Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===------------------------- LSUnit.h --------------------------*- C++-*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// |
||
10 | /// A Load/Store unit class that models load/store queues and that implements |
||
11 | /// a simple weak memory consistency model. |
||
12 | /// |
||
13 | //===----------------------------------------------------------------------===// |
||
14 | |||
15 | #ifndef LLVM_MCA_HARDWAREUNITS_LSUNIT_H |
||
16 | #define LLVM_MCA_HARDWAREUNITS_LSUNIT_H |
||
17 | |||
18 | #include "llvm/ADT/DenseMap.h" |
||
19 | #include "llvm/ADT/SmallVector.h" |
||
20 | #include "llvm/MC/MCSchedule.h" |
||
21 | #include "llvm/MCA/HardwareUnits/HardwareUnit.h" |
||
22 | #include "llvm/MCA/Instruction.h" |
||
23 | |||
24 | namespace llvm { |
||
25 | namespace mca { |
||
26 | |||
27 | /// A node of a memory dependency graph. A MemoryGroup describes a set of |
||
28 | /// instructions with same memory dependencies. |
||
29 | /// |
||
30 | /// By construction, instructions of a MemoryGroup don't depend on each other. |
||
31 | /// At dispatch stage, instructions are mapped by the LSUnit to MemoryGroups. |
||
32 | /// A Memory group identifier is then stored as a "token" in field |
||
33 | /// Instruction::LSUTokenID of each dispatched instructions. That token is used |
||
34 | /// internally by the LSUnit to track memory dependencies. |
||
35 | class MemoryGroup { |
||
36 | unsigned NumPredecessors; |
||
37 | unsigned NumExecutingPredecessors; |
||
38 | unsigned NumExecutedPredecessors; |
||
39 | |||
40 | unsigned NumInstructions; |
||
41 | unsigned NumExecuting; |
||
42 | unsigned NumExecuted; |
||
43 | // Successors that are in a order dependency with this group. |
||
44 | SmallVector<MemoryGroup *, 4> OrderSucc; |
||
45 | // Successors that are in a data dependency with this group. |
||
46 | SmallVector<MemoryGroup *, 4> DataSucc; |
||
47 | |||
48 | CriticalDependency CriticalPredecessor; |
||
49 | InstRef CriticalMemoryInstruction; |
||
50 | |||
51 | MemoryGroup(const MemoryGroup &) = delete; |
||
52 | MemoryGroup &operator=(const MemoryGroup &) = delete; |
||
53 | |||
54 | public: |
||
55 | MemoryGroup() |
||
56 | : NumPredecessors(0), NumExecutingPredecessors(0), |
||
57 | NumExecutedPredecessors(0), NumInstructions(0), NumExecuting(0), |
||
58 | NumExecuted(0), CriticalPredecessor() {} |
||
59 | MemoryGroup(MemoryGroup &&) = default; |
||
60 | |||
61 | size_t getNumSuccessors() const { |
||
62 | return OrderSucc.size() + DataSucc.size(); |
||
63 | } |
||
64 | unsigned getNumPredecessors() const { return NumPredecessors; } |
||
65 | unsigned getNumExecutingPredecessors() const { |
||
66 | return NumExecutingPredecessors; |
||
67 | } |
||
68 | unsigned getNumExecutedPredecessors() const { |
||
69 | return NumExecutedPredecessors; |
||
70 | } |
||
71 | unsigned getNumInstructions() const { return NumInstructions; } |
||
72 | unsigned getNumExecuting() const { return NumExecuting; } |
||
73 | unsigned getNumExecuted() const { return NumExecuted; } |
||
74 | |||
75 | const InstRef &getCriticalMemoryInstruction() const { |
||
76 | return CriticalMemoryInstruction; |
||
77 | } |
||
78 | const CriticalDependency &getCriticalPredecessor() const { |
||
79 | return CriticalPredecessor; |
||
80 | } |
||
81 | |||
82 | void addSuccessor(MemoryGroup *Group, bool IsDataDependent) { |
||
83 | // Do not need to add a dependency if there is no data |
||
84 | // dependency and all instructions from this group have been |
||
85 | // issued already. |
||
86 | if (!IsDataDependent && isExecuting()) |
||
87 | return; |
||
88 | |||
89 | Group->NumPredecessors++; |
||
90 | assert(!isExecuted() && "Should have been removed!"); |
||
