Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines the MCOperandInfo and MCInstrDesc classes, which |
||
10 | // are used to describe target instructions and their operands. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_MC_MCINSTRDESC_H |
||
15 | #define LLVM_MC_MCINSTRDESC_H |
||
16 | |||
17 | #include "llvm/ADT/ArrayRef.h" |
||
18 | #include "llvm/ADT/iterator_range.h" |
||
19 | #include "llvm/MC/MCRegister.h" |
||
20 | |||
21 | namespace llvm { |
||
22 | class MCRegisterInfo; |
||
23 | |||
24 | class MCInst; |
||
25 | |||
26 | //===----------------------------------------------------------------------===// |
||
27 | // Machine Operand Flags and Description |
||
28 | //===----------------------------------------------------------------------===// |
||
29 | |||
30 | namespace MCOI { |
||
31 | /// Operand constraints. These are encoded in 16 bits with one of the |
||
32 | /// low-order 3 bits specifying that a constraint is present and the |
||
33 | /// corresponding high-order hex digit specifying the constraint value. |
||
34 | /// This allows for a maximum of 3 constraints. |
||
35 | enum OperandConstraint { |
||
36 | TIED_TO = 0, // Must be allocated the same register as specified value. |
||
37 | EARLY_CLOBBER // If present, operand is an early clobber register. |
||
38 | }; |
||
39 | |||
40 | // Define a macro to produce each constraint value. |
||
41 | #define MCOI_TIED_TO(op) \ |
||
42 | ((1 << MCOI::TIED_TO) | ((op) << (4 + MCOI::TIED_TO * 4))) |
||
43 | |||
44 | #define MCOI_EARLY_CLOBBER \ |
||
45 | (1 << MCOI::EARLY_CLOBBER) |
||
46 | |||
47 | /// These are flags set on operands, but should be considered |
||
48 | /// private, all access should go through the MCOperandInfo accessors. |
||
49 | /// See the accessors for a description of what these are. |
||
50 | enum OperandFlags { |
||
51 | LookupPtrRegClass = 0, |
||
52 | Predicate, |
||
53 | OptionalDef, |
||
54 | BranchTarget |
||
55 | }; |
||
56 | |||
57 | /// Operands are tagged with one of the values of this enum. |
||
58 | enum OperandType { |
||
59 | OPERAND_UNKNOWN = 0, |
||
60 | OPERAND_IMMEDIATE = 1, |
||
61 | OPERAND_REGISTER = 2, |
||
62 | OPERAND_MEMORY = 3, |
||
63 | OPERAND_PCREL = 4, |
||
64 | |||
65 | OPERAND_FIRST_GENERIC = 6, |
||
66 | OPERAND_GENERIC_0 = 6, |
||
67 | OPERAND_GENERIC_1 = 7, |
||
68 | OPERAND_GENERIC_2 = 8, |
||
69 | OPERAND_GENERIC_3 = 9, |
||
70 | OPERAND_GENERIC_4 = 10, |
||
71 | OPERAND_GENERIC_5 = 11, |
||
72 | OPERAND_LAST_GENERIC = 11, |
||
73 | |||
74 | OPERAND_FIRST_GENERIC_IMM = 12, |
||
75 | OPERAND_GENERIC_IMM_0 = 12, |
||
76 | OPERAND_LAST_GENERIC_IMM = 12, |
||
77 | |||
78 | OPERAND_FIRST_TARGET = 13, |
||
79 | }; |
||
80 | |||
81 | } // namespace MCOI |
||
82 | |||
83 | /// This holds information about one operand of a machine instruction, |
||
84 | /// indicating the register class for register operands, etc. |
||
85 | class MCOperandInfo { |
||
86 | public: |
||
87 | /// This specifies the register class enumeration of the operand |
||
88 | /// if the operand is a register. If isLookupPtrRegClass is set, then this is |
||
89 | /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to |
||
90 | /// get a dynamic register class. |
||
91 | int16_t RegClass; |
||
92 | |||
93 | /// These are flags from the MCOI::OperandFlags enum. |
||
94 | uint8_t Flags; |
||
95 | |||
96 | /// Information about the type of the operand. |
||
97 | uint8_t OperandType; |
||
98 | |||
99 | /// Operand constraints (see OperandConstraint enum). |
||
100 | uint16_t Constraints; |
||
101 | |||
102 | /// Set if this operand is a pointer value and it requires a callback |
||
103 | /// to look up its register class. |
||
104 | bool isLookupPtrRegClass() const { |
||
105 | return Flags & (1 << MCOI::LookupPtrRegClass); |
||
106 | } |
||
107 | |||
108 | /// Set if this is one of the operands that made up of the predicate |
||
109 | /// operand that controls an isPredicable() instruction. |
||
110 | bool isPredicate() const { return Flags & (1 << MCOI::Predicate); } |
||
111 | |||
112 | /// Set if this operand is a optional def. |
||
113 | bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); } |
||
114 | |||
115 | /// Set if this operand is a branch target. |
||
116 | bool isBranchTarget() const { return Flags & (1 << MCOI::BranchTarget); } |
||
117 | |||
