Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
///
10
/// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms
11
/// to the LLVM "Allocator" concept and is similar to MallocAllocator, but
12
/// objects cannot be deallocated. Their lifetime is tied to the lifetime of the
13
/// allocator.
14
///
15
//===----------------------------------------------------------------------===//
16
 
17
#ifndef LLVM_SUPPORT_ALLOCATOR_H
18
#define LLVM_SUPPORT_ALLOCATOR_H
19
 
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/Support/Alignment.h"
22
#include "llvm/Support/AllocatorBase.h"
23
#include "llvm/Support/Compiler.h"
24
#include "llvm/Support/MathExtras.h"
25
#include <algorithm>
26
#include <cassert>
27
#include <cstddef>
28
#include <cstdint>
29
#include <iterator>
30
#include <optional>
31
#include <utility>
32
 
33
namespace llvm {
34
 
35
namespace detail {
36
 
37
// We call out to an external function to actually print the message as the
38
// printing code uses Allocator.h in its implementation.
39
void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
40
                                size_t TotalMemory);
41
 
42
} // end namespace detail
43
 
44
/// Allocate memory in an ever growing pool, as if by bump-pointer.
45
///
46
/// This isn't strictly a bump-pointer allocator as it uses backing slabs of
47
/// memory rather than relying on a boundless contiguous heap. However, it has
48
/// bump-pointer semantics in that it is a monotonically growing pool of memory
49
/// where every allocation is found by merely allocating the next N bytes in
50
/// the slab, or the next N bytes in the next slab.
51
///
52
/// Note that this also has a threshold for forcing allocations above a certain
53
/// size into their own slab.
54
///
55
/// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
56
/// object, which wraps malloc, to allocate memory, but it can be changed to
57
/// use a custom allocator.
58
///
59
/// The GrowthDelay specifies after how many allocated slabs the allocator
60
/// increases the size of the slabs.
61
template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
62
          size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128>
63
class BumpPtrAllocatorImpl
64
    : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize,
65
                                                SizeThreshold, GrowthDelay>>,
66
      private detail::AllocatorHolder<AllocatorT> {
67
  using AllocTy = detail::AllocatorHolder<AllocatorT>;
68
 
69
public:
70
  static_assert(SizeThreshold <= SlabSize,
71
                "The SizeThreshold must be at most the SlabSize to ensure "
72
                "that objects larger than a slab go into their own memory "
73
                "allocation.");
74
  static_assert(GrowthDelay > 0,
75
                "GrowthDelay must be at least 1 which already increases the"
76
                "slab size after each allocated slab.");
77
 
78
  BumpPtrAllocatorImpl() = default;
79
 
80
  template <typename T>
81
  BumpPtrAllocatorImpl(T &&Allocator)
82
      : AllocTy(std::forward<T &&>(Allocator)) {}
83
 
84
  // Manually implement a move constructor as we must clear the old allocator's
85
  // slabs as a matter of correctness.
86
  BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
87
      : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr),
88
        End(Old.End), Slabs(std::move(Old.Slabs)),
89
        CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
90
        BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) {
91
    Old.CurPtr = Old.End = nullptr;
92
    Old.BytesAllocated = 0;
93
    Old.Slabs.clear();
94
    Old.CustomSizedSlabs.clear();
95
  }
96
 
97
  ~BumpPtrAllocatorImpl() {
98
    DeallocateSlabs(Slabs.begin(), Slabs.end());
99
    DeallocateCustomSizedSlabs();
100
  }
101
 
102
  BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
103
    DeallocateSlabs(Slabs.begin(), Slabs.end());
104
    DeallocateCustomSizedSlabs();
105
 
106
    CurPtr = RHS.CurPtr;
107
    End = RHS.End;
108
    BytesAllocated = RHS.BytesAllocated;
109
    RedZoneSize = RHS.RedZoneSize;
110
    Slabs = std::move(RHS.Slabs);
111
    CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
112
    AllocTy::operator=(std::move(RHS.getAllocator()));
113
 
114
    RHS.CurPtr = RHS.End = nullptr;
115
    RHS.BytesAllocated = 0;
116
    RHS.Slabs.clear();
117
    RHS.CustomSizedSlabs.clear();
118
    return *this;
119
  }
120
 
