Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file declares the Value class. |
||
10 | // |
||
11 | //===----------------------------------------------------------------------===// |
||
12 | |||
13 | #ifndef LLVM_IR_VALUE_H |
||
14 | #define LLVM_IR_VALUE_H |
||
15 | |||
16 | #include "llvm-c/Types.h" |
||
17 | #include "llvm/ADT/STLExtras.h" |
||
18 | #include "llvm/ADT/StringRef.h" |
||
19 | #include "llvm/ADT/iterator_range.h" |
||
20 | #include "llvm/IR/Use.h" |
||
21 | #include "llvm/Support/Alignment.h" |
||
22 | #include "llvm/Support/CBindingWrapping.h" |
||
23 | #include "llvm/Support/Casting.h" |
||
24 | #include <cassert> |
||
25 | #include <iterator> |
||
26 | #include <memory> |
||
27 | |||
28 | namespace llvm { |
||
29 | |||
30 | class APInt; |
||
31 | class Argument; |
||
32 | class BasicBlock; |
||
33 | class Constant; |
||
34 | class ConstantData; |
||
35 | class ConstantAggregate; |
||
36 | class DataLayout; |
||
37 | class Function; |
||
38 | class GlobalAlias; |
||
39 | class GlobalIFunc; |
||
40 | class GlobalObject; |
||
41 | class GlobalValue; |
||
42 | class GlobalVariable; |
||
43 | class InlineAsm; |
||
44 | class Instruction; |
||
45 | class LLVMContext; |
||
46 | class MDNode; |
||
47 | class Module; |
||
48 | class ModuleSlotTracker; |
||
49 | class raw_ostream; |
||
50 | template<typename ValueTy> class StringMapEntry; |
||
51 | class Twine; |
||
52 | class Type; |
||
53 | class User; |
||
54 | |||
55 | using ValueName = StringMapEntry<Value *>; |
||
56 | |||
57 | //===----------------------------------------------------------------------===// |
||
58 | // Value Class |
||
59 | //===----------------------------------------------------------------------===// |
||
60 | |||
61 | /// LLVM Value Representation |
||
62 | /// |
||
63 | /// This is a very important LLVM class. It is the base class of all values |
||
64 | /// computed by a program that may be used as operands to other values. Value is |
||
65 | /// the super class of other important classes such as Instruction and Function. |
||
66 | /// All Values have a Type. Type is not a subclass of Value. Some values can |
||
67 | /// have a name and they belong to some Module. Setting the name on the Value |
||
68 | /// automatically updates the module's symbol table. |
||
69 | /// |
||
70 | /// Every value has a "use list" that keeps track of which other Values are |
||
71 | /// using this Value. A Value can also have an arbitrary number of ValueHandle |
||
72 | /// objects that watch it and listen to RAUW and Destroy events. See |
||
73 | /// llvm/IR/ValueHandle.h for details. |
||
74 | class Value { |
||
75 | Type *VTy; |
||
76 | Use *UseList; |
||
77 | |||
78 | friend class ValueAsMetadata; // Allow access to IsUsedByMD. |
||
79 | friend class ValueHandleBase; |
||
80 | |||
81 | const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast) |
||
82 | unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? |
||
83 | |||
84 | protected: |
||
85 | /// Hold subclass data that can be dropped. |
||
86 | /// |
||
87 | /// This member is similar to SubclassData, however it is for holding |
||
88 | /// information which may be used to aid optimization, but which may be |
||
89 | /// cleared to zero without affecting conservative interpretation. |
||
90 | unsigned char SubclassOptionalData : 7; |
||
91 | |||
92 | private: |
||
93 | /// Hold arbitrary subclass data. |
||
94 | /// |
||
95 | /// This member is defined by this class, but is not used for anything. |
||
96 | /// Subclasses can use it to hold whatever state they find useful. This |
||
97 | /// field is initialized to zero by the ctor. |
||
98 | unsigned short SubclassData; |
||
99 | |||
100 | protected: |
||
101 | /// The number of operands in the subclass. |
||
102 | /// |
||
103 | /// This member is defined by this class, but not used for anything. |
||
104 | /// Subclasses can use it to store their number of operands, if they have |
||
105 | /// any. |
||
106 | /// |
||
107 | /// This is stored here to save space in User on 64-bit hosts. Since most |
||
108 | /// instances of Value have operands, 32-bit hosts aren't significantly |
||
109 | /// affected. |
||
110 | /// |
||
111 | /// Note, this should *NOT* be used directly by any class other than User. |
