Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- MCSymbol.h - Machine Code Symbols ------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the declaration of the MCSymbol class.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_MC_MCSYMBOL_H
14
#define LLVM_MC_MCSYMBOL_H
15
 
16
#include "llvm/ADT/PointerIntPair.h"
17
#include "llvm/ADT/StringMapEntry.h"
18
#include "llvm/ADT/StringRef.h"
19
#include "llvm/MC/MCExpr.h"
20
#include "llvm/MC/MCFragment.h"
21
#include "llvm/Support/ErrorHandling.h"
22
#include "llvm/Support/MathExtras.h"
23
#include <cassert>
24
#include <cstddef>
25
#include <cstdint>
26
 
27
namespace llvm {
28
 
29
class MCAsmInfo;
30
class MCContext;
31
class MCSection;
32
class raw_ostream;
33
 
34
/// MCSymbol - Instances of this class represent a symbol name in the MC file,
35
/// and MCSymbols are created and uniqued by the MCContext class.  MCSymbols
36
/// should only be constructed with valid names for the object file.
37
///
38
/// If the symbol is defined/emitted into the current translation unit, the
39
/// Section member is set to indicate what section it lives in.  Otherwise, if
40
/// it is a reference to an external entity, it has a null section.
41
class MCSymbol {
42
protected:
43
  /// The kind of the symbol.  If it is any value other than unset then this
44
  /// class is actually one of the appropriate subclasses of MCSymbol.
45
  enum SymbolKind {
46
    SymbolKindUnset,
47
    SymbolKindCOFF,
48
    SymbolKindELF,
49
    SymbolKindGOFF,
50
    SymbolKindMachO,
51
    SymbolKindWasm,
52
    SymbolKindXCOFF,
53
  };
54
 
55
  /// A symbol can contain an Offset, or Value, or be Common, but never more
56
  /// than one of these.
57
  enum Contents : uint8_t {
58
    SymContentsUnset,
59
    SymContentsOffset,
60
    SymContentsVariable,
61
    SymContentsCommon,
62
    SymContentsTargetCommon, // Index stores the section index
63
  };
64
 
65
  // Special sentinal value for the absolute pseudo fragment.
66
  static MCFragment *AbsolutePseudoFragment;
67
 
68
  /// If a symbol has a Fragment, the section is implied, so we only need
69
  /// one pointer.
70
  /// The special AbsolutePseudoFragment value is for absolute symbols.
71
  /// If this is a variable symbol, this caches the variable value's fragment.
72
  /// FIXME: We might be able to simplify this by having the asm streamer create
73
  /// dummy fragments.
74
  /// If this is a section, then it gives the symbol is defined in. This is null
75
  /// for undefined symbols.
76
  ///
77
  /// If this is a fragment, then it gives the fragment this symbol's value is
78
  /// relative to, if any.
79
  ///
80
  /// For the 'HasName' integer, this is true if this symbol is named.
81
  /// A named symbol will have a pointer to the name allocated in the bytes
82
  /// immediately prior to the MCSymbol.
83
  mutable PointerIntPair<MCFragment *, 1> FragmentAndHasName;
84
 
85
  /// IsTemporary - True if this is an assembler temporary label, which
86
  /// typically does not survive in the .o file's symbol table.  Usually
87
  /// "Lfoo" or ".foo".
88
  unsigned IsTemporary : 1;
89
 
90
  /// True if this symbol can be redefined.
91
  unsigned IsRedefinable : 1;
92
 
93
  /// IsUsed - True if this symbol has been used.
94
  mutable unsigned IsUsed : 1;
95
 
96
  mutable unsigned IsRegistered : 1;
97
 
98
  /// True if this symbol is visible outside this translation unit. Note: ELF
99
  /// uses binding instead of this bit.
100
  mutable unsigned IsExternal : 1;
101
 
102
  /// This symbol is private extern.
103
  mutable unsigned IsPrivateExtern : 1;
104
 
105
  /// LLVM RTTI discriminator. This is actually a SymbolKind enumerator, but is
106
  /// unsigned to avoid sign extension and achieve better bitpacking with MSVC.
107
  unsigned Kind : 3;
108
 
109
  /// True if we have created a relocation that uses this symbol.
110
  mutable unsigned IsUsedInReloc : 1;
111
 
112
  /// This is actually a Contents enumerator, but is unsigned to avoid sign
113
  /// extension and achieve better bitpacking with MSVC.
114
  unsigned SymbolContents : 3;
115
 