118 | bool isGenericType() const { |
||
119 | return OperandType >= MCOI::OPERAND_FIRST_GENERIC && |
||
120 | OperandType <= MCOI::OPERAND_LAST_GENERIC; |
||
121 | } |
||
122 | |||
123 | unsigned getGenericTypeIndex() const { |
||
124 | assert(isGenericType() && "non-generic types don't have an index"); |
||
125 | return OperandType - MCOI::OPERAND_FIRST_GENERIC; |
||
126 | } |
||
127 | |||
128 | bool isGenericImm() const { |
||
129 | return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM && |
||
130 | OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM; |
||
131 | } |
||
132 | |||
133 | unsigned getGenericImmIndex() const { |
||
134 | assert(isGenericImm() && "non-generic immediates don't have an index"); |
||
135 | return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM; |
||
136 | } |
||
137 | }; |
||
138 | |||
139 | //===----------------------------------------------------------------------===// |
||
140 | // Machine Instruction Flags and Description |
||
141 | //===----------------------------------------------------------------------===// |
||
142 | |||
143 | namespace MCID { |
||
144 | /// These should be considered private to the implementation of the |
||
145 | /// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc, |
||
146 | /// not use these directly. These all correspond to bitfields in the |
||
147 | /// MCInstrDesc::Flags field. |
||
148 | enum Flag { |
||
149 | PreISelOpcode = 0, |
||
150 | Variadic, |
||
151 | HasOptionalDef, |
||
152 | Pseudo, |
||
153 | Meta, |
||
154 | Return, |
||
155 | EHScopeReturn, |
||
156 | Call, |
||
157 | Barrier, |
||
158 | Terminator, |
||
159 | Branch, |
||
160 | IndirectBranch, |
||
161 | Compare, |
||
162 | MoveImm, |
||
163 | MoveReg, |
||
164 | Bitcast, |
||
165 | Select, |
||
166 | DelaySlot, |
||
167 | FoldableAsLoad, |
||
168 | MayLoad, |
||
169 | MayStore, |
||
170 | MayRaiseFPException, |
||
171 | Predicable, |
||
172 | NotDuplicable, |
||
173 | UnmodeledSideEffects, |
||
174 | Commutable, |
||
175 | ConvertibleTo3Addr, |
||
176 | UsesCustomInserter, |
||
177 | HasPostISelHook, |
||
178 | Rematerializable, |
||
179 | CheapAsAMove, |
||
180 | ExtraSrcRegAllocReq, |
||
181 | ExtraDefRegAllocReq, |
||
182 | RegSequence, |
||
183 | ExtractSubreg, |
||
184 | InsertSubreg, |
||
185 | Convergent, |
||
186 | Add, |
||
187 | Trap, |
||
188 | VariadicOpsAreDefs, |
||
189 | Authenticated, |
||
190 | }; |
||
191 | } // namespace MCID |
||
192 | |||
193 | /// Describe properties that are true of each instruction in the target |
||
194 | /// description file. This captures information about side effects, register |
||
195 | /// use and many other things. There is one instance of this struct for each |
||
196 | /// target instruction class, and the MachineInstr class points to this struct |
||
197 | /// directly to describe itself. |
||
198 | class MCInstrDesc { |
||
199 | public: |
||
200 | // FIXME: Disable copies and moves. |
||
201 | // Do not allow MCInstrDescs to be copied or moved. They should only exist in |
||
202 | // the <Target>Insts table because they rely on knowing their own address to |
||
203 | // find other information elsewhere in the same table. |
||
204 | |||
205 | unsigned short Opcode; // The opcode number |
||
206 | unsigned short NumOperands; // Num of args (may be more if variable_ops) |
||
207 | unsigned char NumDefs; // Num of args that are definitions |
||
208 | unsigned char Size; // Number of bytes in encoding. |
||
209 | unsigned short SchedClass; // enum identifying instr sched class |
||
210 | unsigned char NumImplicitUses; // Num of regs implicitly used |
||
211 | unsigned char NumImplicitDefs; // Num of regs implicitly defined |
||
212 | uint64_t Flags; // Flags identifying machine instr class |
||
213 | uint64_t TSFlags; // Target Specific Flag values |
||
214 | const MCPhysReg *ImplicitOps; // List of implicit uses followed by defs |
||
215 | const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands |
||
216 | |||
217 | /// Returns the value of the specified operand constraint if |
||
218 | /// it is present. Returns -1 if it is not present. |
||
219 | int getOperandConstraint(unsigned OpNum, |
||
220 | MCOI::OperandConstraint Constraint) const { |
||
221 | if (OpNum < NumOperands && |
||
222 | (operands()[OpNum].Constraints & (1 << Constraint))) { |
||