||
112 | /// User uses this value to find the Use list. |
||
113 | enum : unsigned { NumUserOperandsBits = 27 }; |
||
114 | unsigned NumUserOperands : NumUserOperandsBits; |
||
115 | |||
116 | // Use the same type as the bitfield above so that MSVC will pack them. |
||
117 | unsigned IsUsedByMD : 1; |
||
118 | unsigned HasName : 1; |
||
119 | unsigned HasMetadata : 1; // Has metadata attached to this? |
||
120 | unsigned HasHungOffUses : 1; |
||
121 | unsigned HasDescriptor : 1; |
||
122 | |||
123 | private: |
||
124 | template <typename UseT> // UseT == 'Use' or 'const Use' |
||
125 | class use_iterator_impl { |
||
126 | friend class Value; |
||
127 | |||
128 | UseT *U; |
||
129 | |||
130 | explicit use_iterator_impl(UseT *u) : U(u) {} |
||
131 | |||
132 | public: |
||
133 | using iterator_category = std::forward_iterator_tag; |
||
134 | using value_type = UseT *; |
||
135 | using difference_type = std::ptrdiff_t; |
||
136 | using pointer = value_type *; |
||
137 | using reference = value_type &; |
||
138 | |||
139 | use_iterator_impl() : U() {} |
||
140 | |||
141 | bool operator==(const use_iterator_impl &x) const { return U == x.U; } |
||
142 | bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } |
||
143 | |||
144 | use_iterator_impl &operator++() { // Preincrement |
||
145 | assert(U && "Cannot increment end iterator!"); |
||
146 | U = U->getNext(); |
||
147 | return *this; |
||
148 | } |
||
149 | |||
150 | use_iterator_impl operator++(int) { // Postincrement |
||
151 | auto tmp = *this; |
||
152 | ++*this; |
||
153 | return tmp; |
||
154 | } |
||
155 | |||
156 | UseT &operator*() const { |
||
157 | assert(U && "Cannot dereference end iterator!"); |
||
158 | return *U; |
||
159 | } |
||
160 | |||
161 | UseT *operator->() const { return &operator*(); } |
||
162 | |||
163 | operator use_iterator_impl<const UseT>() const { |
||
164 | return use_iterator_impl<const UseT>(U); |
||
165 | } |
||
166 | }; |
||
167 | |||
168 | template <typename UserTy> // UserTy == 'User' or 'const User' |
||
169 | class user_iterator_impl { |
||
170 | use_iterator_impl<Use> UI; |
||
171 | explicit user_iterator_impl(Use *U) : UI(U) {} |
||
172 | friend class Value; |
||
173 | |||
174 | public: |
||
175 | using iterator_category = std::forward_iterator_tag; |
||
176 | using value_type = UserTy *; |
||
177 | using difference_type = std::ptrdiff_t; |
||
178 | using pointer = value_type *; |
||
179 | using reference = value_type &; |
||
180 | |||
181 | user_iterator_impl() = default; |
||
182 | |||
183 | bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } |
||
184 | bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } |
||
185 | |||
186 | /// Returns true if this iterator is equal to user_end() on the value. |
||
187 | bool atEnd() const { return *this == user_iterator_impl(); } |
||
188 | |||
189 | user_iterator_impl &operator++() { // Preincrement |
||
190 | ++UI; |
||
191 | return *this; |
||
192 | } |
||
193 | |||
194 | user_iterator_impl operator++(int) { // Postincrement |
||
195 | auto tmp = *this; |
||
196 | ++*this; |
||
197 | return tmp; |
||
198 | } |
||
199 | |||
200 | // Retrieve a pointer to the current User. |
||
201 | UserTy *operator*() const { |
||
202 | return UI->getUser(); |
||
203 | } |
||
204 | |||
205 | UserTy *operator->() const { return operator*(); } |
||
206 | |||
207 | operator user_iterator_impl<const UserTy>() const { |
||
208 | return user_iterator_impl<const UserTy>(*UI); |
||
209 | } |
||
210 | |||
211 | Use &getUse() const { return *UI; } |
||
212 | }; |
||
213 | |||
214 | protected: |
||
215 | Value(Type *Ty, unsigned scid); |
||
216 | |||
217 | /// Value's destructor should be virtual by design, but that would require |
||
218 | /// that Value and all of its subclasses have a vtable that effectively |
||
219 | /// duplicates the information in the value ID. As a size optimization, the |
||
220 | /// destructor has been protected, and the caller should manually call |
||
221 | /// deleteValue. |
||
222 | ~Value(); // Use deleteValue() to delete a generic Value. |
||
223 | |||
224 | public: |
||
225 | Value(const Value &) = delete; |
||
226 | Value &operator=(const Value &) = delete; |
||
227 | |||
