Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/MC/MCInstrItineraries.h - Scheduling ----------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file describes the structures used for instruction |
||
| 10 | // itineraries, stages, and operand reads/writes. This is used by |
||
| 11 | // schedulers to determine instruction stages and latencies. |
||
| 12 | // |
||
| 13 | //===----------------------------------------------------------------------===// |
||
| 14 | |||
| 15 | #ifndef LLVM_MC_MCINSTRITINERARIES_H |
||
| 16 | #define LLVM_MC_MCINSTRITINERARIES_H |
||
| 17 | |||
| 18 | #include "llvm/MC/MCSchedule.h" |
||
| 19 | #include <algorithm> |
||
| 20 | |||
| 21 | namespace llvm { |
||
| 22 | |||
| 23 | //===----------------------------------------------------------------------===// |
||
| 24 | /// These values represent a non-pipelined step in |
||
| 25 | /// the execution of an instruction. Cycles represents the number of |
||
| 26 | /// discrete time slots needed to complete the stage. Units represent |
||
| 27 | /// the choice of functional units that can be used to complete the |
||
| 28 | /// stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many |
||
| 29 | /// cycles should elapse from the start of this stage to the start of |
||
| 30 | /// the next stage in the itinerary. A value of -1 indicates that the |
||
| 31 | /// next stage should start immediately after the current one. |
||
| 32 | /// For example: |
||
| 33 | /// |
||
| 34 | /// { 1, x, -1 } |
||
| 35 | /// indicates that the stage occupies FU x for 1 cycle and that |
||
| 36 | /// the next stage starts immediately after this one. |
||
| 37 | /// |
||
| 38 | /// { 2, x|y, 1 } |
||
| 39 | /// indicates that the stage occupies either FU x or FU y for 2 |
||
| 40 | /// consecutive cycles and that the next stage starts one cycle |
||
| 41 | /// after this stage starts. That is, the stage requirements |
||
| 42 | /// overlap in time. |
||
| 43 | /// |
||
| 44 | /// { 1, x, 0 } |
||
| 45 | /// indicates that the stage occupies FU x for 1 cycle and that |
||
| 46 | /// the next stage starts in this same cycle. This can be used to |
||
| 47 | /// indicate that the instruction requires multiple stages at the |
||
| 48 | /// same time. |
||
| 49 | /// |
||
| 50 | /// FU reservation can be of two different kinds: |
||
| 51 | /// - FUs which instruction actually requires |
||
| 52 | /// - FUs which instruction just reserves. Reserved unit is not available for |
||
| 53 | /// execution of other instruction. However, several instructions can reserve |
||
| 54 | /// the same unit several times. |
||
| 55 | /// Such two types of units reservation is used to model instruction domain |
||
| 56 | /// change stalls, FUs using the same resource (e.g. same register file), etc. |
||
| 57 | |||
| 58 | struct InstrStage { |
||
| 59 | enum ReservationKinds { |
||
| 60 | Required = 0, |
||
| 61 | Reserved = 1 |
||
| 62 | }; |
||
| 63 | |||
| 64 | /// Bitmask representing a set of functional units. |
||
| 65 | typedef uint64_t FuncUnits; |
||
| 66 | |||
| 67 | unsigned Cycles_; ///< Length of stage in machine cycles |
||
| 68 | FuncUnits Units_; ///< Choice of functional units |
||
| 69 | int NextCycles_; ///< Number of machine cycles to next stage |
||
| 70 | ReservationKinds Kind_; ///< Kind of the FU reservation |
||
| 71 | |||
| 72 | /// Returns the number of cycles the stage is occupied. |
||
| 73 | unsigned getCycles() const { |
||
| 74 | return Cycles_; |
||
| 75 | } |
||
| 76 | |||
| 77 | /// Returns the choice of FUs. |
||
| 78 | FuncUnits getUnits() const { |
||
| 79 | return Units_; |
||
| 80 | } |
||
| 81 | |||
| 82 | ReservationKinds getReservationKind() const { |
||