121
  /// Deallocate all but the current slab and reset the current pointer
122
  /// to the beginning of it, freeing all memory allocated so far.
123
  void Reset() {
124
    // Deallocate all but the first slab, and deallocate all custom-sized slabs.
125
    DeallocateCustomSizedSlabs();
126
    CustomSizedSlabs.clear();
127
 
128
    if (Slabs.empty())
129
      return;
130
 
131
    // Reset the state.
132
    BytesAllocated = 0;
133
    CurPtr = (char *)Slabs.front();
134
    End = CurPtr + SlabSize;
135
 
136
    __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0));
137
    DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
138
    Slabs.erase(std::next(Slabs.begin()), Slabs.end());
139
  }
140
 
141
  /// Allocate space at the specified alignment.
142
  // This method is *not* marked noalias, because
143
  // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and
144
  // that loop is not based on the Allocate() return value.
145
  //
146
  // Allocate(0, N) is valid, it returns a non-null pointer (which should not
147
  // be dereferenced).
148
  LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) {
149
    // Keep track of how many bytes we've allocated.
150
    BytesAllocated += Size;
151
 
152
    size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment);
153
    assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
154
 
155
    size_t SizeToAllocate = Size;
156
#if LLVM_ADDRESS_SANITIZER_BUILD
157
    // Add trailing bytes as a "red zone" under ASan.
158
    SizeToAllocate += RedZoneSize;
159
#endif
160
 
161
    // Check if we have enough space.
162
    if (Adjustment + SizeToAllocate <= size_t(End - CurPtr)
163
        // We can't return nullptr even for a zero-sized allocation!
164
        && CurPtr != nullptr) {
165
      char *AlignedPtr = CurPtr + Adjustment;
166
      CurPtr = AlignedPtr + SizeToAllocate;
167
      // Update the allocation point of this memory block in MemorySanitizer.
168
      // Without this, MemorySanitizer messages for values originated from here
169
      // will point to the allocation of the entire slab.
170
      __msan_allocated_memory(AlignedPtr, Size);
171
      // Similarly, tell ASan about this space.
172
      __asan_unpoison_memory_region(AlignedPtr, Size);
173
      return AlignedPtr;
174
    }
175
 
176
    // If Size is really big, allocate a separate slab for it.
177
    size_t PaddedSize = SizeToAllocate + Alignment.value() - 1;
178
    if (PaddedSize > SizeThreshold) {
179
      void *NewSlab =
180
          this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t));
181
      // We own the new slab and don't want anyone reading anyting other than
182
      // pieces returned from this method.  So poison the whole slab.
183
      __asan_poison_memory_region(NewSlab, PaddedSize);
184
      CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
185
 
186
      uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
187
      assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
188
      char *AlignedPtr = (char*)AlignedAddr;
189
      __msan_allocated_memory(AlignedPtr, Size);
190
      __asan_unpoison_memory_region(AlignedPtr, Size);
191
      return AlignedPtr;
192
    }
193
 
194
    // Otherwise, start a new slab and try again.
195
    StartNewSlab();
196
    uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
197
    assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End &&
198
           "Unable to allocate memory!");
199
    char *AlignedPtr = (char*)AlignedAddr;
200
    CurPtr = AlignedPtr + SizeToAllocate;
201
    __msan_allocated_memory(AlignedPtr, Size);
202
    __asan_unpoison_memory_region(AlignedPtr, Size);
203
    return AlignedPtr;
204
  }
205
 
206
  inline LLVM_ATTRIBUTE_RETURNS_NONNULL void *
207
  Allocate(size_t Size, size_t Alignment) {
208
    assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead.");
209
    return Allocate(Size, Align(Alignment));
210
  }
211
 
212
  // Pull in base class overloads.
213
  using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
214
 
215
  // Bump pointer allocators are expected to never free their storage; and
216
  // clients expect pointers to remain valid for non-dereferencing uses even
217
  // after deallocation.
218
  void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) {
219
    __asan_poison_memory_region(Ptr, Size);
220
  }
221
 
222
  // Pull in base class overloads.
223
  using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
224
 
