Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- SampleProf.h - Sampling profiling format support ---------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains common definitions used in the reading and writing of
10
// sample profile data.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_PROFILEDATA_SAMPLEPROF_H
15
#define LLVM_PROFILEDATA_SAMPLEPROF_H
16
 
17
#include "llvm/ADT/DenseSet.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/ADT/StringExtras.h"
20
#include "llvm/ADT/StringMap.h"
21
#include "llvm/ADT/StringRef.h"
22
#include "llvm/IR/Function.h"
23
#include "llvm/IR/GlobalValue.h"
24
#include "llvm/Support/Allocator.h"
25
#include "llvm/Support/Debug.h"
26
#include "llvm/Support/ErrorOr.h"
27
#include "llvm/Support/MathExtras.h"
28
#include <algorithm>
29
#include <cstdint>
30
#include <list>
31
#include <map>
32
#include <set>
33
#include <sstream>
34
#include <string>
35
#include <system_error>
36
#include <unordered_map>
37
#include <utility>
38
 
39
namespace llvm {
40
 
41
class DILocation;
42
class raw_ostream;
43
 
44
const std::error_category &sampleprof_category();
45
 
46
enum class sampleprof_error {
47
  success = 0,
48
  bad_magic,
49
  unsupported_version,
50
  too_large,
51
  truncated,
52
  malformed,
53
  unrecognized_format,
54
  unsupported_writing_format,
55
  truncated_name_table,
56
  not_implemented,
57
  counter_overflow,
58
  ostream_seek_unsupported,
59
  uncompress_failed,
60
  zlib_unavailable,
61
  hash_mismatch
62
};
63
 
64
inline std::error_code make_error_code(sampleprof_error E) {
65
  return std::error_code(static_cast<int>(E), sampleprof_category());
66
}
67
 
68
inline sampleprof_error MergeResult(sampleprof_error &Accumulator,
69
                                    sampleprof_error Result) {
70
  // Prefer first error encountered as later errors may be secondary effects of
71
  // the initial problem.
72
  if (Accumulator == sampleprof_error::success &&
73
      Result != sampleprof_error::success)
74
    Accumulator = Result;
75
  return Accumulator;
76
}
77
 
78
} // end namespace llvm
79
 
80
namespace std {
81
 
82
template <>
83
struct is_error_code_enum<llvm::sampleprof_error> : std::true_type {};
84
 
85
} // end namespace std
86
 
87
namespace llvm {
88
namespace sampleprof {
89
 
90
enum SampleProfileFormat {
91
  SPF_None = 0,
92
  SPF_Text = 0x1,
93
  SPF_Compact_Binary = 0x2,
94
  SPF_GCC = 0x3,
95
  SPF_Ext_Binary = 0x4,
96
  SPF_Binary = 0xff
97
};
98
 
99
static inline uint64_t SPMagic(SampleProfileFormat Format = SPF_Binary) {
100
  return uint64_t('S') << (64 - 8) | uint64_t('P') << (64 - 16) |
101
         uint64_t('R') << (64 - 24) | uint64_t('O') << (64 - 32) |
102
         uint64_t('F') << (64 - 40) | uint64_t('4') << (64 - 48) |
103
         uint64_t('2') << (64 - 56) | uint64_t(Format);
104
}
105
 
106
/// Get the proper representation of a string according to whether the
107
/// current Format uses MD5 to represent the string.
108
static inline StringRef getRepInFormat(StringRef Name, bool UseMD5,
109
                                       std::string &GUIDBuf) {
110
  if (Name.empty() || !UseMD5)
111
    return Name;
112
  GUIDBuf = std::to_string(Function::getGUID(Name));
113
  return GUIDBuf;
114
}
115
 
116
static inline uint64_t SPVersion() { return 103; }
117
 
118
// Section Type used by SampleProfileExtBinaryBaseReader and
119
// SampleProfileExtBinaryBaseWriter. Never change the existing
120
// value of enum. Only append new ones.
121
enum SecType {
122
  SecInValid = 0,
123
  SecProfSummary = 1,
124
  SecNameTable = 2,
125
  SecProfileSymbolList = 3,
126
  SecFuncOffsetTable = 4,
127
  SecFuncMetadata = 5,
128
  SecCSNameTable = 6,
129
  // marker for the first type of profile.
130
  SecFuncProfileFirst = 32,
131
  SecLBRProfile = SecFuncProfileFirst
132
};
133
 
134
static inline std::string getSecName(SecType Type) {
135
  switch ((int)Type) { // Avoid -Wcovered-switch-default
136
  case SecInValid:
137
    return "InvalidSection";
138
  case SecProfSummary:
139
    return "ProfileSummarySection";
140
  case SecNameTable:
141
    return "NameTableSection";
142
  case SecProfileSymbolList:
143
    return "ProfileSymbolListSection";
144
  case SecFuncOffsetTable:
145
    return "FuncOffsetTableSection";
146
  case SecFuncMetadata:
147
    return "FunctionMetadata";
148
  case SecCSNameTable:
149
    return "CSNameTableSection";
150
  case SecLBRProfile:
151
    return "LBRProfileSection";
152
  default:
153
    return "UnknownSection";
154
  }
155
}
156
 
157
// Entry type of section header table used by SampleProfileExtBinaryBaseReader
158
// and SampleProfileExtBinaryBaseWriter.
159
struct SecHdrTableEntry {
160
  SecType Type;
161
  uint64_t Flags;
162
  uint64_t Offset;
163
  uint64_t Size;
164
  // The index indicating the location of the current entry in
165
  // SectionHdrLayout table.
166
  uint32_t LayoutIndex;
167
};
168
 
169
// Flags common for all sections are defined here. In SecHdrTableEntry::Flags,
170
// common flags will be saved in the lower 32bits and section specific flags
171
// will be saved in the higher 32 bits.
172
enum class SecCommonFlags : uint32_t {
173
  SecFlagInValid = 0,
174
  SecFlagCompress = (1 << 0),
175
  // Indicate the section contains only profile without context.
176
  SecFlagFlat = (1 << 1)
177
};
178
 
179
// Section specific flags are defined here.
180
// !!!Note: Everytime a new enum class is created here, please add
181
// a new check in verifySecFlag.
182
enum class SecNameTableFlags : uint32_t {
183
  SecFlagInValid = 0,
184
  SecFlagMD5Name = (1 << 0),
185
  // Store MD5 in fixed length instead of ULEB128 so NameTable can be
186
  // accessed like an array.
187
  SecFlagFixedLengthMD5 = (1 << 1),
188
  // Profile contains ".__uniq." suffix name. Compiler shouldn't strip
189
  // the suffix when doing profile matching when seeing the flag.
190
  SecFlagUniqSuffix = (1 << 2)
191
};
192
enum class SecProfSummaryFlags : uint32_t {
193
  SecFlagInValid = 0,
194
  /// SecFlagPartial means the profile is for common/shared code.
195
  /// The common profile is usually merged from profiles collected
196
  /// from running other targets.
197
  SecFlagPartial = (1 << 0),
198
  /// SecFlagContext means this is context-sensitive flat profile for
199
  /// CSSPGO
200
  SecFlagFullContext = (1 << 1),
201
  /// SecFlagFSDiscriminator means this profile uses flow-sensitive
202
  /// discriminators.
203
  SecFlagFSDiscriminator = (1 << 2),
204
  /// SecFlagIsPreInlined means this profile contains ShouldBeInlined
205
  /// contexts thus this is CS preinliner computed.
206
  SecFlagIsPreInlined = (1 << 4),
207
};
208
 