116
  /// The alignment of the symbol if it is 'common'.
117
  ///
118
  /// Internally, this is stored as log2(align) + 1.
119
  /// We reserve 5 bits to encode this value which allows the following values
120
  /// 0b00000 -> unset
121
  /// 0b00001 -> 1ULL <<  0 = 1
122
  /// 0b00010 -> 1ULL <<  1 = 2
123
  /// 0b00011 -> 1ULL <<  2 = 4
124
  /// ...
125
  /// 0b11111 -> 1ULL << 30 = 1 GiB
126
  enum : unsigned { NumCommonAlignmentBits = 5 };
127
  unsigned CommonAlignLog2 : NumCommonAlignmentBits;
128
 
129
  /// The Flags field is used by object file implementations to store
130
  /// additional per symbol information which is not easily classified.
131
  enum : unsigned { NumFlagsBits = 16 };
132
  mutable uint32_t Flags : NumFlagsBits;
133
 
134
  /// Index field, for use by the object file implementation.
135
  mutable uint32_t Index = 0;
136
 
137
  union {
138
    /// The offset to apply to the fragment address to form this symbol's value.
139
    uint64_t Offset;
140
 
141
    /// The size of the symbol, if it is 'common'.
142
    uint64_t CommonSize;
143
 
144
    /// If non-null, the value for a variable symbol.
145
    const MCExpr *Value;
146
  };
147
 
148
  // MCContext creates and uniques these.
149
  friend class MCExpr;
150
  friend class MCContext;
151
 
152
  /// The name for a symbol.
153
  /// MCSymbol contains a uint64_t so is probably aligned to 8.  On a 32-bit
154
  /// system, the name is a pointer so isn't going to satisfy the 8 byte
155
  /// alignment of uint64_t.  Account for that here.
156
  using NameEntryStorageTy = union {
157
    const StringMapEntry<bool> *NameEntry;
158
    uint64_t AlignmentPadding;
159
  };
160
 
161
  MCSymbol(SymbolKind Kind, const StringMapEntry<bool> *Name, bool isTemporary)
162
      : IsTemporary(isTemporary), IsRedefinable(false), IsUsed(false),
163
        IsRegistered(false), IsExternal(false), IsPrivateExtern(false),
164
        Kind(Kind), IsUsedInReloc(false), SymbolContents(SymContentsUnset),
165
        CommonAlignLog2(0), Flags(0) {
166
    Offset = 0;
167
    FragmentAndHasName.setInt(!!Name);
168
    if (Name)
169
      getNameEntryPtr() = Name;
170
  }
171
 
172
  // Provide custom new/delete as we will only allocate space for a name
173
  // if we need one.
174
  void *operator new(size_t s, const StringMapEntry<bool> *Name,
175
                     MCContext &Ctx);
176
 
177
private:
178
  void operator delete(void *);
179
  /// Placement delete - required by std, but never called.
180
  void operator delete(void*, unsigned) {
181
    llvm_unreachable("Constructor throws?");
182
  }
183
  /// Placement delete - required by std, but never called.
184
  void operator delete(void*, unsigned, bool) {
185
    llvm_unreachable("Constructor throws?");
186
  }
187
 
188
  /// Get a reference to the name field.  Requires that we have a name
189
  const StringMapEntry<bool> *&getNameEntryPtr() {
190
    assert(FragmentAndHasName.getInt() && "Name is required");
191
    NameEntryStorageTy *Name = reinterpret_cast<NameEntryStorageTy *>(this);
192
    return (*(Name - 1)).NameEntry;
193
  }
194
  const StringMapEntry<bool> *&getNameEntryPtr() const {
195
    return const_cast<MCSymbol*>(this)->getNameEntryPtr();
196
  }
197
 
198
public:
199
  MCSymbol(const MCSymbol &) = delete;
200
  MCSymbol &operator=(const MCSymbol &) = delete;
201
 
202
  /// getName - Get the symbol name.
203
  StringRef getName() const {
204
    if (!FragmentAndHasName.getInt())
205
      return StringRef();
206
 
207
    return getNameEntryPtr()->first();
208
  }
209
 
210
  bool isRegistered() const { return IsRegistered; }
211
  void setIsRegistered(bool Value) const { IsRegistered = Value; }
212
 
213
  void setUsedInReloc() const { IsUsedInReloc = true; }
214
  bool isUsedInReloc() const { return IsUsedInReloc; }
215
 