225
  size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
226
 
227
  /// \return An index uniquely and reproducibly identifying
228
  /// an input pointer \p Ptr in the given allocator.
229
  /// The returned value is negative iff the object is inside a custom-size
230
  /// slab.
231
  /// Returns an empty optional if the pointer is not found in the allocator.
232
  std::optional<int64_t> identifyObject(const void *Ptr) {
233
    const char *P = static_cast<const char *>(Ptr);
234
    int64_t InSlabIdx = 0;
235
    for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) {
236
      const char *S = static_cast<const char *>(Slabs[Idx]);
237
      if (P >= S && P < S + computeSlabSize(Idx))
238
        return InSlabIdx + static_cast<int64_t>(P - S);
239
      InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx));
240
    }
241
 
242
    // Use negative index to denote custom sized slabs.
243
    int64_t InCustomSizedSlabIdx = -1;
244
    for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) {
245
      const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first);
246
      size_t Size = CustomSizedSlabs[Idx].second;
247
      if (P >= S && P < S + Size)
248
        return InCustomSizedSlabIdx - static_cast<int64_t>(P - S);
249
      InCustomSizedSlabIdx -= static_cast<int64_t>(Size);
250
    }
251
    return std::nullopt;
252
  }
253
 
254
  /// A wrapper around identifyObject that additionally asserts that
255
  /// the object is indeed within the allocator.
256
  /// \return An index uniquely and reproducibly identifying
257
  /// an input pointer \p Ptr in the given allocator.
258
  int64_t identifyKnownObject(const void *Ptr) {
259
    std::optional<int64_t> Out = identifyObject(Ptr);
260
    assert(Out && "Wrong allocator used");
261
    return *Out;
262
  }
263
 
264
  /// A wrapper around identifyKnownObject. Accepts type information
265
  /// about the object and produces a smaller identifier by relying on
266
  /// the alignment information. Note that sub-classes may have different
267
  /// alignment, so the most base class should be passed as template parameter
268
  /// in order to obtain correct results. For that reason automatic template
269
  /// parameter deduction is disabled.
270
  /// \return An index uniquely and reproducibly identifying
271
  /// an input pointer \p Ptr in the given allocator. This identifier is
272
  /// different from the ones produced by identifyObject and
273
  /// identifyAlignedObject.
274
  template <typename T>
275
  int64_t identifyKnownAlignedObject(const void *Ptr) {
276
    int64_t Out = identifyKnownObject(Ptr);
277
    assert(Out % alignof(T) == 0 && "Wrong alignment information");
278
    return Out / alignof(T);
279
  }
280
 
281
  size_t getTotalMemory() const {
282
    size_t TotalMemory = 0;
283
    for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
284
      TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
285
    for (const auto &PtrAndSize : CustomSizedSlabs)
286
      TotalMemory += PtrAndSize.second;
287
    return TotalMemory;
288
  }
289
 
290
  size_t getBytesAllocated() const { return BytesAllocated; }
291
 
292
  void setRedZoneSize(size_t NewSize) {
293
    RedZoneSize = NewSize;
294
  }
295
 
296
  void PrintStats() const {
297
    detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
298
                                       getTotalMemory());
299
  }
300
 
301
private:
302
  /// The current pointer into the current slab.
303
  ///
304
  /// This points to the next free byte in the slab.
305
  char *CurPtr = nullptr;
306
 
307
  /// The end of the current slab.
308
  char *End = nullptr;
309
 
310
  /// The slabs allocated so far.
311
  SmallVector<void *, 4> Slabs;
312
 
313
  /// Custom-sized slabs allocated for too-large allocation requests.
314
  SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
315
 
316
  /// How many bytes we've allocated.
317
  ///
318
  /// Used so that we can compute how much space was wasted.
319
  size_t BytesAllocated = 0;
320
 
321
  /// The number of bytes to put between allocations when running under
322
  /// a sanitizer.
323
  size_t RedZoneSize = 1;
324
 
325
  static size_t computeSlabSize(unsigned SlabIdx) {
326
    // Scale the actual allocated slab size based on the number of slabs
327
    // allocated. Every GrowthDelay slabs allocated, we double
328
    // the allocated size to reduce allocation frequency, but saturate at
329
    // multiplying the slab size by 2^30.
330
    return SlabSize *
331
           ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay));
332
  }
333
 