91 | if (isExecuting()) |
||
92 | Group->onGroupIssued(CriticalMemoryInstruction, IsDataDependent); |
||
93 | |||
94 | if (IsDataDependent) |
||
95 | DataSucc.emplace_back(Group); |
||
96 | else |
||
97 | OrderSucc.emplace_back(Group); |
||
98 | } |
||
99 | |||
100 | bool isWaiting() const { |
||
101 | return NumPredecessors > |
||
102 | (NumExecutingPredecessors + NumExecutedPredecessors); |
||
103 | } |
||
104 | bool isPending() const { |
||
105 | return NumExecutingPredecessors && |
||
106 | ((NumExecutedPredecessors + NumExecutingPredecessors) == |
||
107 | NumPredecessors); |
||
108 | } |
||
109 | bool isReady() const { return NumExecutedPredecessors == NumPredecessors; } |
||
110 | bool isExecuting() const { |
||
111 | return NumExecuting && (NumExecuting == (NumInstructions - NumExecuted)); |
||
112 | } |
||
113 | bool isExecuted() const { return NumInstructions == NumExecuted; } |
||
114 | |||
115 | void onGroupIssued(const InstRef &IR, bool ShouldUpdateCriticalDep) { |
||
116 | assert(!isReady() && "Unexpected group-start event!"); |
||
117 | NumExecutingPredecessors++; |
||
118 | |||
119 | if (!ShouldUpdateCriticalDep) |
||
120 | return; |
||
121 | |||
122 | unsigned Cycles = IR.getInstruction()->getCyclesLeft(); |
||
123 | if (CriticalPredecessor.Cycles < Cycles) { |
||
124 | CriticalPredecessor.IID = IR.getSourceIndex(); |
||
125 | CriticalPredecessor.Cycles = Cycles; |
||
126 | } |
||
127 | } |
||
128 | |||
129 | void onGroupExecuted() { |
||
130 | assert(!isReady() && "Inconsistent state found!"); |
||
131 | NumExecutingPredecessors--; |
||
132 | NumExecutedPredecessors++; |
||
133 | } |
||
134 | |||
135 | void onInstructionIssued(const InstRef &IR) { |
||
136 | assert(!isExecuting() && "Invalid internal state!"); |
||
137 | ++NumExecuting; |
||
138 | |||
139 | // update the CriticalMemDep. |
||
140 | const Instruction &IS = *IR.getInstruction(); |
||
141 | if ((bool)CriticalMemoryInstruction) { |
||
142 | const Instruction &OtherIS = *CriticalMemoryInstruction.getInstruction(); |
||
143 | if (OtherIS.getCyclesLeft() < IS.getCyclesLeft()) |
||
144 | CriticalMemoryInstruction = IR; |
||
145 | } else { |
||
146 | CriticalMemoryInstruction = IR; |
||
147 | } |
||
148 | |||
149 | if (!isExecuting()) |
||
150 | return; |
||
151 | |||
152 | // Notify successors that this group started execution. |
||
153 | for (MemoryGroup *MG : OrderSucc) { |
||
154 | MG->onGroupIssued(CriticalMemoryInstruction, false); |
||
155 | // Release the order dependency with this group. |
||
156 | MG->onGroupExecuted(); |
||
157 | } |
||
158 | |||
159 | for (MemoryGroup *MG : DataSucc) |
||
160 | MG->onGroupIssued(CriticalMemoryInstruction, true); |
||
161 | } |
||
162 | |||
163 | void onInstructionExecuted(const InstRef &IR) { |
||
164 | assert(isReady() && !isExecuted() && "Invalid internal state!"); |
||
165 | --NumExecuting; |
||
166 | ++NumExecuted; |
||
167 | |||
168 | if (CriticalMemoryInstruction && |
||
169 | CriticalMemoryInstruction.getSourceIndex() == IR.getSourceIndex()) { |
||
170 | CriticalMemoryInstruction.invalidate(); |
||
171 | } |
||
172 | |||
173 | if (!isExecuted()) |
||
174 | return; |
||
175 | |||
176 | // Notify data dependent successors that this group has finished execution. |
||
177 | for (MemoryGroup *MG : DataSucc) |
||
178 | MG->onGroupExecuted(); |
||
179 | } |
||
180 | |||
181 | void addInstruction() { |
||
182 | assert(!getNumSuccessors() && "Cannot add instructions to this group!"); |
||
183 | ++NumInstructions; |
||
184 | } |
||
185 | |||
186 | void cycleEvent() { |
||
187 | if (isWaiting() && CriticalPredecessor.Cycles) |
||
188 | CriticalPredecessor.Cycles--; |
||
189 | } |
||
190 | }; |
||
191 | |||
192 | /// Abstract base interface for LS (load/store) units in llvm-mca. |