223 | unsigned ValuePos = 4 + Constraint * 4; |
||
224 | return (int)(operands()[OpNum].Constraints >> ValuePos) & 0x0f; |
||
225 | } |
||
226 | return -1; |
||
227 | } |
||
228 | |||
229 | /// Return the opcode number for this descriptor. |
||
230 | unsigned getOpcode() const { return Opcode; } |
||
231 | |||
232 | /// Return the number of declared MachineOperands for this |
||
233 | /// MachineInstruction. Note that variadic (isVariadic() returns true) |
||
234 | /// instructions may have additional operands at the end of the list, and note |
||
235 | /// that the machine instruction may include implicit register def/uses as |
||
236 | /// well. |
||
237 | unsigned getNumOperands() const { return NumOperands; } |
||
238 | |||
239 | using const_opInfo_iterator = const MCOperandInfo *; |
||
240 | |||
241 | const_opInfo_iterator opInfo_begin() const { return OpInfo; } |
||
242 | const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; } |
||
243 | |||
244 | ArrayRef<MCOperandInfo> operands() const { |
||
245 | return ArrayRef(OpInfo, NumOperands); |
||
246 | } |
||
247 | |||
248 | /// Return the number of MachineOperands that are register |
||
249 | /// definitions. Register definitions always occur at the start of the |
||
250 | /// machine operand list. This is the number of "outs" in the .td file, |
||
251 | /// and does not include implicit defs. |
||
252 | unsigned getNumDefs() const { return NumDefs; } |
||
253 | |||
254 | /// Return flags of this instruction. |
||
255 | uint64_t getFlags() const { return Flags; } |
||
256 | |||
257 | /// \returns true if this instruction is emitted before instruction selection |
||
258 | /// and should be legalized/regbankselected/selected. |
||
259 | bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); } |
||
260 | |||
261 | /// Return true if this instruction can have a variable number of |
||
262 | /// operands. In this case, the variable operands will be after the normal |
||
263 | /// operands but before the implicit definitions and uses (if any are |
||
264 | /// present). |
||
265 | bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); } |
||
266 | |||
267 | /// Set if this instruction has an optional definition, e.g. |
||
268 | /// ARM instructions which can set condition code if 's' bit is set. |
||
269 | bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); } |
||
270 | |||
271 | /// Return true if this is a pseudo instruction that doesn't |
||
272 | /// correspond to a real machine instruction. |
||
273 | bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); } |
||
274 | |||
275 | /// Return true if this is a meta instruction that doesn't |
||
276 | /// produce any output in the form of executable instructions. |
||
277 | bool isMetaInstruction() const { return Flags & (1ULL << MCID::Meta); } |
||
278 | |||
279 | /// Return true if the instruction is a return. |
||
280 | bool isReturn() const { return Flags & (1ULL << MCID::Return); } |
||
281 | |||
282 | /// Return true if the instruction is an add instruction. |
||
283 | bool isAdd() const { return Flags & (1ULL << MCID::Add); } |
||
284 | |||
285 | /// Return true if this instruction is a trap. |
||
286 | bool isTrap() const { return Flags & (1ULL << MCID::Trap); } |
||
287 | |||
288 | /// Return true if the instruction is a register to register move. |
||
289 | bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); } |
||
290 | |||
291 | /// Return true if the instruction is a call. |
||
292 | bool isCall() const { return Flags & (1ULL << MCID::Call); } |
||
293 | |||
294 | /// Returns true if the specified instruction stops control flow |
||
295 | /// from executing the instruction immediately following it. Examples include |
||
296 | /// unconditional branches and return instructions. |
||
297 | bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); } |
||
298 | |||
299 | /// Returns true if this instruction part of the terminator for |
||
300 | /// a basic block. Typically this is things like return and branch |
||
301 | /// instructions. |
||
302 | /// |
||
303 | /// Various passes use this to insert code into the bottom of a basic block, |
||
304 | /// but before control flow occurs. |
||
305 | bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); } |
||
306 | |||
307 | /// Returns true if this is a conditional, unconditional, or |
||