209
enum class SecFuncMetadataFlags : uint32_t {
210
  SecFlagInvalid = 0,
211
  SecFlagIsProbeBased = (1 << 0),
212
  SecFlagHasAttribute = (1 << 1),
213
};
214
 
215
enum class SecFuncOffsetFlags : uint32_t {
216
  SecFlagInvalid = 0,
217
  // Store function offsets in an order of contexts. The order ensures that
218
  // callee contexts of a given context laid out next to it.
219
  SecFlagOrdered = (1 << 0),
220
};
221
 
222
// Verify section specific flag is used for the correct section.
223
template <class SecFlagType>
224
static inline void verifySecFlag(SecType Type, SecFlagType Flag) {
225
  // No verification is needed for common flags.
226
  if (std::is_same<SecCommonFlags, SecFlagType>())
227
    return;
228
 
229
  // Verification starts here for section specific flag.
230
  bool IsFlagLegal = false;
231
  switch (Type) {
232
  case SecNameTable:
233
    IsFlagLegal = std::is_same<SecNameTableFlags, SecFlagType>();
234
    break;
235
  case SecProfSummary:
236
    IsFlagLegal = std::is_same<SecProfSummaryFlags, SecFlagType>();
237
    break;
238
  case SecFuncMetadata:
239
    IsFlagLegal = std::is_same<SecFuncMetadataFlags, SecFlagType>();
240
    break;
241
  default:
242
  case SecFuncOffsetTable:
243
    IsFlagLegal = std::is_same<SecFuncOffsetFlags, SecFlagType>();
244
    break;
245
  }
246
  if (!IsFlagLegal)
247
    llvm_unreachable("Misuse of a flag in an incompatible section");
248
}
249
 
250
template <class SecFlagType>
251
static inline void addSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
252
  verifySecFlag(Entry.Type, Flag);
253
  auto FVal = static_cast<uint64_t>(Flag);
254
  bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
255
  Entry.Flags |= IsCommon ? FVal : (FVal << 32);
256
}
257
 
258
template <class SecFlagType>
259
static inline void removeSecFlag(SecHdrTableEntry &Entry, SecFlagType Flag) {
260
  verifySecFlag(Entry.Type, Flag);
261
  auto FVal = static_cast<uint64_t>(Flag);
262
  bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
263
  Entry.Flags &= ~(IsCommon ? FVal : (FVal << 32));
264
}
265
 
266
template <class SecFlagType>
267
static inline bool hasSecFlag(const SecHdrTableEntry &Entry, SecFlagType Flag) {
268
  verifySecFlag(Entry.Type, Flag);
269
  auto FVal = static_cast<uint64_t>(Flag);
270
  bool IsCommon = std::is_same<SecCommonFlags, SecFlagType>();
271
  return Entry.Flags & (IsCommon ? FVal : (FVal << 32));
272
}
273
 
274
/// Represents the relative location of an instruction.
275
///
276
/// Instruction locations are specified by the line offset from the
277
/// beginning of the function (marked by the line where the function
278
/// header is) and the discriminator value within that line.
279
///
280
/// The discriminator value is useful to distinguish instructions
281
/// that are on the same line but belong to different basic blocks
282
/// (e.g., the two post-increment instructions in "if (p) x++; else y++;").
283
struct LineLocation {
284
  LineLocation(uint32_t L, uint32_t D) : LineOffset(L), Discriminator(D) {}
285
 
286
  void print(raw_ostream &OS) const;
287
  void dump() const;
288
 
289
  bool operator<(const LineLocation &O) const {
290
    return LineOffset < O.LineOffset ||
291
           (LineOffset == O.LineOffset && Discriminator < O.Discriminator);
292
  }
293
 
294
  bool operator==(const LineLocation &O) const {
295
    return LineOffset == O.LineOffset && Discriminator == O.Discriminator;
296
  }
297
 
298
  bool operator!=(const LineLocation &O) const {
299
    return LineOffset != O.LineOffset || Discriminator != O.Discriminator;
300
  }
301
 
302
  uint32_t LineOffset;
303
  uint32_t Discriminator;
304
};
305
 
306
struct LineLocationHash {
307
  uint64_t operator()(const LineLocation &Loc) const {
308
    return std::hash<std::uint64_t>{}((((uint64_t)Loc.LineOffset) << 32) |
309
                                      Loc.Discriminator);
310
  }
311
};
312
 
313
raw_ostream &operator<<(raw_ostream &OS, const LineLocation &Loc);
314
 
315
/// Representation of a single sample record.
316
///
317
/// A sample record is represented by a positive integer value, which
318
/// indicates how frequently was the associated line location executed.
319
///
320
/// Additionally, if the associated location contains a function call,
321
/// the record will hold a list of all the possible called targets. For
322
/// direct calls, this will be the exact function being invoked. For
323
/// indirect calls (function pointers, virtual table dispatch), this
324
/// will be a list of one or more functions.
325
class SampleRecord {
326
public:
327
  using CallTarget = std::pair<StringRef, uint64_t>;
328
  struct CallTargetComparator {
329
    bool operator()(const CallTarget &LHS, const CallTarget &RHS) const {
330
      if (LHS.second != RHS.second)
331
        return LHS.second > RHS.second;
332
 
333
      return LHS.first < RHS.first;
334
    }
335
  };
336
 
337
  using SortedCallTargetSet = std::set<CallTarget, CallTargetComparator>;
338
  using CallTargetMap = StringMap<uint64_t>;
339
  SampleRecord() = default;
340
 
341
  /// Increment the number of samples for this record by \p S.
342
  /// Optionally scale sample count \p S by \p Weight.
343
  ///
344
  /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
345
  /// around unsigned integers.
346
  sampleprof_error addSamples(uint64_t S, uint64_t Weight = 1) {
347
    bool Overflowed;
348
    NumSamples = SaturatingMultiplyAdd(S, Weight, NumSamples, &Overflowed);
349
    return Overflowed ? sampleprof_error::counter_overflow
350
                      : sampleprof_error::success;
351
  }
352
 
353
  /// Decrease the number of samples for this record by \p S. Return the amout
354
  /// of samples actually decreased.
355
  uint64_t removeSamples(uint64_t S) {
356
    if (S > NumSamples)
357
      S = NumSamples;
358
    NumSamples -= S;
359
    return S;
360
  }
361
 
362
  /// Add called function \p F with samples \p S.
363
  /// Optionally scale sample count \p S by \p Weight.
364
  ///
365
  /// Sample counts accumulate using saturating arithmetic, to avoid wrapping
366
  /// around unsigned integers.
367
  sampleprof_error addCalledTarget(StringRef F, uint64_t S,
368
                                   uint64_t Weight = 1) {
369
    uint64_t &TargetSamples = CallTargets[F];
370
    bool Overflowed;
371
    TargetSamples =
372
        SaturatingMultiplyAdd(S, Weight, TargetSamples, &Overflowed);
373
    return Overflowed ? sampleprof_error::counter_overflow
374
                      : sampleprof_error::success;
375
  }
376
 