||
193 | class LSUnitBase : public HardwareUnit { |
||
194 | /// Load queue size. |
||
195 | /// |
||
196 | /// A value of zero for this field means that the load queue is unbounded. |
||
197 | /// Processor models can declare the size of a load queue via tablegen (see |
||
198 | /// the definition of tablegen class LoadQueue in |
||
199 | /// llvm/Target/TargetSchedule.td). |
||
200 | unsigned LQSize; |
||
201 | |||
202 | /// Load queue size. |
||
203 | /// |
||
204 | /// A value of zero for this field means that the store queue is unbounded. |
||
205 | /// Processor models can declare the size of a store queue via tablegen (see |
||
206 | /// the definition of tablegen class StoreQueue in |
||
207 | /// llvm/Target/TargetSchedule.td). |
||
208 | unsigned SQSize; |
||
209 | |||
210 | unsigned UsedLQEntries; |
||
211 | unsigned UsedSQEntries; |
||
212 | |||
213 | /// True if loads don't alias with stores. |
||
214 | /// |
||
215 | /// By default, the LS unit assumes that loads and stores don't alias with |
||
216 | /// eachother. If this field is set to false, then loads are always assumed to |
||
217 | /// alias with stores. |
||
218 | const bool NoAlias; |
||
219 | |||
220 | /// Used to map group identifiers to MemoryGroups. |
||
221 | DenseMap<unsigned, std::unique_ptr<MemoryGroup>> Groups; |
||
222 | unsigned NextGroupID; |
||
223 | |||
224 | public: |
||
225 | LSUnitBase(const MCSchedModel &SM, unsigned LoadQueueSize, |
||
226 | unsigned StoreQueueSize, bool AssumeNoAlias); |
||
227 | |||
228 | virtual ~LSUnitBase(); |
||
229 | |||
230 | /// Returns the total number of entries in the load queue. |
||
231 | unsigned getLoadQueueSize() const { return LQSize; } |
||
232 | |||
233 | /// Returns the total number of entries in the store queue. |
||
234 | unsigned getStoreQueueSize() const { return SQSize; } |
||
235 | |||
236 | unsigned getUsedLQEntries() const { return UsedLQEntries; } |
||
237 | unsigned getUsedSQEntries() const { return UsedSQEntries; } |
||
238 | void acquireLQSlot() { ++UsedLQEntries; } |
||
239 | void acquireSQSlot() { ++UsedSQEntries; } |
||
240 | void releaseLQSlot() { --UsedLQEntries; } |
||
241 | void releaseSQSlot() { --UsedSQEntries; } |
||
242 | |||
243 | bool assumeNoAlias() const { return NoAlias; } |
||
244 | |||
245 | enum Status { |
||
246 | LSU_AVAILABLE = 0, |
||
247 | LSU_LQUEUE_FULL, // Load Queue unavailable |
||
248 | LSU_SQUEUE_FULL // Store Queue unavailable |
||
249 | }; |
||
250 | |||
251 | /// This method checks the availability of the load/store buffers. |
||
252 | /// |
||
253 | /// Returns LSU_AVAILABLE if there are enough load/store queue entries to |
||
254 | /// accomodate instruction IR. By default, LSU_AVAILABLE is returned if IR is |
||
255 | /// not a memory operation. |
||
256 | virtual Status isAvailable(const InstRef &IR) const = 0; |
||
257 | |||
258 | /// Allocates LS resources for instruction IR. |
||
259 | /// |
||
260 | /// This method assumes that a previous call to `isAvailable(IR)` succeeded |
||
261 | /// with a LSUnitBase::Status value of LSU_AVAILABLE. |
||
262 | /// Returns the GroupID associated with this instruction. That value will be |
||
263 | /// used to set the LSUTokenID field in class Instruction. |
||
264 | virtual unsigned dispatch(const InstRef &IR) = 0; |
||
265 | |||
266 | bool isSQEmpty() const { return !UsedSQEntries; } |
||
267 | bool isLQEmpty() const { return !UsedLQEntries; } |
||
268 | bool isSQFull() const { return SQSize && SQSize == UsedSQEntries; } |
||
269 | bool isLQFull() const { return LQSize && LQSize == UsedLQEntries; } |
||
270 | |||
271 | bool isValidGroupID(unsigned Index) const { |
||
272 | return Index && (Groups.find(Index) != Groups.end()); |
||
273 | } |