308 | /// indirect branch. Predicates below can be used to discriminate between |
||
309 | /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to |
||
310 | /// get more information. |
||
311 | bool isBranch() const { return Flags & (1ULL << MCID::Branch); } |
||
312 | |||
313 | /// Return true if this is an indirect branch, such as a |
||
314 | /// branch through a register. |
||
315 | bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); } |
||
316 | |||
317 | /// Return true if this is a branch which may fall |
||
318 | /// through to the next instruction or may transfer control flow to some other |
||
319 | /// block. The TargetInstrInfo::analyzeBranch method can be used to get more |
||
320 | /// information about this branch. |
||
321 | bool isConditionalBranch() const { |
||
322 | return isBranch() && !isBarrier() && !isIndirectBranch(); |
||
323 | } |
||
324 | |||
325 | /// Return true if this is a branch which always |
||
326 | /// transfers control flow to some other block. The |
||
327 | /// TargetInstrInfo::analyzeBranch method can be used to get more information |
||
328 | /// about this branch. |
||
329 | bool isUnconditionalBranch() const { |
||
330 | return isBranch() && isBarrier() && !isIndirectBranch(); |
||
331 | } |
||
332 | |||
333 | /// Return true if this is a branch or an instruction which directly |
||
334 | /// writes to the program counter. Considered 'may' affect rather than |
||
335 | /// 'does' affect as things like predication are not taken into account. |
||
336 | bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const; |
||
337 | |||
338 | /// Return true if this instruction has a predicate operand |
||
339 | /// that controls execution. It may be set to 'always', or may be set to other |
||
340 | /// values. There are various methods in TargetInstrInfo that can be used to |
||
341 | /// control and modify the predicate in this instruction. |
||
342 | bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); } |
||
343 | |||
344 | /// Return true if this instruction is a comparison. |
||
345 | bool isCompare() const { return Flags & (1ULL << MCID::Compare); } |
||
346 | |||
347 | /// Return true if this instruction is a move immediate |
||
348 | /// (including conditional moves) instruction. |
||
349 | bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); } |
||
350 | |||
351 | /// Return true if this instruction is a bitcast instruction. |
||
352 | bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); } |
||
353 | |||
354 | /// Return true if this is a select instruction. |
||
355 | bool isSelect() const { return Flags & (1ULL << MCID::Select); } |
||
356 | |||
357 | /// Return true if this instruction cannot be safely |
||
358 | /// duplicated. For example, if the instruction has a unique labels attached |
||
359 | /// to it, duplicating it would cause multiple definition errors. |
||
360 | bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); } |
||
361 | |||
362 | /// Returns true if the specified instruction has a delay slot which |
||
363 | /// must be filled by the code generator. |
||
364 | bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); } |
||
365 | |||
366 | /// Return true for instructions that can be folded as memory operands |
||
367 | /// in other instructions. The most common use for this is instructions that |
||
368 | /// are simple loads from memory that don't modify the loaded value in any |
||
369 | /// way, but it can also be used for instructions that can be expressed as |
||
370 | /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be |
||
371 | /// folded when it is beneficial. This should only be set on instructions |
||
372 | /// that return a value in their only virtual register definition. |
||
373 | bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); } |
||
374 | |||
375 | /// Return true if this instruction behaves |
||
376 | /// the same way as the generic REG_SEQUENCE instructions. |
||
377 | /// E.g., on ARM, |
||
378 | /// dX VMOVDRR rY, rZ |
||
379 | /// is equivalent to |
||
380 | /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. |
||
381 | /// |
||
382 | /// Note that for the optimizers to be able to take advantage of |
||
383 | /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be |
||
384 | /// override accordingly. |
||
385 | bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); } |