377
  /// Remove called function from the call target map. Return the target sample
378
  /// count of the called function.
379
  uint64_t removeCalledTarget(StringRef F) {
380
    uint64_t Count = 0;
381
    auto I = CallTargets.find(F);
382
    if (I != CallTargets.end()) {
383
      Count = I->second;
384
      CallTargets.erase(I);
385
    }
386
    return Count;
387
  }
388
 
389
  /// Return true if this sample record contains function calls.
390
  bool hasCalls() const { return !CallTargets.empty(); }
391
 
392
  uint64_t getSamples() const { return NumSamples; }
393
  const CallTargetMap &getCallTargets() const { return CallTargets; }
394
  const SortedCallTargetSet getSortedCallTargets() const {
395
    return SortCallTargets(CallTargets);
396
  }
397
 
398
  uint64_t getCallTargetSum() const {
399
    uint64_t Sum = 0;
400
    for (const auto &I : CallTargets)
401
      Sum += I.second;
402
    return Sum;
403
  }
404
 
405
  /// Sort call targets in descending order of call frequency.
406
  static const SortedCallTargetSet SortCallTargets(const CallTargetMap &Targets) {
407
    SortedCallTargetSet SortedTargets;
408
    for (const auto &[Target, Frequency] : Targets) {
409
      SortedTargets.emplace(Target, Frequency);
410
    }
411
    return SortedTargets;
412
  }
413
 
414
  /// Prorate call targets by a distribution factor.
415
  static const CallTargetMap adjustCallTargets(const CallTargetMap &Targets,
416
                                               float DistributionFactor) {
417
    CallTargetMap AdjustedTargets;
418
    for (const auto &[Target, Frequency] : Targets) {
419
      AdjustedTargets[Target] = Frequency * DistributionFactor;
420
    }
421
    return AdjustedTargets;
422
  }
423
 
424
  /// Merge the samples in \p Other into this record.
425
  /// Optionally scale sample counts by \p Weight.
426
  sampleprof_error merge(const SampleRecord &Other, uint64_t Weight = 1);
427
  void print(raw_ostream &OS, unsigned Indent) const;
428
  void dump() const;
429
 
430
private:
431
  uint64_t NumSamples = 0;
432
  CallTargetMap CallTargets;
433
};
434
 
435
raw_ostream &operator<<(raw_ostream &OS, const SampleRecord &Sample);
436
 
437
// State of context associated with FunctionSamples
438
enum ContextStateMask {
439
  UnknownContext = 0x0,   // Profile without context
440
  RawContext = 0x1,       // Full context profile from input profile
441
  SyntheticContext = 0x2, // Synthetic context created for context promotion
442
  InlinedContext = 0x4,   // Profile for context that is inlined into caller
443
  MergedContext = 0x8     // Profile for context merged into base profile
444
};
445
 
446
// Attribute of context associated with FunctionSamples
447
enum ContextAttributeMask {
448
  ContextNone = 0x0,
449
  ContextWasInlined = 0x1,      // Leaf of context was inlined in previous build
450
  ContextShouldBeInlined = 0x2, // Leaf of context should be inlined
451
  ContextDuplicatedIntoBase =
452
      0x4, // Leaf of context is duplicated into the base profile
453
};
454
 
455
// Represents a context frame with function name and line location
456
struct SampleContextFrame {
457
  StringRef FuncName;
458
  LineLocation Location;
459
 
460
  SampleContextFrame() : Location(0, 0) {}
461
 
462
  SampleContextFrame(StringRef FuncName, LineLocation Location)
463
      : FuncName(FuncName), Location(Location) {}
464
 
465
  bool operator==(const SampleContextFrame &That) const {
466
    return Location == That.Location && FuncName == That.FuncName;
467
  }
468
 
469
  bool operator!=(const SampleContextFrame &That) const {
470
    return !(*this == That);
471
  }
472
 
473
  std::string toString(bool OutputLineLocation) const {
474
    std::ostringstream OContextStr;
475
    OContextStr << FuncName.str();
476
    if (OutputLineLocation) {
477
      OContextStr << ":" << Location.LineOffset;
478
      if (Location.Discriminator)
479
        OContextStr << "." << Location.Discriminator;
480
    }
481
    return OContextStr.str();
482
  }
483
};
484
 
485
static inline hash_code hash_value(const SampleContextFrame &arg) {
486
  return hash_combine(arg.FuncName, arg.Location.LineOffset,
487
                      arg.Location.Discriminator);
488
}
489
 
490
using SampleContextFrameVector = SmallVector<SampleContextFrame, 1>;
491
using SampleContextFrames = ArrayRef<SampleContextFrame>;
492
 
493
struct SampleContextFrameHash {
494
  uint64_t operator()(const SampleContextFrameVector &S) const {
495
    return hash_combine_range(S.begin(), S.end());
496
  }
497
};
498
 
499
// Sample context for FunctionSamples. It consists of the calling context,
500
// the function name and context state. Internally sample context is represented
501
// using ArrayRef, which is also the input for constructing a `SampleContext`.
502
// It can accept and represent both full context string as well as context-less
503
// function name.
504
// For a CS profile, a full context vector can look like:
505
//    `main:3 _Z5funcAi:1 _Z8funcLeafi`
506
// For a base CS profile without calling context, the context vector should only
507
// contain the leaf frame name.
508
// For a non-CS profile, the context vector should be empty.
509
class SampleContext {
510
public:
511
  SampleContext() : State(UnknownContext), Attributes(ContextNone) {}
512
 
513
  SampleContext(StringRef Name)
514
      : Name(Name), State(UnknownContext), Attributes(ContextNone) {}
515
 
516
  SampleContext(SampleContextFrames Context,
517
                ContextStateMask CState = RawContext)
518
      : Attributes(ContextNone) {
519
    assert(!Context.empty() && "Context is empty");
520
    setContext(Context, CState);
521
  }
522
 
523
  // Give a context string, decode and populate internal states like
524
  // Function name, Calling context and context state. Example of input
525
  // `ContextStr`: `[main:3 @ _Z5funcAi:1 @ _Z8funcLeafi]`
526
  SampleContext(StringRef ContextStr,
527
                std::list<SampleContextFrameVector> &CSNameTable,
528
                ContextStateMask CState = RawContext)
529
      : Attributes(ContextNone) {
530
    assert(!ContextStr.empty());
531
    // Note that `[]` wrapped input indicates a full context string, otherwise
532
    // it's treated as context-less function name only.
533
    bool HasContext = ContextStr.startswith("[");
534
    if (!HasContext) {
535
      State = UnknownContext;
536
      Name = ContextStr;
537
    } else {
538
      CSNameTable.emplace_back();
539
      SampleContextFrameVector &Context = CSNameTable.back();
540
      createCtxVectorFromStr(ContextStr, Context);
541
      setContext(Context, CState);
542
    }
543
  }
544
 