| 83 | return Kind_; |
||
| 84 | } |
||
| 85 | |||
| 86 | /// Returns the number of cycles from the start of this stage to the |
||
| 87 | /// start of the next stage in the itinerary |
||
| 88 | unsigned getNextCycles() const { |
||
| 89 | return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_; |
||
| 90 | } |
||
| 91 | }; |
||
| 92 | |||
| 93 | //===----------------------------------------------------------------------===// |
||
| 94 | /// An itinerary represents the scheduling information for an instruction. |
||
| 95 | /// This includes a set of stages occupied by the instruction and the pipeline |
||
| 96 | /// cycle in which operands are read and written. |
||
| 97 | /// |
||
| 98 | struct InstrItinerary { |
||
| 99 | int16_t NumMicroOps; ///< # of micro-ops, -1 means it's variable |
||
| 100 | uint16_t FirstStage; ///< Index of first stage in itinerary |
||
| 101 | uint16_t LastStage; ///< Index of last + 1 stage in itinerary |
||
| 102 | uint16_t FirstOperandCycle; ///< Index of first operand rd/wr |
||
| 103 | uint16_t LastOperandCycle; ///< Index of last + 1 operand rd/wr |
||
| 104 | }; |
||
| 105 | |||
| 106 | //===----------------------------------------------------------------------===// |
||
| 107 | /// Itinerary data supplied by a subtarget to be used by a target. |
||
| 108 | /// |
||
| 109 | class InstrItineraryData { |
||
| 110 | public: |
||
| 111 | MCSchedModel SchedModel = |
||
| 112 | MCSchedModel::GetDefaultSchedModel(); ///< Basic machine properties. |
||
| 113 | const InstrStage *Stages = nullptr; ///< Array of stages selected |
||
| 114 | const unsigned *OperandCycles = nullptr; ///< Array of operand cycles selected |
||
| 115 | const unsigned *Forwardings = nullptr; ///< Array of pipeline forwarding paths |
||
| 116 | const InstrItinerary *Itineraries = |
||
| 117 | nullptr; ///< Array of itineraries selected |
||
| 118 | |||
| 119 | InstrItineraryData() = default; |
||
| 120 | InstrItineraryData(const MCSchedModel &SM, const InstrStage *S, |
||
| 121 | const unsigned *OS, const unsigned *F) |
||
| 122 | : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F), |
||
| 123 | Itineraries(SchedModel.InstrItineraries) {} |
||
| 124 | |||
| 125 | /// Returns true if there are no itineraries. |
||
| 126 | bool isEmpty() const { return Itineraries == nullptr; } |
||
| 127 | |||
| 128 | /// Returns true if the index is for the end marker itinerary. |
||
| 129 | bool isEndMarker(unsigned ItinClassIndx) const { |
||
| 130 | return ((Itineraries[ItinClassIndx].FirstStage == UINT16_MAX) && |
||
| 131 | (Itineraries[ItinClassIndx].LastStage == UINT16_MAX)); |
||
| 132 | } |
||
| 133 | |||
| 134 | /// Return the first stage of the itinerary. |
||
| 135 | const InstrStage *beginStage(unsigned ItinClassIndx) const { |
||
| 136 | unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage; |
||
| 137 | return Stages + StageIdx; |
||
| 138 | } |
||
| 139 | |||
| 140 | /// Return the last+1 stage of the itinerary. |
||
| 141 | const InstrStage *endStage(unsigned ItinClassIndx) const { |
||
| 142 | unsigned StageIdx = Itineraries[ItinClassIndx].LastStage; |
||
| 143 | return Stages + StageIdx; |
||
| 144 | } |
||
| 145 | |||
| 146 | /// Return the total stage latency of the given class. The latency is |
||
| 147 | /// the maximum completion time for any stage in the itinerary. If no stages |
||
| 148 | /// exist, it defaults to one cycle. |
||
| 149 | unsigned getStageLatency(unsigned ItinClassIndx) const { |
||
| 150 | // If the target doesn't provide itinerary information, use a simple |
||
| 151 | // non-zero default value for all instructions. |
||
| 152 | if (isEmpty()) |
||
| 153 | return 1; |
||
| 154 | |||