228 | /// Delete a pointer to a generic Value. |
||
229 | void deleteValue(); |
||
230 | |||
231 | /// Support for debugging, callable in GDB: V->dump() |
||
232 | void dump() const; |
||
233 | |||
234 | /// Implement operator<< on Value. |
||
235 | /// @{ |
||
236 | void print(raw_ostream &O, bool IsForDebug = false) const; |
||
237 | void print(raw_ostream &O, ModuleSlotTracker &MST, |
||
238 | bool IsForDebug = false) const; |
||
239 | /// @} |
||
240 | |||
241 | /// Print the name of this Value out to the specified raw_ostream. |
||
242 | /// |
||
243 | /// This is useful when you just want to print 'int %reg126', not the |
||
244 | /// instruction that generated it. If you specify a Module for context, then |
||
245 | /// even constanst get pretty-printed; for example, the type of a null |
||
246 | /// pointer is printed symbolically. |
||
247 | /// @{ |
||
248 | void printAsOperand(raw_ostream &O, bool PrintType = true, |
||
249 | const Module *M = nullptr) const; |
||
250 | void printAsOperand(raw_ostream &O, bool PrintType, |
||
251 | ModuleSlotTracker &MST) const; |
||
252 | /// @} |
||
253 | |||
254 | /// All values are typed, get the type of this value. |
||
255 | Type *getType() const { return VTy; } |
||
256 | |||
257 | /// All values hold a context through their type. |
||
258 | LLVMContext &getContext() const; |
||
259 | |||
260 | // All values can potentially be named. |
||
261 | bool hasName() const { return HasName; } |
||
262 | ValueName *getValueName() const; |
||
263 | void setValueName(ValueName *VN); |
||
264 | |||
265 | private: |
||
266 | void destroyValueName(); |
||
267 | enum class ReplaceMetadataUses { No, Yes }; |
||
268 | void doRAUW(Value *New, ReplaceMetadataUses); |
||
269 | void setNameImpl(const Twine &Name); |
||
270 | |||
271 | public: |
||
272 | /// Return a constant reference to the value's name. |
||
273 | /// |
||
274 | /// This guaranteed to return the same reference as long as the value is not |
||
275 | /// modified. If the value has a name, this does a hashtable lookup, so it's |
||
276 | /// not free. |
||
277 | StringRef getName() const; |
||
278 | |||
279 | /// Change the name of the value. |
||
280 | /// |
||
281 | /// Choose a new unique name if the provided name is taken. |
||
282 | /// |
||
283 | /// \param Name The new name; or "" if the value's name should be removed. |
||
284 | void setName(const Twine &Name); |
||
285 | |||
286 | /// Transfer the name from V to this value. |
||
287 | /// |
||
288 | /// After taking V's name, sets V's name to empty. |
||
289 | /// |
||
290 | /// \note It is an error to call V->takeName(V). |
||
291 | void takeName(Value *V); |
||
292 | |||
293 | #ifndef NDEBUG |
||
294 | std::string getNameOrAsOperand() const; |
||
295 | #endif |
||
296 | |||
297 | /// Change all uses of this to point to a new Value. |
||
298 | /// |
||
299 | /// Go through the uses list for this definition and make each use point to |
||
300 | /// "V" instead of "this". After this completes, 'this's use list is |
||
301 | /// guaranteed to be empty. |
||
302 | void replaceAllUsesWith(Value *V); |
||
303 | |||
304 | /// Change non-metadata uses of this to point to a new Value. |
||
305 | /// |
||
306 | /// Go through the uses list for this definition and make each use point to |
||
307 | /// "V" instead of "this". This function skips metadata entries in the list. |
||
308 | void replaceNonMetadataUsesWith(Value *V); |
||
309 | |||
310 | /// Go through the uses list for this definition and make each use point |
||
311 | /// to "V" if the callback ShouldReplace returns true for the given Use. |
||
312 | /// Unlike replaceAllUsesWith() this function does not support basic block |
||
313 | /// values. |
||
314 | void replaceUsesWithIf(Value *New, |
||
315 | llvm::function_ref<bool(Use &U)> ShouldReplace); |
||
316 | |||
317 | /// replaceUsesOutsideBlock - Go through the uses list for this definition and |
||
318 | /// make each use point to "V" instead of "this" when the use is outside the |
||
319 | /// block. 'This's use list is expected to have at least one element. |
||
320 | /// Unlike replaceAllUsesWith() this function does not support basic block |
||
321 | /// values. |
||
322 | void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); |