216
  /// \name Accessors
217
  /// @{
218
 
219
  /// isTemporary - Check if this is an assembler temporary symbol.
220
  bool isTemporary() const { return IsTemporary; }
221
 
222
  /// isUsed - Check if this is used.
223
  bool isUsed() const { return IsUsed; }
224
 
225
  /// Check if this symbol is redefinable.
226
  bool isRedefinable() const { return IsRedefinable; }
227
  /// Mark this symbol as redefinable.
228
  void setRedefinable(bool Value) { IsRedefinable = Value; }
229
  /// Prepare this symbol to be redefined.
230
  void redefineIfPossible() {
231
    if (IsRedefinable) {
232
      if (SymbolContents == SymContentsVariable) {
233
        Value = nullptr;
234
        SymbolContents = SymContentsUnset;
235
      }
236
      setUndefined();
237
      IsRedefinable = false;
238
    }
239
  }
240
 
241
  /// @}
242
  /// \name Associated Sections
243
  /// @{
244
 
245
  /// isDefined - Check if this symbol is defined (i.e., it has an address).
246
  ///
247
  /// Defined symbols are either absolute or in some section.
248
  bool isDefined() const { return !isUndefined(); }
249
 
250
  /// isInSection - Check if this symbol is defined in some section (i.e., it
251
  /// is defined but not absolute).
252
  bool isInSection() const {
253
    return isDefined() && !isAbsolute();
254
  }
255
 
256
  /// isUndefined - Check if this symbol undefined (i.e., implicitly defined).
257
  bool isUndefined(bool SetUsed = true) const {
258
    return getFragment(SetUsed) == nullptr;
259
  }
260
 
261
  /// isAbsolute - Check if this is an absolute symbol.
262
  bool isAbsolute() const {
263
    return getFragment() == AbsolutePseudoFragment;
264
  }
265
 
266
  /// Get the section associated with a defined, non-absolute symbol.
267
  MCSection &getSection() const {
268
    assert(isInSection() && "Invalid accessor!");
269
    return *getFragment()->getParent();
270
  }
271
 
272
  /// Mark the symbol as defined in the fragment \p F.
273
  void setFragment(MCFragment *F) const {
274
    assert(!isVariable() && "Cannot set fragment of variable");
275
    FragmentAndHasName.setPointer(F);
276
  }
277
 
278
  /// Mark the symbol as undefined.
279
  void setUndefined() { FragmentAndHasName.setPointer(nullptr); }
280
 
281
  bool isELF() const { return Kind == SymbolKindELF; }
282
 
283
  bool isCOFF() const { return Kind == SymbolKindCOFF; }
284
 
285
  bool isGOFF() const { return Kind == SymbolKindGOFF; }
286
 
287
  bool isMachO() const { return Kind == SymbolKindMachO; }
288
 
289
  bool isWasm() const { return Kind == SymbolKindWasm; }
290
 
291
  bool isXCOFF() const { return Kind == SymbolKindXCOFF; }
292
 
293
  /// @}
294
  /// \name Variable Symbols
295
  /// @{
296
 
297
  /// isVariable - Check if this is a variable symbol.
298
  bool isVariable() const {
299
    return SymbolContents == SymContentsVariable;
300
  }
301
 
302
  /// getVariableValue - Get the value for variable symbols.
303
  const MCExpr *getVariableValue(bool SetUsed = true) const {
304
    assert(isVariable() && "Invalid accessor!");
305
    IsUsed |= SetUsed;
306
    return Value;
307
  }
308
 
309
  void setVariableValue(const MCExpr *Value);
310
 
311
  /// @}
312
 
313
  /// Get the (implementation defined) index.
314
  uint32_t getIndex() const {
315
    return Index;
316
  }
317
 
318
  /// Set the (implementation defined) index.
319
  void setIndex(uint32_t Value) const {
320
    Index = Value;
321
  }
322
 
323
  bool isUnset() const { return SymbolContents == SymContentsUnset; }
324
 
325
  uint64_t getOffset() const {
326
    assert((SymbolContents == SymContentsUnset ||
327
            SymbolContents == SymContentsOffset) &&
328
           "Cannot get offset for a common/variable symbol");
329
    return Offset;
330
  }
331
  void setOffset(uint64_t Value) {
332
    assert((SymbolContents == SymContentsUnset ||
333
            SymbolContents == SymContentsOffset) &&
334
           "Cannot set offset for a common/variable symbol");
335
    Offset = Value;
336
    SymbolContents = SymContentsOffset;
337
  }
338
 