||
274 | |||
275 | /// Check if a peviously dispatched instruction IR is now ready for execution. |
||
276 | bool isReady(const InstRef &IR) const { |
||
277 | unsigned GroupID = IR.getInstruction()->getLSUTokenID(); |
||
278 | const MemoryGroup &Group = getGroup(GroupID); |
||
279 | return Group.isReady(); |
||
280 | } |
||
281 | |||
282 | /// Check if instruction IR only depends on memory instructions that are |
||
283 | /// currently executing. |
||
284 | bool isPending(const InstRef &IR) const { |
||
285 | unsigned GroupID = IR.getInstruction()->getLSUTokenID(); |
||
286 | const MemoryGroup &Group = getGroup(GroupID); |
||
287 | return Group.isPending(); |
||
288 | } |
||
289 | |||
290 | /// Check if instruction IR is still waiting on memory operations, and the |
||
291 | /// wait time is still unknown. |
||
292 | bool isWaiting(const InstRef &IR) const { |
||
293 | unsigned GroupID = IR.getInstruction()->getLSUTokenID(); |
||
294 | const MemoryGroup &Group = getGroup(GroupID); |
||
295 | return Group.isWaiting(); |
||
296 | } |
||
297 | |||
298 | bool hasDependentUsers(const InstRef &IR) const { |
||
299 | unsigned GroupID = IR.getInstruction()->getLSUTokenID(); |
||
300 | const MemoryGroup &Group = getGroup(GroupID); |
||
301 | return !Group.isExecuted() && Group.getNumSuccessors(); |
||
302 | } |
||
303 | |||
304 | const MemoryGroup &getGroup(unsigned Index) const { |
||
305 | assert(isValidGroupID(Index) && "Group doesn't exist!"); |
||
306 | return *Groups.find(Index)->second; |
||
307 | } |
||
308 | |||
309 | MemoryGroup &getGroup(unsigned Index) { |
||
310 | assert(isValidGroupID(Index) && "Group doesn't exist!"); |
||
311 | return *Groups.find(Index)->second; |
||
312 | } |
||
313 | |||
314 | unsigned createMemoryGroup() { |
||
315 | Groups.insert( |
||
316 | std::make_pair(NextGroupID, std::make_unique<MemoryGroup>())); |
||
317 | return NextGroupID++; |
||
318 | } |
||
319 | |||
320 | virtual void onInstructionExecuted(const InstRef &IR); |
||
321 | |||
322 | // Loads are tracked by the LDQ (load queue) from dispatch until completion. |
||
323 | // Stores are tracked by the STQ (store queue) from dispatch until commitment. |
||
324 | // By default we conservatively assume that the LDQ receives a load at |
||
325 | // dispatch. Loads leave the LDQ at retirement stage. |
||
326 | virtual void onInstructionRetired(const InstRef &IR); |
||
327 | |||
328 | virtual void onInstructionIssued(const InstRef &IR) { |
||
329 | unsigned GroupID = IR.getInstruction()->getLSUTokenID(); |
||
330 | Groups[GroupID]->onInstructionIssued(IR); |
||
331 | } |
||
332 | |||
333 | virtual void cycleEvent(); |
||
334 | |||
335 | #ifndef NDEBUG |
||
336 | void dump() const; |
||
337 | #endif |
||
338 | }; |
||
339 | |||
340 | /// Default Load/Store Unit (LS Unit) for simulated processors. |
||
341 | /// |
||
342 | /// Each load (or store) consumes one entry in the load (or store) queue. |
||
343 | /// |
||
344 | /// Rules are: |
||
345 | /// 1) A younger load is allowed to pass an older load only if there are no |
||
346 | /// stores nor barriers in between the two loads. |
||
347 | /// 2) An younger store is not allowed to pass an older store. |
||
348 | /// 3) A younger store is not allowed to pass an older load. |
||
349 | /// 4) A younger load is allowed to pass an older store only if the load does |
||
350 | /// not alias with the store. |
||
351 | /// |
||
352 | /// This class optimistically assumes that loads don't alias store operations. |
||
353 | /// Under this assumption, younger loads are always allowed to pass older |
||
354 | /// stores (this would only affects rule 4). |
||
355 | /// Essentially, this class doesn't perform any sort alias analysis to |
||