545
  /// Create a context vector from a given context string and save it in
546
  /// `Context`.
547
  static void createCtxVectorFromStr(StringRef ContextStr,
548
                                     SampleContextFrameVector &Context) {
549
    // Remove encapsulating '[' and ']' if any
550
    ContextStr = ContextStr.substr(1, ContextStr.size() - 2);
551
    StringRef ContextRemain = ContextStr;
552
    StringRef ChildContext;
553
    StringRef CalleeName;
554
    while (!ContextRemain.empty()) {
555
      auto ContextSplit = ContextRemain.split(" @ ");
556
      ChildContext = ContextSplit.first;
557
      ContextRemain = ContextSplit.second;
558
      LineLocation CallSiteLoc(0, 0);
559
      decodeContextString(ChildContext, CalleeName, CallSiteLoc);
560
      Context.emplace_back(CalleeName, CallSiteLoc);
561
    }
562
  }
563
 
564
  // Decode context string for a frame to get function name and location.
565
  // `ContextStr` is in the form of `FuncName:StartLine.Discriminator`.
566
  static void decodeContextString(StringRef ContextStr, StringRef &FName,
567
                                  LineLocation &LineLoc) {
568
    // Get function name
569
    auto EntrySplit = ContextStr.split(':');
570
    FName = EntrySplit.first;
571
 
572
    LineLoc = {0, 0};
573
    if (!EntrySplit.second.empty()) {
574
      // Get line offset, use signed int for getAsInteger so string will
575
      // be parsed as signed.
576
      int LineOffset = 0;
577
      auto LocSplit = EntrySplit.second.split('.');
578
      LocSplit.first.getAsInteger(10, LineOffset);
579
      LineLoc.LineOffset = LineOffset;
580
 
581
      // Get discriminator
582
      if (!LocSplit.second.empty())
583
        LocSplit.second.getAsInteger(10, LineLoc.Discriminator);
584
    }
585
  }
586
 
587
  operator SampleContextFrames() const { return FullContext; }
588
  bool hasAttribute(ContextAttributeMask A) { return Attributes & (uint32_t)A; }
589
  void setAttribute(ContextAttributeMask A) { Attributes |= (uint32_t)A; }
590
  uint32_t getAllAttributes() { return Attributes; }
591
  void setAllAttributes(uint32_t A) { Attributes = A; }
592
  bool hasState(ContextStateMask S) { return State & (uint32_t)S; }
593
  void setState(ContextStateMask S) { State |= (uint32_t)S; }
594
  void clearState(ContextStateMask S) { State &= (uint32_t)~S; }
595
  bool hasContext() const { return State != UnknownContext; }
596
  bool isBaseContext() const { return FullContext.size() == 1; }
597
  StringRef getName() const { return Name; }
598
  SampleContextFrames getContextFrames() const { return FullContext; }
599
 
600
  static std::string getContextString(SampleContextFrames Context,
601
                                      bool IncludeLeafLineLocation = false) {
602
    std::ostringstream OContextStr;
603
    for (uint32_t I = 0; I < Context.size(); I++) {
604
      if (OContextStr.str().size()) {
605
        OContextStr << " @ ";
606
      }
607
      OContextStr << Context[I].toString(I != Context.size() - 1 ||
608
                                         IncludeLeafLineLocation);
609
    }
610
    return OContextStr.str();
611
  }
612
 
613
  std::string toString() const {
614
    if (!hasContext())
615
      return Name.str();
616
    return getContextString(FullContext, false);
617
  }
618
 
619
  uint64_t getHashCode() const {
620
    return hasContext() ? hash_value(getContextFrames())
621
                        : hash_value(getName());
622
  }
623
 
624
  /// Set the name of the function and clear the current context.
625
  void setName(StringRef FunctionName) {
626
    Name = FunctionName;
627
    FullContext = SampleContextFrames();
628
    State = UnknownContext;
629
  }
630
 
631
  void setContext(SampleContextFrames Context,
632
                  ContextStateMask CState = RawContext) {
633
    assert(CState != UnknownContext);
634
    FullContext = Context;
635
    Name = Context.back().FuncName;
636
    State = CState;
637
  }
638
 
639
  bool operator==(const SampleContext &That) const {
640
    return State == That.State && Name == That.Name &&
641
           FullContext == That.FullContext;
642
  }
643
 
644
  bool operator!=(const SampleContext &That) const { return !(*this == That); }
645
 
646
  bool operator<(const SampleContext &That) const {
647
    if (State != That.State)
648
      return State < That.State;
649
 
650
    if (!hasContext()) {
651
      return Name < That.Name;
652
    }
653
 
654
    uint64_t I = 0;
655
    while (I < std::min(FullContext.size(), That.FullContext.size())) {
656
      auto &Context1 = FullContext[I];
657
      auto &Context2 = That.FullContext[I];
658
      auto V = Context1.FuncName.compare(Context2.FuncName);
659
      if (V)
660
        return V < 0;
661
      if (Context1.Location != Context2.Location)
662
        return Context1.Location < Context2.Location;
663
      I++;
664
    }
665
 
666
    return FullContext.size() < That.FullContext.size();
667
  }
668
 
669
  struct Hash {
670
    uint64_t operator()(const SampleContext &Context) const {
671
      return Context.getHashCode();
672
    }
673
  };
674
 
675
  bool IsPrefixOf(const SampleContext &That) const {
676
    auto ThisContext = FullContext;
677
    auto ThatContext = That.FullContext;
678
    if (ThatContext.size() < ThisContext.size())
679
      return false;
680
    ThatContext = ThatContext.take_front(ThisContext.size());
681
    // Compare Leaf frame first
682
    if (ThisContext.back().FuncName != ThatContext.back().FuncName)
683
      return false;
684
    // Compare leading context
685
    return ThisContext.drop_back() == ThatContext.drop_back();
686
  }
687
 
688
private:
689
  /// Mangled name of the function.
690
  StringRef Name;
691
  // Full context including calling context and leaf function name
692
  SampleContextFrames FullContext;
693
  // State of the associated sample profile
694
  uint32_t State;
695
  // Attribute of the associated sample profile
696
  uint32_t Attributes;
697
};
698
 
699
static inline hash_code hash_value(const SampleContext &arg) {
700
  return arg.hasContext() ? hash_value(arg.getContextFrames())
701
                          : hash_value(arg.getName());
702
}
703
 
704
class FunctionSamples;
705
class SampleProfileReaderItaniumRemapper;
706
 
707
using BodySampleMap = std::map<LineLocation, SampleRecord>;
708
// NOTE: Using a StringMap here makes parsed profiles consume around 17% more
709
// memory, which is *very* significant for large profiles.
710
using FunctionSamplesMap = std::map<std::string, FunctionSamples, std::less<>>;
711
using CallsiteSampleMap = std::map<LineLocation, FunctionSamplesMap>;
712
 
713
/// Representation of the samples collected for a function.
714
///
715
/// This data structure contains all the collected samples for the body
716
/// of a function. Each sample corresponds to a LineLocation instance
717
/// within the body of the function.
718
class FunctionSamples {
719
public:
720
  FunctionSamples() = default;
721
 
722
  void print(raw_ostream &OS = dbgs(), unsigned Indent = 0) const;
723
  void dump() const;
724
 
725
  sampleprof_error addTotalSamples(uint64_t Num, uint64_t Weight = 1) {
726
    bool Overflowed;
727
    TotalSamples =
728
        SaturatingMultiplyAdd(Num, Weight, TotalSamples, &Overflowed);
729
    return Overflowed ? sampleprof_error::counter_overflow
730
                      : sampleprof_error::success;
731
  }
732
 