||
323 | |||
324 | //---------------------------------------------------------------------- |
||
325 | // Methods for handling the chain of uses of this Value. |
||
326 | // |
||
327 | // Materializing a function can introduce new uses, so these methods come in |
||
328 | // two variants: |
||
329 | // The methods that start with materialized_ check the uses that are |
||
330 | // currently known given which functions are materialized. Be very careful |
||
331 | // when using them since you might not get all uses. |
||
332 | // The methods that don't start with materialized_ assert that modules is |
||
333 | // fully materialized. |
||
334 | void assertModuleIsMaterializedImpl() const; |
||
335 | // This indirection exists so we can keep assertModuleIsMaterializedImpl() |
||
336 | // around in release builds of Value.cpp to be linked with other code built |
||
337 | // in debug mode. But this avoids calling it in any of the release built code. |
||
338 | void assertModuleIsMaterialized() const { |
||
339 | #ifndef NDEBUG |
||
340 | assertModuleIsMaterializedImpl(); |
||
341 | #endif |
||
342 | } |
||
343 | |||
344 | bool use_empty() const { |
||
345 | assertModuleIsMaterialized(); |
||
346 | return UseList == nullptr; |
||
347 | } |
||
348 | |||
349 | bool materialized_use_empty() const { |
||
350 | return UseList == nullptr; |
||
351 | } |
||
352 | |||
353 | using use_iterator = use_iterator_impl<Use>; |
||
354 | using const_use_iterator = use_iterator_impl<const Use>; |
||
355 | |||
356 | use_iterator materialized_use_begin() { return use_iterator(UseList); } |
||
357 | const_use_iterator materialized_use_begin() const { |
||
358 | return const_use_iterator(UseList); |
||
359 | } |
||
360 | use_iterator use_begin() { |
||
361 | assertModuleIsMaterialized(); |
||
362 | return materialized_use_begin(); |
||
363 | } |
||
364 | const_use_iterator use_begin() const { |
||
365 | assertModuleIsMaterialized(); |
||
366 | return materialized_use_begin(); |
||
367 | } |
||
368 | use_iterator use_end() { return use_iterator(); } |
||
369 | const_use_iterator use_end() const { return const_use_iterator(); } |
||
370 | iterator_range<use_iterator> materialized_uses() { |
||
371 | return make_range(materialized_use_begin(), use_end()); |
||
372 | } |
||
373 | iterator_range<const_use_iterator> materialized_uses() const { |
||
374 | return make_range(materialized_use_begin(), use_end()); |
||
375 | } |
||
376 | iterator_range<use_iterator> uses() { |
||
377 | assertModuleIsMaterialized(); |
||
378 | return materialized_uses(); |
||
379 | } |
||
380 | iterator_range<const_use_iterator> uses() const { |
||
381 | assertModuleIsMaterialized(); |
||
382 | return materialized_uses(); |
||
383 | } |
||
384 | |||
385 | bool user_empty() const { |
||
386 | assertModuleIsMaterialized(); |
||
387 | return UseList == nullptr; |
||
388 | } |
||
389 | |||
390 | using user_iterator = user_iterator_impl<User>; |
||
391 | using const_user_iterator = user_iterator_impl<const User>; |
||
392 | |||
393 | user_iterator materialized_user_begin() { return user_iterator(UseList); } |
||
394 | const_user_iterator materialized_user_begin() const { |
||
395 | return const_user_iterator(UseList); |
||
396 | } |
||
397 | user_iterator user_begin() { |
||
398 | assertModuleIsMaterialized(); |
||
399 | return materialized_user_begin(); |
||
400 | } |
||
401 | const_user_iterator user_begin() const { |
||
402 | assertModuleIsMaterialized(); |
||
403 | return materialized_user_begin(); |
||
404 | } |
||
405 | user_iterator user_end() { return user_iterator(); } |
||
406 | const_user_iterator user_end() const { return const_user_iterator(); } |
||
407 | User *user_back() { |
||
408 | assertModuleIsMaterialized(); |
||
409 | return *materialized_user_begin(); |
||
410 | } |
||
411 | const User *user_back() const { |
||
412 | assertModuleIsMaterialized(); |
||
413 | return *materialized_user_begin(); |
||
414 | } |
||
415 | iterator_range<user_iterator> materialized_users() { |
||
416 | return make_range(materialized_user_begin(), user_end()); |
||
417 | } |
||
418 | iterator_range<const_user_iterator> materialized_users() const { |
||
419 | return make_range(materialized_user_begin(), user_end()); |
