastInfo<X, std::unique_ptr<Y>>::CastResultType
795
unique_dyn_cast_or_null(std::unique_ptr<Y> &Val) {
796
  if (!Val)
797
    return nullptr;
798
  return unique_dyn_cast<X, Y>(Val);
799
}
800
 
801
template <class X, class Y>
802
[[nodiscard]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
803
  return unique_dyn_cast_or_null<X, Y>(Val);
804
}
805
 
806
} // end namespace llvm
807
 
808
#endif // LLVM_SUPPORT_CASTING_H