||
386 | |||
387 | /// Return true if this instruction behaves |
||
388 | /// the same way as the generic EXTRACT_SUBREG instructions. |
||
389 | /// E.g., on ARM, |
||
390 | /// rX, rY VMOVRRD dZ |
||
391 | /// is equivalent to two EXTRACT_SUBREG: |
||
392 | /// rX = EXTRACT_SUBREG dZ, ssub_0 |
||
393 | /// rY = EXTRACT_SUBREG dZ, ssub_1 |
||
394 | /// |
||
395 | /// Note that for the optimizers to be able to take advantage of |
||
396 | /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be |
||
397 | /// override accordingly. |
||
398 | bool isExtractSubregLike() const { |
||
399 | return Flags & (1ULL << MCID::ExtractSubreg); |
||
400 | } |
||
401 | |||
402 | /// Return true if this instruction behaves |
||
403 | /// the same way as the generic INSERT_SUBREG instructions. |
||
404 | /// E.g., on ARM, |
||
405 | /// dX = VSETLNi32 dY, rZ, Imm |
||
406 | /// is equivalent to a INSERT_SUBREG: |
||
407 | /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) |
||
408 | /// |
||
409 | /// Note that for the optimizers to be able to take advantage of |
||
410 | /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be |
||
411 | /// override accordingly. |
||
412 | bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); } |
||
413 | |||
414 | |||
415 | /// Return true if this instruction is convergent. |
||
416 | /// |
||
417 | /// Convergent instructions may not be made control-dependent on any |
||
418 | /// additional values. |
||
419 | bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); } |
||
420 | |||
421 | /// Return true if variadic operands of this instruction are definitions. |
||
422 | bool variadicOpsAreDefs() const { |
||
423 | return Flags & (1ULL << MCID::VariadicOpsAreDefs); |
||
424 | } |
||
425 | |||
426 | /// Return true if this instruction authenticates a pointer (e.g. LDRAx/BRAx |
||
427 | /// from ARMv8.3, which perform loads/branches with authentication). |
||
428 | /// |
||
429 | /// An authenticated instruction may fail in an ABI-defined manner when |
||
430 | /// operating on an invalid signed pointer. |
||
431 | bool isAuthenticated() const { |
||
432 | return Flags & (1ULL << MCID::Authenticated); |
||
433 | } |
||
434 | |||
435 | //===--------------------------------------------------------------------===// |
||
436 | // Side Effect Analysis |
||
437 | //===--------------------------------------------------------------------===// |
||
438 | |||
439 | /// Return true if this instruction could possibly read memory. |
||
440 | /// Instructions with this flag set are not necessarily simple load |
||
441 | /// instructions, they may load a value and modify it, for example. |
||
442 | bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); } |
||
443 | |||
444 | /// Return true if this instruction could possibly modify memory. |
||
445 | /// Instructions with this flag set are not necessarily simple store |
||
446 | /// instructions, they may store a modified value based on their operands, or |
||
447 | /// may not actually modify anything, for example. |
||
448 | bool mayStore() const { return Flags & (1ULL << MCID::MayStore); } |
||
449 | |||
450 | /// Return true if this instruction may raise a floating-point exception. |
||
451 | bool mayRaiseFPException() const { |
||
452 | return Flags & (1ULL << MCID::MayRaiseFPException); |
||
453 | } |
||
454 | |||
455 | /// Return true if this instruction has side |
||
456 | /// effects that are not modeled by other flags. This does not return true |
||
457 | /// for instructions whose effects are captured by: |
||
458 | /// |
||
459 | /// 1. Their operand list and implicit definition/use list. Register use/def |
||
460 | /// info is explicit for instructions. |
||
461 | /// 2. Memory accesses. Use mayLoad/mayStore. |
||
462 | /// 3. Calling, branching, returning: use isCall/isReturn/isBranch. |
||
463 | /// |
||
464 | /// Examples of side effects would be modifying 'invisible' machine state like |
||
465 | /// a control register, flushing a cache, modifying a register invisible to |
||
466 | /// LLVM, etc. |
||
467 | bool hasUnmodeledSideEffects() const { |
||
468 | return Flags & (1ULL << MCID::UnmodeledSideEffects); |
||
469 | } |
||
470 | |||
471 | //===--------------------------------------------------------------------===// |
||