356 | /// identify aliasing loads and stores. |
||
357 | /// |
||
358 | /// To enforce aliasing between loads and stores, flag `AssumeNoAlias` must be |
||
359 | /// set to `false` by the constructor of LSUnit. |
||
360 | /// |
||
361 | /// Note that this class doesn't know about the existence of different memory |
||
362 | /// types for memory operations (example: write-through, write-combining, etc.). |
||
363 | /// Derived classes are responsible for implementing that extra knowledge, and |
||
364 | /// provide different sets of rules for loads and stores by overriding method |
||
365 | /// `isReady()`. |
||
366 | /// To emulate a write-combining memory type, rule 2. must be relaxed in a |
||
367 | /// derived class to enable the reordering of non-aliasing store operations. |
||
368 | /// |
||
369 | /// No assumptions are made by this class on the size of the store buffer. This |
||
370 | /// class doesn't know how to identify cases where store-to-load forwarding may |
||
371 | /// occur. |
||
372 | /// |
||
373 | /// LSUnit doesn't attempt to predict whether a load or store hits or misses |
||
374 | /// the L1 cache. To be more specific, LSUnit doesn't know anything about |
||
375 | /// cache hierarchy and memory types. |
||
376 | /// It only knows if an instruction "mayLoad" and/or "mayStore". For loads, the |
||
377 | /// scheduling model provides an "optimistic" load-to-use latency (which usually |
||
378 | /// matches the load-to-use latency for when there is a hit in the L1D). |
||
379 | /// Derived classes may expand this knowledge. |
||
380 | /// |
||
381 | /// Class MCInstrDesc in LLVM doesn't know about serializing operations, nor |
||
382 | /// memory-barrier like instructions. |
||
383 | /// LSUnit conservatively assumes that an instruction which `mayLoad` and has |
||
384 | /// `unmodeled side effects` behave like a "soft" load-barrier. That means, it |
||
385 | /// serializes loads without forcing a flush of the load queue. |
||
386 | /// Similarly, instructions that both `mayStore` and have `unmodeled side |
||
387 | /// effects` are treated like store barriers. A full memory |
||
388 | /// barrier is a 'mayLoad' and 'mayStore' instruction with unmodeled side |
||
389 | /// effects. This is obviously inaccurate, but this is the best that we can do |
||
390 | /// at the moment. |
||
391 | /// |
||
392 | /// Each load/store barrier consumes one entry in the load/store queue. A |
||
393 | /// load/store barrier enforces ordering of loads/stores: |
||
394 | /// - A younger load cannot pass a load barrier. |
||
395 | /// - A younger store cannot pass a store barrier. |
||
396 | /// |
||
397 | /// A younger load has to wait for the memory load barrier to execute. |
||
398 | /// A load/store barrier is "executed" when it becomes the oldest entry in |
||
399 | /// the load/store queue(s). That also means, all the older loads/stores have |
||
400 | /// already been executed. |
||
401 | class LSUnit : public LSUnitBase { |
||
402 | // This class doesn't know about the latency of a load instruction. So, it |
||
403 | // conservatively/pessimistically assumes that the latency of a load opcode |
||
404 | // matches the instruction latency. |
||
405 | // |
||
406 | // FIXME: In the absence of cache misses (i.e. L1I/L1D/iTLB/dTLB hits/misses), |
||
407 | // and load/store conflicts, the latency of a load is determined by the depth |
||
408 | // of the load pipeline. So, we could use field `LoadLatency` in the |
||
409 | // MCSchedModel to model that latency. |
||
410 | // Field `LoadLatency` often matches the so-called 'load-to-use' latency from |
||
411 | // L1D, and it usually already accounts for any extra latency due to data |
||
412 | // forwarding. |
||