339
  /// Return the size of a 'common' symbol.
340
  uint64_t getCommonSize() const {
341
    assert(isCommon() && "Not a 'common' symbol!");
342
    return CommonSize;
343
  }
344
 
345
  /// Mark this symbol as being 'common'.
346
  ///
347
  /// \param Size - The size of the symbol.
348
  /// \param Alignment - The alignment of the symbol.
349
  /// \param Target - Is the symbol a target-specific common-like symbol.
350
  void setCommon(uint64_t Size, Align Alignment, bool Target = false) {
351
    assert(getOffset() == 0);
352
    CommonSize = Size;
353
    SymbolContents = Target ? SymContentsTargetCommon : SymContentsCommon;
354
 
355
    unsigned Log2Align = encode(Alignment);
356
    assert(Log2Align < (1U << NumCommonAlignmentBits) &&
357
           "Out of range alignment");
358
    CommonAlignLog2 = Log2Align;
359
  }
360
 
361
  ///  Return the alignment of a 'common' symbol.
362
  MaybeAlign getCommonAlignment() const {
363
    assert(isCommon() && "Not a 'common' symbol!");
364
    return decodeMaybeAlign(CommonAlignLog2);
365
  }
366
 
367
  /// Declare this symbol as being 'common'.
368
  ///
369
  /// \param Size - The size of the symbol.
370
  /// \param Alignment - The alignment of the symbol.
371
  /// \param Target - Is the symbol a target-specific common-like symbol.
372
  /// \return True if symbol was already declared as a different type
373
  bool declareCommon(uint64_t Size, Align Alignment, bool Target = false) {
374
    assert(isCommon() || getOffset() == 0);
375
    if(isCommon()) {
376
      if (CommonSize != Size || getCommonAlignment() != Alignment ||
377
          isTargetCommon() != Target)
378
        return true;
379
    } else
380
      setCommon(Size, Alignment, Target);
381
    return false;
382
  }
383
 
384
  /// Is this a 'common' symbol.
385
  bool isCommon() const {
386
    return SymbolContents == SymContentsCommon ||
387
           SymbolContents == SymContentsTargetCommon;
388
  }
389
 
390
  /// Is this a target-specific common-like symbol.
391
  bool isTargetCommon() const {
392
    return SymbolContents == SymContentsTargetCommon;
393
  }
394
 
395
  MCFragment *getFragment(bool SetUsed = true) const {
396
    MCFragment *Fragment = FragmentAndHasName.getPointer();
397
    if (Fragment || !isVariable())
398
      return Fragment;
399
    Fragment = getVariableValue(SetUsed)->findAssociatedFragment();
400
    FragmentAndHasName.setPointer(Fragment);
401
    return Fragment;
402
  }
403
 
404
  bool isExternal() const { return IsExternal; }
405
  void setExternal(bool Value) const { IsExternal = Value; }
406
 
407
  bool isPrivateExtern() const { return IsPrivateExtern; }
408
  void setPrivateExtern(bool Value) { IsPrivateExtern = Value; }
409
 
410
  /// print - Print the value to the stream \p OS.
411
  void print(raw_ostream &OS, const MCAsmInfo *MAI) const;
412
 
413
  /// dump - Print the value to stderr.
414
  void dump() const;
415
 
416
protected:
417
  /// Get the (implementation defined) symbol flags.
418
  uint32_t getFlags() const { return Flags; }
419
 
420
  /// Set the (implementation defined) symbol flags.
421
  void setFlags(uint32_t Value) const {
422
    assert(Value < (1U << NumFlagsBits) && "Out of range flags");
423
    Flags = Value;
424
  }
425
 
426
  /// Modify the flags via a mask
427
  void modifyFlags(uint32_t Value, uint32_t Mask) const {
428
    assert(Value < (1U << NumFlagsBits) && "Out of range flags");
429
    Flags = (Flags & ~Mask) | Value;
430
  }
431
};
432
 
433
inline raw_ostream &operator<<(raw_ostream &OS, const MCSymbol &Sym) {
434
  Sym.print(OS, nullptr);
435
  return OS;
436
}
437
 
438
} // end namespace llvm
439
 
440
#endif // LLVM_MC_MCSYMBOL_H