733
  void removeTotalSamples(uint64_t Num) {
734
    if (TotalSamples < Num)
735
      TotalSamples = 0;
736
    else
737
      TotalSamples -= Num;
738
  }
739
 
740
  void setTotalSamples(uint64_t Num) { TotalSamples = Num; }
741
 
742
  sampleprof_error addHeadSamples(uint64_t Num, uint64_t Weight = 1) {
743
    bool Overflowed;
744
    TotalHeadSamples =
745
        SaturatingMultiplyAdd(Num, Weight, TotalHeadSamples, &Overflowed);
746
    return Overflowed ? sampleprof_error::counter_overflow
747
                      : sampleprof_error::success;
748
  }
749
 
750
  sampleprof_error addBodySamples(uint32_t LineOffset, uint32_t Discriminator,
751
                                  uint64_t Num, uint64_t Weight = 1) {
752
    return BodySamples[LineLocation(LineOffset, Discriminator)].addSamples(
753
        Num, Weight);
754
  }
755
 
756
  sampleprof_error addCalledTargetSamples(uint32_t LineOffset,
757
                                          uint32_t Discriminator,
758
                                          StringRef FName, uint64_t Num,
759
                                          uint64_t Weight = 1) {
760
    return BodySamples[LineLocation(LineOffset, Discriminator)].addCalledTarget(
761
        FName, Num, Weight);
762
  }
763
 
764
  // Remove a call target and decrease the body sample correspondingly. Return
765
  // the number of body samples actually decreased.
766
  uint64_t removeCalledTargetAndBodySample(uint32_t LineOffset,
767
                                           uint32_t Discriminator,
768
                                           StringRef FName) {
769
    uint64_t Count = 0;
770
    auto I = BodySamples.find(LineLocation(LineOffset, Discriminator));
771
    if (I != BodySamples.end()) {
772
      Count = I->second.removeCalledTarget(FName);
773
      Count = I->second.removeSamples(Count);
774
      if (!I->second.getSamples())
775
        BodySamples.erase(I);
776
    }
777
    return Count;
778
  }
779
 
780
  sampleprof_error addBodySamplesForProbe(uint32_t Index, uint64_t Num,
781
                                          uint64_t Weight = 1) {
782
    SampleRecord S;
783
    S.addSamples(Num, Weight);
784
    return BodySamples[LineLocation(Index, 0)].merge(S, Weight);
785
  }
786
 
787
  // Accumulate all call target samples to update the body samples.
788
  void updateCallsiteSamples() {
789
    for (auto &I : BodySamples) {
790
      uint64_t TargetSamples = I.second.getCallTargetSum();
791
      // It's possible that the body sample count can be greater than the call
792
      // target sum. E.g, if some call targets are external targets, they won't
793
      // be considered valid call targets, but the body sample count which is
794
      // from lbr ranges can actually include them.
795
      if (TargetSamples > I.second.getSamples())
796
        I.second.addSamples(TargetSamples - I.second.getSamples());
797
    }
798
  }
799
 
800
  // Accumulate all body samples to set total samples.
801
  void updateTotalSamples() {
802
    setTotalSamples(0);
803
    for (const auto &I : BodySamples)
804
      addTotalSamples(I.second.getSamples());
805
 
806
    for (auto &I : CallsiteSamples) {
807
      for (auto &CS : I.second) {
808
        CS.second.updateTotalSamples();
809
        addTotalSamples(CS.second.getTotalSamples());
810
      }
811
    }
812
  }
813
 
814
  // Set current context and all callee contexts to be synthetic.
815
  void SetContextSynthetic() {
816
    Context.setState(SyntheticContext);
817
    for (auto &I : CallsiteSamples) {
818
      for (auto &CS : I.second) {
819
        CS.second.SetContextSynthetic();
820
      }
821
    }
822
  }
823
 
824
  /// Return the number of samples collected at the given location.
825
  /// Each location is specified by \p LineOffset and \p Discriminator.
826
  /// If the location is not found in profile, return error.
827
  ErrorOr<uint64_t> findSamplesAt(uint32_t LineOffset,
828
                                  uint32_t Discriminator) const {
829
    const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
830
    if (ret == BodySamples.end())
831
      return std::error_code();
832
    return ret->second.getSamples();
833
  }
834
 
835
  /// Returns the call target map collected at a given location.
836
  /// Each location is specified by \p LineOffset and \p Discriminator.
837
  /// If the location is not found in profile, return error.
838
  ErrorOr<SampleRecord::CallTargetMap>
839
  findCallTargetMapAt(uint32_t LineOffset, uint32_t Discriminator) const {
840
    const auto &ret = BodySamples.find(LineLocation(LineOffset, Discriminator));
841
    if (ret == BodySamples.end())
842
      return std::error_code();
843
    return ret->second.getCallTargets();
844
  }
845
 
846
  /// Returns the call target map collected at a given location specified by \p
847
  /// CallSite. If the location is not found in profile, return error.
848
  ErrorOr<SampleRecord::CallTargetMap>
849
  findCallTargetMapAt(const LineLocation &CallSite) const {
850
    const auto &Ret = BodySamples.find(CallSite);
851
    if (Ret == BodySamples.end())
852
      return std::error_code();
853
    return Ret->second.getCallTargets();
854
  }
855
 
856
  /// Return the function samples at the given callsite location.
857
  FunctionSamplesMap &functionSamplesAt(const LineLocation &Loc) {
858
    return CallsiteSamples[Loc];
859
  }
860
 
861
  /// Returns the FunctionSamplesMap at the given \p Loc.
862
  const FunctionSamplesMap *
863
  findFunctionSamplesMapAt(const LineLocation &Loc) const {
864
    auto iter = CallsiteSamples.find(Loc);
865
    if (iter == CallsiteSamples.end())
866
      return nullptr;
867
    return &iter->second;
868
  }
869
 
870
  /// Returns a pointer to FunctionSamples at the given callsite location
871
  /// \p Loc with callee \p CalleeName. If no callsite can be found, relax
872
  /// the restriction to return the FunctionSamples at callsite location
873
  /// \p Loc with the maximum total sample count. If \p Remapper is not
874
  /// nullptr, use \p Remapper to find FunctionSamples with equivalent name
875
  /// as \p CalleeName.
876
  const FunctionSamples *
877
  findFunctionSamplesAt(const LineLocation &Loc, StringRef CalleeName,
878
                        SampleProfileReaderItaniumRemapper *Remapper) const;
879
 
880
  bool empty() const { return TotalSamples == 0; }
881
 
882
  /// Return the total number of samples collected inside the function.
883
  uint64_t getTotalSamples() const { return TotalSamples; }
884
 
885
  /// For top-level functions, return the total number of branch samples that
886
  /// have the function as the branch target (or 0 otherwise). This is the raw
887
  /// data fetched from the profile. This should be equivalent to the sample of
888
  /// the first instruction of the symbol. But as we directly get this info for
889
  /// raw profile without referring to potentially inaccurate debug info, this
890
  /// gives more accurate profile data and is preferred for standalone symbols.
891
  uint64_t getHeadSamples() const { return TotalHeadSamples; }
892
 