| 155 | // Calculate the maximum completion time for any stage. |
||
| 156 | unsigned Latency = 0, StartCycle = 0; |
||
| 157 | for (const InstrStage *IS = beginStage(ItinClassIndx), |
||
| 158 | *E = endStage(ItinClassIndx); IS != E; ++IS) { |
||
| 159 | Latency = std::max(Latency, StartCycle + IS->getCycles()); |
||
| 160 | StartCycle += IS->getNextCycles(); |
||
| 161 | } |
||
| 162 | return Latency; |
||
| 163 | } |
||
| 164 | |||
| 165 | /// Return the cycle for the given class and operand. Return -1 if no |
||
| 166 | /// cycle is specified for the operand. |
||
| 167 | int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const { |
||
| 168 | if (isEmpty()) |
||
| 169 | return -1; |
||
| 170 | |||
| 171 | unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle; |
||
| 172 | unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle; |
||
| 173 | if ((FirstIdx + OperandIdx) >= LastIdx) |
||
| 174 | return -1; |
||
| 175 | |||
| 176 | return (int)OperandCycles[FirstIdx + OperandIdx]; |
||
| 177 | } |
||
| 178 | |||
| 179 | /// Return true if there is a pipeline forwarding between instructions |
||
| 180 | /// of itinerary classes DefClass and UseClasses so that value produced by an |
||
| 181 | /// instruction of itinerary class DefClass, operand index DefIdx can be |
||
| 182 | /// bypassed when it's read by an instruction of itinerary class UseClass, |
||
| 183 | /// operand index UseIdx. |
||
| 184 | bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx, |
||
| 185 | unsigned UseClass, unsigned UseIdx) const { |
||
| 186 | unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle; |
||
| 187 | unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle; |
||
| 188 | if ((FirstDefIdx + DefIdx) >= LastDefIdx) |
||
| 189 | return false; |
||
| 190 | if (Forwardings[FirstDefIdx + DefIdx] == 0) |
||
| 191 | return false; |
||
| 192 | |||
| 193 | unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle; |
||
| 194 | unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle; |
||
| 195 | if ((FirstUseIdx + UseIdx) >= LastUseIdx) |
||
| 196 | return false; |
||
| 197 | |||
| 198 | return Forwardings[FirstDefIdx + DefIdx] == |
||
| 199 | Forwardings[FirstUseIdx + UseIdx]; |
||
| 200 | } |
||
| 201 | |||
| 202 | /// Compute and return the use operand latency of a given itinerary |
||
| 203 | /// class and operand index if the value is produced by an instruction of the |
||
| 204 | /// specified itinerary class and def operand index. |
||
| 205 | int getOperandLatency(unsigned DefClass, unsigned DefIdx, |
||
| 206 | unsigned UseClass, unsigned UseIdx) const { |
||
| 207 | if (isEmpty()) |
||
| 208 | return -1; |
||
| 209 | |||
| 210 | int DefCycle = getOperandCycle(DefClass, DefIdx); |
||
| 211 | if (DefCycle == -1) |
||
| 212 | return -1; |
||
| 213 | |||
| 214 | int UseCycle = getOperandCycle(UseClass, UseIdx); |
||
| 215 | if (UseCycle == -1) |
||
| 216 | return -1; |
||
| 217 | |||
| 218 | UseCycle = DefCycle - UseCycle + 1; |
||
| 219 | if (UseCycle > 0 && |
||
| 220 | hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx)) |
||
| 221 | // FIXME: This assumes one cycle benefit for every pipeline forwarding. |
||
| 222 | --UseCycle; |
||
| 223 | return UseCycle; |
||
| 224 | } |
||
| 225 | |||
| 226 | /// Return the number of micro-ops that the given class decodes to. |
||
| 227 | /// Return -1 for classes that require dynamic lookup via TargetInstrInfo. |
||
| 228 | int getNumMicroOps(unsigned ItinClassIndx) const { |
||
| 229 | if (isEmpty()) |
||
| 230 | return 1; |
||
| 231 | return Itineraries[ItinClassIndx].NumMicroOps; |
||
| 232 | } |
||
| 233 | }; |
||
| 234 | |||
| 235 | } // end namespace llvm |
||
| 236 | |||
| 237 | #endif // LLVM_MC_MCINSTRITINERARIES_H |