334
  /// Allocate a new slab and move the bump pointers over into the new
335
  /// slab, modifying CurPtr and End.
336
  void StartNewSlab() {
337
    size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
338
 
339
    void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize,
340
                                                  alignof(std::max_align_t));
341
    // We own the new slab and don't want anyone reading anything other than
342
    // pieces returned from this method.  So poison the whole slab.
343
    __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
344
 
345
    Slabs.push_back(NewSlab);
346
    CurPtr = (char *)(NewSlab);
347
    End = ((char *)NewSlab) + AllocatedSlabSize;
348
  }
349
 
350
  /// Deallocate a sequence of slabs.
351
  void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
352
                       SmallVectorImpl<void *>::iterator E) {
353
    for (; I != E; ++I) {
354
      size_t AllocatedSlabSize =
355
          computeSlabSize(std::distance(Slabs.begin(), I));
356
      this->getAllocator().Deallocate(*I, AllocatedSlabSize,
357
                                      alignof(std::max_align_t));
358
    }
359
  }
360
 
361
  /// Deallocate all memory for custom sized slabs.
362
  void DeallocateCustomSizedSlabs() {
363
    for (auto &PtrAndSize : CustomSizedSlabs) {
364
      void *Ptr = PtrAndSize.first;
365
      size_t Size = PtrAndSize.second;
366
      this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t));
367
    }
368
  }
369
 
370
  template <typename T> friend class SpecificBumpPtrAllocator;
371
};
372
 
373
/// The standard BumpPtrAllocator which just uses the default template
374
/// parameters.
375
typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
376
 
377
/// A BumpPtrAllocator that allows only elements of a specific type to be
378
/// allocated.
379
///
380
/// This allows calling the destructor in DestroyAll() and when the allocator is
381
/// destroyed.
382
template <typename T> class SpecificBumpPtrAllocator {
383
  BumpPtrAllocator Allocator;
384
 
385
public:
386
  SpecificBumpPtrAllocator() {
387
    // Because SpecificBumpPtrAllocator walks the memory to call destructors,
388
    // it can't have red zones between allocations.
389
    Allocator.setRedZoneSize(0);
390
  }
391
  SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
392
      : Allocator(std::move(Old.Allocator)) {}
393
  ~SpecificBumpPtrAllocator() { DestroyAll(); }
394
 
395
  SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
396
    Allocator = std::move(RHS.Allocator);
397
    return *this;
398
  }
399
 
400
  /// Call the destructor of each allocated object and deallocate all but the
401
  /// current slab and reset the current pointer to the beginning of it, freeing
402
  /// all memory allocated so far.
403
  void DestroyAll() {
404
    auto DestroyElements = [](char *Begin, char *End) {
405
      assert(Begin == (char *)alignAddr(Begin, Align::Of<T>()));
406
      for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
407
        reinterpret_cast<T *>(Ptr)->~T();
408
    };
409
 
410
    for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
411
         ++I) {
412
      size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
413
          std::distance(Allocator.Slabs.begin(), I));
414
      char *Begin = (char *)alignAddr(*I, Align::Of<T>());
415
      char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
416
                                               : (char *)*I + AllocatedSlabSize;
417
 
418
      DestroyElements(Begin, End);
419
    }
420
 
421
    for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
422
      void *Ptr = PtrAndSize.first;
423
      size_t Size = PtrAndSize.second;
424
      DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()),
425
                      (char *)Ptr + Size);
426
    }
427
 
428
    Allocator.Reset();
429
  }
430
 
431
  /// Allocate space for an array of objects without constructing them.
432
  T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
433
};
434
 
435
} // end namespace llvm
436
 
437
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
438
          size_t GrowthDelay>
439
void *
440
operator new(size_t Size,
441
             llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold,
442
                                        GrowthDelay> &Allocator) {
443
  return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size),
444
                                           alignof(std::max_align_t)));
445
}
446
 
447
template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold,
448
          size_t GrowthDelay>
449
void operator delete(void *,
450
                     llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
451
                                                SizeThreshold, GrowthDelay> &) {
452
}
453
 
454
#endif // LLVM_SUPPORT_ALLOCATOR_H