472 | // Flags that indicate whether an instruction can be modified by a method. |
||
473 | //===--------------------------------------------------------------------===// |
||
474 | |||
475 | /// Return true if this may be a 2- or 3-address instruction (of the |
||
476 | /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are |
||
477 | /// exchanged. If this flag is set, then the |
||
478 | /// TargetInstrInfo::commuteInstruction method may be used to hack on the |
||
479 | /// instruction. |
||
480 | /// |
||
481 | /// Note that this flag may be set on instructions that are only commutable |
||
482 | /// sometimes. In these cases, the call to commuteInstruction will fail. |
||
483 | /// Also note that some instructions require non-trivial modification to |
||
484 | /// commute them. |
||
485 | bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); } |
||
486 | |||
487 | /// Return true if this is a 2-address instruction which can be changed |
||
488 | /// into a 3-address instruction if needed. Doing this transformation can be |
||
489 | /// profitable in the register allocator, because it means that the |
||
490 | /// instruction can use a 2-address form if possible, but degrade into a less |
||
491 | /// efficient form if the source and dest register cannot be assigned to the |
||
492 | /// same register. For example, this allows the x86 backend to turn a "shl |
||
493 | /// reg, 3" instruction into an LEA instruction, which is the same speed as |
||
494 | /// the shift but has bigger code size. |
||
495 | /// |
||
496 | /// If this returns true, then the target must implement the |
||
497 | /// TargetInstrInfo::convertToThreeAddress method for this instruction, which |
||
498 | /// is allowed to fail if the transformation isn't valid for this specific |
||
499 | /// instruction (e.g. shl reg, 4 on x86). |
||
500 | /// |
||
501 | bool isConvertibleTo3Addr() const { |
||
502 | return Flags & (1ULL << MCID::ConvertibleTo3Addr); |
||
503 | } |
||
504 | |||
505 | /// Return true if this instruction requires custom insertion support |
||
506 | /// when the DAG scheduler is inserting it into a machine basic block. If |
||
507 | /// this is true for the instruction, it basically means that it is a pseudo |
||
508 | /// instruction used at SelectionDAG time that is expanded out into magic code |
||
509 | /// by the target when MachineInstrs are formed. |
||
510 | /// |
||
511 | /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method |
||
512 | /// is used to insert this into the MachineBasicBlock. |
||
513 | bool usesCustomInsertionHook() const { |
||
514 | return Flags & (1ULL << MCID::UsesCustomInserter); |
||
515 | } |
||
516 | |||
517 | /// Return true if this instruction requires *adjustment* after |
||
518 | /// instruction selection by calling a target hook. For example, this can be |
||
519 | /// used to fill in ARM 's' optional operand depending on whether the |
||
520 | /// conditional flag register is used. |
||
521 | bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); } |
||
522 | |||
523 | /// Returns true if this instruction is a candidate for remat. This |
||
524 | /// flag is only used in TargetInstrInfo method isTriviallyRematerializable. |
||
525 | /// |
||
526 | /// If this flag is set, the isReallyTriviallyReMaterializable() |
||
527 | /// or isReallyTriviallyReMaterializableGeneric methods are called to verify |
||
528 | /// the instruction is really rematable. |
||
529 | bool isRematerializable() const { |
||
530 | return Flags & (1ULL << MCID::Rematerializable); |
||
531 | } |
||
532 | |||
533 | /// Returns true if this instruction has the same cost (or less) than a |
||
534 | /// move instruction. This is useful during certain types of optimizations |
||
535 | /// (e.g., remat during two-address conversion or machine licm) where we would |
||
536 | /// like to remat or hoist the instruction, but not if it costs more than |
||
537 | /// moving the instruction into the appropriate register. Note, we are not |
||
538 | /// marking copies from and to the same register class with this flag. |
||
539 | /// |
||
540 | /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove |
||
541 | /// for different subtargets. |
||
542 | bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); } |
||
543 | |||
544 | /// Returns true if this instruction source operands have special |