893
  /// Return an estimate of the sample count of the function entry basic block.
894
  /// The function can be either a standalone symbol or an inlined function.
895
  /// For Context-Sensitive profiles, this will prefer returning the head
896
  /// samples (i.e. getHeadSamples()), if non-zero. Otherwise it estimates from
897
  /// the function body's samples or callsite samples.
898
  uint64_t getHeadSamplesEstimate() const {
899
    if (FunctionSamples::ProfileIsCS && getHeadSamples()) {
900
      // For CS profile, if we already have more accurate head samples
901
      // counted by branch sample from caller, use them as entry samples.
902
      return getHeadSamples();
903
    }
904
    uint64_t Count = 0;
905
    // Use either BodySamples or CallsiteSamples which ever has the smaller
906
    // lineno.
907
    if (!BodySamples.empty() &&
908
        (CallsiteSamples.empty() ||
909
         BodySamples.begin()->first < CallsiteSamples.begin()->first))
910
      Count = BodySamples.begin()->second.getSamples();
911
    else if (!CallsiteSamples.empty()) {
912
      // An indirect callsite may be promoted to several inlined direct calls.
913
      // We need to get the sum of them.
914
      for (const auto &N_FS : CallsiteSamples.begin()->second)
915
        Count += N_FS.second.getHeadSamplesEstimate();
916
    }
917
    // Return at least 1 if total sample is not 0.
918
    return Count ? Count : TotalSamples > 0;
919
  }
920
 
921
  /// Return all the samples collected in the body of the function.
922
  const BodySampleMap &getBodySamples() const { return BodySamples; }
923
 
924
  /// Return all the callsite samples collected in the body of the function.
925
  const CallsiteSampleMap &getCallsiteSamples() const {
926
    return CallsiteSamples;
927
  }
928
 
929
  /// Return the maximum of sample counts in a function body. When SkipCallSite
930
  /// is false, which is the default, the return count includes samples in the
931
  /// inlined functions. When SkipCallSite is true, the return count only
932
  /// considers the body samples.
933
  uint64_t getMaxCountInside(bool SkipCallSite = false) const {
934
    uint64_t MaxCount = 0;
935
    for (const auto &L : getBodySamples())
936
      MaxCount = std::max(MaxCount, L.second.getSamples());
937
    if (SkipCallSite)
938
      return MaxCount;
939
    for (const auto &C : getCallsiteSamples())
940
      for (const FunctionSamplesMap::value_type &F : C.second)
941
        MaxCount = std::max(MaxCount, F.second.getMaxCountInside());
942
    return MaxCount;
943
  }
944
 
945
  /// Merge the samples in \p Other into this one.
946
  /// Optionally scale samples by \p Weight.
947
  sampleprof_error merge(const FunctionSamples &Other, uint64_t Weight = 1) {
948
    sampleprof_error Result = sampleprof_error::success;
949
    if (!GUIDToFuncNameMap)
950
      GUIDToFuncNameMap = Other.GUIDToFuncNameMap;
951
    if (Context.getName().empty())
952
      Context = Other.getContext();
953
    if (FunctionHash == 0) {
954
      // Set the function hash code for the target profile.
955
      FunctionHash = Other.getFunctionHash();
956
    } else if (FunctionHash != Other.getFunctionHash()) {
957
      // The two profiles coming with different valid hash codes indicates
958
      // either:
959
      // 1. They are same-named static functions from different compilation
960
      // units (without using -unique-internal-linkage-names), or
961
      // 2. They are really the same function but from different compilations.
962
      // Let's bail out in either case for now, which means one profile is
963
      // dropped.
964
      return sampleprof_error::hash_mismatch;
965
    }
966
 
967
    MergeResult(Result, addTotalSamples(Other.getTotalSamples(), Weight));
968
    MergeResult(Result, addHeadSamples(Other.getHeadSamples(), Weight));
969
    for (const auto &I : Other.getBodySamples()) {
970
      const LineLocation &Loc = I.first;
971
      const SampleRecord &Rec = I.second;
972
      MergeResult(Result, BodySamples[Loc].merge(Rec, Weight));
973
    }
974
    for (const auto &I : Other.getCallsiteSamples()) {
975
      const LineLocation &Loc = I.first;
976
      FunctionSamplesMap &FSMap = functionSamplesAt(Loc);
977
      for (const auto &Rec : I.second)
978
        MergeResult(Result, FSMap[Rec.first].merge(Rec.second, Weight));
979
    }
980
    return Result;
981
  }
982
 
983
  /// Recursively traverses all children, if the total sample count of the
984
  /// corresponding function is no less than \p Threshold, add its corresponding
985
  /// GUID to \p S. Also traverse the BodySamples to add hot CallTarget's GUID
986
  /// to \p S.
987
  void findInlinedFunctions(DenseSet<GlobalValue::GUID> &S,
988
                            const StringMap<Function *> &SymbolMap,
989
                            uint64_t Threshold) const {
990
    if (TotalSamples <= Threshold)
991
      return;
992
    auto isDeclaration = [](const Function *F) {
993
      return !F || F->isDeclaration();
994
    };
995
    if (isDeclaration(SymbolMap.lookup(getFuncName()))) {
996
      // Add to the import list only when it's defined out of module.
997
      S.insert(getGUID(getName()));
998
    }
999
    // Import hot CallTargets, which may not be available in IR because full
1000
    // profile annotation cannot be done until backend compilation in ThinLTO.
1001
    for (const auto &BS : BodySamples)
1002
      for (const auto &TS : BS.second.getCallTargets())
1003
        if (TS.getValue() > Threshold) {
1004
          const Function *Callee = SymbolMap.lookup(getFuncName(TS.getKey()));
1005
          if (isDeclaration(Callee))
1006
            S.insert(getGUID(TS.getKey()));
1007
        }
1008
    for (const auto &CS : CallsiteSamples)
1009
      for (const auto &NameFS : CS.second)
1010
        NameFS.second.findInlinedFunctions(S, SymbolMap, Threshold);
1011
  }
1012
 
1013
  /// Set the name of the function.
1014
  void setName(StringRef FunctionName) { Context.setName(FunctionName); }
1015
 
1016
  /// Return the function name.
1017
  StringRef getName() const { return Context.getName(); }
1018
 
1019
  /// Return the original function name.
1020
  StringRef getFuncName() const { return getFuncName(getName()); }
1021
 
1022
  void setFunctionHash(uint64_t Hash) { FunctionHash = Hash; }
1023
 
1024
  uint64_t getFunctionHash() const { return FunctionHash; }
1025
 
1026
  /// Return the canonical name for a function, taking into account
1027
  /// suffix elision policy attributes.
1028
  static StringRef getCanonicalFnName(const Function &F) {
1029
    auto AttrName = "sample-profile-suffix-elision-policy";
1030
    auto Attr = F.getFnAttribute(AttrName).getValueAsString();
1031
    return getCanonicalFnName(F.getName(), Attr);
1032
  }
1033
 
1034
  /// Name suffixes which canonicalization should handle to avoid
1035
  /// profile mismatch.
1036
  static constexpr const char *LLVMSuffix = ".llvm.";
1037
  static constexpr const char *PartSuffix = ".part.";
1038
  static constexpr const char *UniqSuffix = ".__uniq.";
1039
 