413 | // When doing throughput analysis, `LoadLatency` is likely to |
||
414 | // be a better predictor of load latency than instruction latency. This is |
||
415 | // particularly true when simulating code with temporal/spatial locality of |
||
416 | // memory accesses. |
||
417 | // Using `LoadLatency` (instead of the instruction latency) is also expected |
||
418 | // to improve the load queue allocation for long latency instructions with |
||
419 | // folded memory operands (See PR39829). |
||
420 | // |
||
421 | // FIXME: On some processors, load/store operations are split into multiple |
||
422 | // uOps. For example, X86 AMD Jaguar natively supports 128-bit data types, but |
||
423 | // not 256-bit data types. So, a 256-bit load is effectively split into two |
||
424 | // 128-bit loads, and each split load consumes one 'LoadQueue' entry. For |
||
425 | // simplicity, this class optimistically assumes that a load instruction only |
||
426 | // consumes one entry in the LoadQueue. Similarly, store instructions only |
||
427 | // consume a single entry in the StoreQueue. |
||
428 | // In future, we should reassess the quality of this design, and consider |
||
429 | // alternative approaches that let instructions specify the number of |
||
430 | // load/store queue entries which they consume at dispatch stage (See |
||
431 | // PR39830). |
||
432 | // |
||
433 | // An instruction that both 'mayStore' and 'HasUnmodeledSideEffects' is |
||
434 | // conservatively treated as a store barrier. It forces older store to be |
||
435 | // executed before newer stores are issued. |
||
436 | // |
||
437 | // An instruction that both 'MayLoad' and 'HasUnmodeledSideEffects' is |
||
438 | // conservatively treated as a load barrier. It forces older loads to execute |
||
439 | // before newer loads are issued. |
||
440 | unsigned CurrentLoadGroupID; |
||
441 | unsigned CurrentLoadBarrierGroupID; |
||
442 | unsigned CurrentStoreGroupID; |
||
443 | unsigned CurrentStoreBarrierGroupID; |
||
444 | |||
445 | public: |
||
446 | LSUnit(const MCSchedModel &SM) |
||
447 | : LSUnit(SM, /* LQSize */ 0, /* SQSize */ 0, /* NoAlias */ false) {} |
||
448 | LSUnit(const MCSchedModel &SM, unsigned LQ, unsigned SQ) |
||
449 | : LSUnit(SM, LQ, SQ, /* NoAlias */ false) {} |
||
450 | LSUnit(const MCSchedModel &SM, unsigned LQ, unsigned SQ, bool AssumeNoAlias) |
||
451 | : LSUnitBase(SM, LQ, SQ, AssumeNoAlias), CurrentLoadGroupID(0), |
||
452 | CurrentLoadBarrierGroupID(0), CurrentStoreGroupID(0), |
||
453 | CurrentStoreBarrierGroupID(0) {} |
||
454 | |||
455 | /// Returns LSU_AVAILABLE if there are enough load/store queue entries to |
||
456 | /// accomodate instruction IR. |
||
457 | Status isAvailable(const InstRef &IR) const override; |
||
458 | |||
459 | /// Allocates LS resources for instruction IR. |
||
460 | /// |
||
461 | /// This method assumes that a previous call to `isAvailable(IR)` succeeded |
||
462 | /// returning LSU_AVAILABLE. |
||
463 | /// |
||
464 | /// Rules are: |
||
465 | /// By default, rules are: |
||
466 | /// 1. A store may not pass a previous store. |
||
467 | /// 2. A load may not pass a previous store unless flag 'NoAlias' is set. |
||
468 | /// 3. A load may pass a previous load. |
||
469 | /// 4. A store may not pass a previous load (regardless of flag 'NoAlias'). |
||
470 | /// 5. A load has to wait until an older load barrier is fully executed. |
||
471 | /// 6. A store has to wait until an older store barrier is fully executed. |
||
472 | unsigned dispatch(const InstRef &IR) override; |
||
473 | |||
474 | void onInstructionExecuted(const InstRef &IR) override; |
||
475 | }; |
||
476 | |||
477 | } // namespace mca |
||
478 | } // namespace llvm |
||
479 | |||
480 | #endif // LLVM_MCA_HARDWAREUNITS_LSUNIT_H |