||
545 | /// register allocation requirements that are not captured by the operand |
||
546 | /// register classes. e.g. ARM::STRD's two source registers must be an even / |
||
547 | /// odd pair, ARM::STM registers have to be in ascending order. Post-register |
||
548 | /// allocation passes should not attempt to change allocations for sources of |
||
549 | /// instructions with this flag. |
||
550 | bool hasExtraSrcRegAllocReq() const { |
||
551 | return Flags & (1ULL << MCID::ExtraSrcRegAllocReq); |
||
552 | } |
||
553 | |||
554 | /// Returns true if this instruction def operands have special register |
||
555 | /// allocation requirements that are not captured by the operand register |
||
556 | /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair, |
||
557 | /// ARM::LDM registers have to be in ascending order. Post-register |
||
558 | /// allocation passes should not attempt to change allocations for definitions |
||
559 | /// of instructions with this flag. |
||
560 | bool hasExtraDefRegAllocReq() const { |
||
561 | return Flags & (1ULL << MCID::ExtraDefRegAllocReq); |
||
562 | } |
||
563 | |||
564 | /// Return a list of registers that are potentially read by any |
||
565 | /// instance of this machine instruction. For example, on X86, the "adc" |
||
566 | /// instruction adds two register operands and adds the carry bit in from the |
||
567 | /// flags register. In this case, the instruction is marked as implicitly |
||
568 | /// reading the flags. Likewise, the variable shift instruction on X86 is |
||
569 | /// marked as implicitly reading the 'CL' register, which it always does. |
||
570 | ArrayRef<MCPhysReg> implicit_uses() const { |
||
571 | return {ImplicitOps, NumImplicitUses}; |
||
572 | } |
||
573 | |||
574 | /// Return a list of registers that are potentially written by any |
||
575 | /// instance of this machine instruction. For example, on X86, many |
||
576 | /// instructions implicitly set the flags register. In this case, they are |
||
577 | /// marked as setting the FLAGS. Likewise, many instructions always deposit |
||
578 | /// their result in a physical register. For example, the X86 divide |
||
579 | /// instruction always deposits the quotient and remainder in the EAX/EDX |
||
580 | /// registers. For that instruction, this will return a list containing the |
||
581 | /// EAX/EDX/EFLAGS registers. |
||
582 | ArrayRef<MCPhysReg> implicit_defs() const { |
||
583 | return {ImplicitOps + NumImplicitUses, NumImplicitDefs}; |
||
584 | } |
||
585 | |||
586 | /// Return true if this instruction implicitly |
||
587 | /// uses the specified physical register. |
||
588 | bool hasImplicitUseOfPhysReg(unsigned Reg) const { |
||
589 | return is_contained(implicit_uses(), Reg); |
||
590 | } |
||
591 | |||
592 | /// Return true if this instruction implicitly |
||
593 | /// defines the specified physical register. |
||
594 | bool hasImplicitDefOfPhysReg(unsigned Reg, |
||
595 | const MCRegisterInfo *MRI = nullptr) const; |
||
596 | |||
597 | /// Return the scheduling class for this instruction. The |
||
598 | /// scheduling class is an index into the InstrItineraryData table. This |
||
599 | /// returns zero if there is no known scheduling information for the |
||
600 | /// instruction. |
||
601 | unsigned getSchedClass() const { return SchedClass; } |
||
602 | |||
603 | /// Return the number of bytes in the encoding of this instruction, |
||
604 | /// or zero if the encoding size cannot be known from the opcode. |
||
605 | unsigned getSize() const { return Size; } |
||
606 | |||
607 | /// Find the index of the first operand in the |
||
608 | /// operand list that is used to represent the predicate. It returns -1 if |
||
609 | /// none is found. |
||
610 | int findFirstPredOperandIdx() const { |
||
611 | if (isPredicable()) { |
||
612 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
||
613 | if (operands()[i].isPredicate()) |
||
614 | return i; |
||
615 | } |
||
616 | return -1; |
||
617 | } |
||
618 | |||
619 | /// Return true if this instruction defines the specified physical |
||
620 | /// register, either explicitly or implicitly. |
||
621 | bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg, |
||
622 | const MCRegisterInfo &RI) const; |
||
623 | }; |
||
624 | |||
625 | } // end namespace llvm |
||
626 | |||
627 | #endif |