1040
  static StringRef getCanonicalFnName(StringRef FnName,
1041
                                      StringRef Attr = "selected") {
1042
    // Note the sequence of the suffixes in the knownSuffixes array matters.
1043
    // If suffix "A" is appended after the suffix "B", "A" should be in front
1044
    // of "B" in knownSuffixes.
1045
    const char *knownSuffixes[] = {LLVMSuffix, PartSuffix, UniqSuffix};
1046
    if (Attr == "" || Attr == "all") {
1047
      return FnName.split('.').first;
1048
    } else if (Attr == "selected") {
1049
      StringRef Cand(FnName);
1050
      for (const auto &Suf : knownSuffixes) {
1051
        StringRef Suffix(Suf);
1052
        // If the profile contains ".__uniq." suffix, don't strip the
1053
        // suffix for names in the IR.
1054
        if (Suffix == UniqSuffix && FunctionSamples::HasUniqSuffix)
1055
          continue;
1056
        auto It = Cand.rfind(Suffix);
1057
        if (It == StringRef::npos)
1058
          continue;
1059
        auto Dit = Cand.rfind('.');
1060
        if (Dit == It + Suffix.size() - 1)
1061
          Cand = Cand.substr(0, It);
1062
      }
1063
      return Cand;
1064
    } else if (Attr == "none") {
1065
      return FnName;
1066
    } else {
1067
      assert(false && "internal error: unknown suffix elision policy");
1068
    }
1069
    return FnName;
1070
  }
1071
 
1072
  /// Translate \p Name into its original name.
1073
  /// When profile doesn't use MD5, \p Name needs no translation.
1074
  /// When profile uses MD5, \p Name in current FunctionSamples
1075
  /// is actually GUID of the original function name. getFuncName will
1076
  /// translate \p Name in current FunctionSamples into its original name
1077
  /// by looking up in the function map GUIDToFuncNameMap.
1078
  /// If the original name doesn't exist in the map, return empty StringRef.
1079
  StringRef getFuncName(StringRef Name) const {
1080
    if (!UseMD5)
1081
      return Name;
1082
 
1083
    assert(GUIDToFuncNameMap && "GUIDToFuncNameMap needs to be populated first");
1084
    return GUIDToFuncNameMap->lookup(std::stoull(Name.data()));
1085
  }
1086
 
1087
  /// Returns the line offset to the start line of the subprogram.
1088
  /// We assume that a single function will not exceed 65535 LOC.
1089
  static unsigned getOffset(const DILocation *DIL);
1090
 
1091
  /// Returns a unique call site identifier for a given debug location of a call
1092
  /// instruction. This is wrapper of two scenarios, the probe-based profile and
1093
  /// regular profile, to hide implementation details from the sample loader and
1094
  /// the context tracker.
1095
  static LineLocation getCallSiteIdentifier(const DILocation *DIL,
1096
                                            bool ProfileIsFS = false);
1097
 
1098
  /// Returns a unique hash code for a combination of a callsite location and
1099
  /// the callee function name.
1100
  static uint64_t getCallSiteHash(StringRef CalleeName,
1101
                                  const LineLocation &Callsite);
1102
 
1103
  /// Get the FunctionSamples of the inline instance where DIL originates
1104
  /// from.
1105
  ///
1106
  /// The FunctionSamples of the instruction (Machine or IR) associated to
1107
  /// \p DIL is the inlined instance in which that instruction is coming from.
1108
  /// We traverse the inline stack of that instruction, and match it with the
1109
  /// tree nodes in the profile.
1110
  ///
1111
  /// \returns the FunctionSamples pointer to the inlined instance.
1112
  /// If \p Remapper is not nullptr, it will be used to find matching
1113
  /// FunctionSamples with not exactly the same but equivalent name.
1114
  const FunctionSamples *findFunctionSamples(
1115
      const DILocation *DIL,
1116
      SampleProfileReaderItaniumRemapper *Remapper = nullptr) const;
1117
 
1118
  static bool ProfileIsProbeBased;
1119
 
1120
  static bool ProfileIsCS;
1121
 
1122
  static bool ProfileIsPreInlined;
1123
 
1124
  SampleContext &getContext() const { return Context; }
1125
 
1126
  void setContext(const SampleContext &FContext) { Context = FContext; }
1127
 
1128
  /// Whether the profile uses MD5 to represent string.
1129
  static bool UseMD5;
1130
 
1131
  /// Whether the profile contains any ".__uniq." suffix in a name.
1132
  static bool HasUniqSuffix;
1133
 
1134
  /// If this profile uses flow sensitive discriminators.
1135
  static bool ProfileIsFS;
1136
 
1137
  /// GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
1138
  /// all the function symbols defined or declared in current module.
1139
  DenseMap<uint64_t, StringRef> *GUIDToFuncNameMap = nullptr;
1140
 
1141
  // Assume the input \p Name is a name coming from FunctionSamples itself.
1142
  // If UseMD5 is true, the name is already a GUID and we
1143
  // don't want to return the GUID of GUID.
1144
  static uint64_t getGUID(StringRef Name) {
1145
    return UseMD5 ? std::stoull(Name.data()) : Function::getGUID(Name);
1146
  }
1147
 
1148
  // Find all the names in the current FunctionSamples including names in
1149
  // all the inline instances and names of call targets.
1150
  void findAllNames(DenseSet<StringRef> &NameSet) const;
1151
 
1152
private:
1153
  /// CFG hash value for the function.
1154
  uint64_t FunctionHash = 0;
1155
 
1156
  /// Calling context for function profile
1157
  mutable SampleContext Context;
1158
 
1159
  /// Total number of samples collected inside this function.
1160
  ///
1161
  /// Samples are cumulative, they include all the samples collected
1162
  /// inside this function and all its inlined callees.
1163
  uint64_t TotalSamples = 0;
1164
 
1165
  /// Total number of samples collected at the head of the function.
1166
  /// This is an approximation of the number of calls made to this function
1167
  /// at runtime.
1168
  uint64_t TotalHeadSamples = 0;
1169
 
1170
  /// Map instruction locations to collected samples.
1171
  ///
1172
  /// Each entry in this map contains the number of samples
1173
  /// collected at the corresponding line offset. All line locations
1174
  /// are an offset from the start of the function.
1175
  BodySampleMap BodySamples;
1176
 
1177
  /// Map call sites to collected samples for the called function.
1178
  ///
1179
  /// Each entry in this map corresponds to all the samples
1180
  /// collected for the inlined function call at the given
1181
  /// location. For example, given:
1182
  ///
1183
  ///     void foo() {
1184
  ///  1    bar();
1185
  ///  ...
1186
  ///  8    baz();
1187
  ///     }
1188
  ///
1189
  /// If the bar() and baz() calls were inlined inside foo(), this
1190
  /// map will contain two entries.  One for all the samples collected
1191
  /// in the call to bar() at line offset 1, the other for all the samples
1192
  /// collected in the call to baz() at line offset 8.
1193
  CallsiteSampleMap CallsiteSamples;
1194
};
1195
 
1196
raw_ostream &operator<<(raw_ostream &OS, const FunctionSamples &FS);
1197
 
1198
using SampleProfileMap =
1199
    std::unordered_map<SampleContext, FunctionSamples, SampleContext::Hash>;
1200
 
1201
using NameFunctionSamples = std::pair<SampleContext, const FunctionSamples *>;
1202
 
1203
void sortFuncProfiles(const SampleProfileMap &ProfileMap,
1204
                      std::vector<NameFunctionSamples> &SortedProfiles);
1205
 
1206
/// Sort a LocationT->SampleT map by LocationT.
1207
///
1208
/// It produces a sorted list of <LocationT, SampleT> records by ascending
1209
/// order of LocationT.
1210
template <class LocationT, class SampleT> class SampleSorter {
1211
public:
1212
  using SamplesWithLoc = std::pair<const LocationT, SampleT>;
1213
  using SamplesWithLocList = SmallVector<const SamplesWithLoc *, 20>;
1214
 
1215
  SampleSorter(const std::map<LocationT, SampleT> &Samples) {
1216
    for (const auto &I : Samples)
1217
      V.push_back(&I);
1218
    llvm::stable_sort(V, [](const SamplesWithLoc *A, const SamplesWithLoc *B) {
1219
      return A->first < B->first;
1220
    });
1221
  }
1222
 
1223
  const SamplesWithLocList &get() const { return V; }
1224
 
1225
private:
1226
  SamplesWithLocList V;
1227
};
1228
 
1229
/// SampleContextTrimmer impelements helper functions to trim, merge cold
1230
/// context profiles. It also supports context profile canonicalization to make
1231
/// sure ProfileMap's key is consistent with FunctionSample's name/context.
1232
class SampleContextTrimmer {
1233
public:
1234
  SampleContextTrimmer(SampleProfileMap &Profiles) : ProfileMap(Profiles){};
1235
  // Trim and merge cold context profile when requested. TrimBaseProfileOnly
1236
  // should only be effective when TrimColdContext is true. On top of
1237
  // TrimColdContext, TrimBaseProfileOnly can be used to specify to trim all
1238
  // cold profiles or only cold base profiles. Trimming base profiles only is
1239
  // mainly to honor the preinliner decsion. Note that when MergeColdContext is
1240
  // true, preinliner decsion is not honored anyway so TrimBaseProfileOnly will
1241
  // be ignored.
1242
  void trimAndMergeColdContextProfiles(uint64_t ColdCountThreshold,
1243
                                       bool TrimColdContext,
1244
                                       bool MergeColdContext,
1245
                                       uint32_t ColdContextFrameLength,
1246
                                       bool TrimBaseProfileOnly);
1247
  // Canonicalize context profile name and attributes.
1248
  void canonicalizeContextProfiles();
1249
 
1250
private:
1251
  SampleProfileMap &ProfileMap;
1252
};
1253
 
1254
// CSProfileConverter converts a full context-sensitive flat sample profile into
1255
// a nested context-sensitive sample profile.
1256
class CSProfileConverter {
1257
public:
1258
  CSProfileConverter(SampleProfileMap &Profiles);
1259
  void convertProfiles();
1260
  struct FrameNode {
1261
    FrameNode(StringRef FName = StringRef(),
1262
              FunctionSamples *FSamples = nullptr,
1263
              LineLocation CallLoc = {0, 0})
1264
        : FuncName(FName), FuncSamples(FSamples), CallSiteLoc(CallLoc){};
1265
 
1266
    // Map line+discriminator location to child frame
1267
    std::map<uint64_t, FrameNode> AllChildFrames;
1268
    // Function name for current frame
1269
    StringRef FuncName;
1270
    // Function Samples for current frame
1271
    FunctionSamples *FuncSamples;
1272
    // Callsite location in parent context
1273
    LineLocation CallSiteLoc;
1274
 
1275
    FrameNode *getOrCreateChildFrame(const LineLocation &CallSite,
1276
                                     StringRef CalleeName);
1277
  };
1278
 
1279
private:
1280
  // Nest all children profiles into the profile of Node.
1281
  void convertProfiles(FrameNode &Node);
1282
  FrameNode *getOrCreateContextPath(const SampleContext &Context);
1283
 
1284
  SampleProfileMap &ProfileMap;
1285
  FrameNode RootFrame;
1286
};
1287
 
1288
/// ProfileSymbolList records the list of function symbols shown up
1289
/// in the binary used to generate the profile. It is useful to
1290
/// to discriminate a function being so cold as not to shown up
1291
/// in the profile and a function newly added.
1292
class ProfileSymbolList {
1293
public:
1294
  /// copy indicates whether we need to copy the underlying memory
1295
  /// for the input Name.
1296
  void add(StringRef Name, bool copy = false) {
1297
    if (!copy) {
1298
      Syms.insert(Name);
1299
      return;
1300
    }
1301
    Syms.insert(Name.copy(Allocator));
1302
  }
1303
 
1304
  bool contains(StringRef Name) { return Syms.count(Name); }
1305
 
1306
  void merge(const ProfileSymbolList &List) {
1307
    for (auto Sym : List.Syms)
1308
      add(Sym, true);
1309
  }
1310
 
1311
  unsigned size() { return Syms.size(); }
1312
 
1313
  void setToCompress(bool TC) { ToCompress = TC; }
1314
  bool toCompress() { return ToCompress; }
1315
 
1316
  std::error_code read(const uint8_t *Data, uint64_t ListSize);
1317
  std::error_code write(raw_ostream &OS);
1318
  void dump(raw_ostream &OS = dbgs()) const;
1319
 
1320
private:
1321
  // Determine whether or not to compress the symbol list when
1322
  // writing it into profile. The variable is unused when the symbol
1323
  // list is read from an existing profile.
1324
  bool ToCompress = false;
1325
  DenseSet<StringRef> Syms;
1326
  BumpPtrAllocator Allocator;
1327
};
1328
 
1329
} // end namespace sampleprof
1330
 
1331
using namespace sampleprof;
1332
// Provide DenseMapInfo for SampleContext.
1333
template <> struct DenseMapInfo<SampleContext> {
1334
  static inline SampleContext getEmptyKey() { return SampleContext(); }
1335
 
1336
  static inline SampleContext getTombstoneKey() { return SampleContext("@"); }
1337
 
1338
  static unsigned getHashValue(const SampleContext &Val) {
1339
    return Val.getHashCode();
1340
  }
1341
 
1342
  static bool isEqual(const SampleContext &LHS, const SampleContext &RHS) {
1343
    return LHS == RHS;
1344
  }
1345
};
1346
 
1347
// Prepend "__uniq" before the hash for tools like profilers to understand
1348
// that this symbol is of internal linkage type.  The "__uniq" is the
1349
// pre-determined prefix that is used to tell tools that this symbol was
1350
// created with -funique-internal-linakge-symbols and the tools can strip or
1351
// keep the prefix as needed.
1352
inline std::string getUniqueInternalLinkagePostfix(const StringRef &FName) {
1353
  llvm::MD5 Md5;
1354
  Md5.update(FName);
1355
  llvm::MD5::MD5Result R;
1356
  Md5.final(R);
1357
  SmallString<32> Str;
1358
  llvm::MD5::stringifyResult(R, Str);
1359
  // Convert MD5hash to Decimal. Demangler suffixes can either contain
1360
  // numbers or characters but not both.
1361
  llvm::APInt IntHash(128, Str.str(), 16);
1362
  return toString(IntHash, /* Radix = */ 10, /* Signed = */ false)
1363
      .insert(0, FunctionSamples::UniqSuffix);
1364
}
1365
 
1366
} // end namespace llvm
1367
 
1368
#endif // LLVM_PROFILEDATA_SAMPLEPROF_H