||
420 | } |
||
421 | iterator_range<user_iterator> users() { |
||
422 | assertModuleIsMaterialized(); |
||
423 | return materialized_users(); |
||
424 | } |
||
425 | iterator_range<const_user_iterator> users() const { |
||
426 | assertModuleIsMaterialized(); |
||
427 | return materialized_users(); |
||
428 | } |
||
429 | |||
430 | /// Return true if there is exactly one use of this value. |
||
431 | /// |
||
432 | /// This is specialized because it is a common request and does not require |
||
433 | /// traversing the whole use list. |
||
434 | bool hasOneUse() const { return hasSingleElement(uses()); } |
||
435 | |||
436 | /// Return true if this Value has exactly N uses. |
||
437 | bool hasNUses(unsigned N) const; |
||
438 | |||
439 | /// Return true if this value has N uses or more. |
||
440 | /// |
||
441 | /// This is logically equivalent to getNumUses() >= N. |
||
442 | bool hasNUsesOrMore(unsigned N) const; |
||
443 | |||
444 | /// Return true if there is exactly one user of this value. |
||
445 | /// |
||
446 | /// Note that this is not the same as "has one use". If a value has one use, |
||
447 | /// then there certainly is a single user. But if value has several uses, |
||
448 | /// it is possible that all uses are in a single user, or not. |
||
449 | /// |
||
450 | /// This check is potentially costly, since it requires traversing, |
||
451 | /// in the worst case, the whole use list of a value. |
||
452 | bool hasOneUser() const; |
||
453 | |||
454 | /// Return true if there is exactly one use of this value that cannot be |
||
455 | /// dropped. |
||
456 | Use *getSingleUndroppableUse(); |
||
457 | const Use *getSingleUndroppableUse() const { |
||
458 | return const_cast<Value *>(this)->getSingleUndroppableUse(); |
||
459 | } |
||
460 | |||
461 | /// Return true if there is exactly one unique user of this value that cannot be |
||
462 | /// dropped (that user can have multiple uses of this value). |
||
463 | User *getUniqueUndroppableUser(); |
||
464 | const User *getUniqueUndroppableUser() const { |
||
465 | return const_cast<Value *>(this)->getUniqueUndroppableUser(); |
||
466 | } |
||
467 | |||
468 | /// Return true if there this value. |
||
469 | /// |
||
470 | /// This is specialized because it is a common request and does not require |
||
471 | /// traversing the whole use list. |
||
472 | bool hasNUndroppableUses(unsigned N) const; |
||
473 | |||
474 | /// Return true if this value has N uses or more. |
||
475 | /// |
||
476 | /// This is logically equivalent to getNumUses() >= N. |
||
477 | bool hasNUndroppableUsesOrMore(unsigned N) const; |
||
478 | |||
479 | /// Remove every uses that can safely be removed. |
||
480 | /// |
||
481 | /// This will remove for example uses in llvm.assume. |
||
482 | /// This should be used when performing want to perform a tranformation but |
||
483 | /// some Droppable uses pervent it. |
||
484 | /// This function optionally takes a filter to only remove some droppable |
||
485 | /// uses. |
||
486 | void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop = |
||
487 | [](const Use *) { return true; }); |
||
488 | |||
489 | /// Remove every use of this value in \p User that can safely be removed. |
||
490 | void dropDroppableUsesIn(User &Usr); |
||
491 | |||
492 | /// Remove the droppable use \p U. |
||
493 | static void dropDroppableUse(Use &U); |
||
494 | |||
495 | /// Check if this value is used in the specified basic block. |
||
496 | bool isUsedInBasicBlock(const BasicBlock *BB) const; |
||
497 | |||
498 | /// This method computes the number of uses of this Value. |
||
499 | /// |
||
500 | /// This is a linear time operation. Use hasOneUse, hasNUses, or |
||
501 | /// hasNUsesOrMore to check for specific values. |
||
502 | unsigned getNumUses() const; |
||
503 | |||
504 | /// This method should only be used by the Use class. |
||
505 | void addUse(Use &U) { U.addToList(&UseList); } |
||
506 | |||
507 | /// Concrete subclass of this. |
||
508 | /// |
||
509 | /// An enumeration for keeping track of the concrete subclass of Value that |
||
510 | /// is actually instantiated. Values of this enumeration are kept in the |
||
511 | /// Value classes SubclassID field. They are used for concrete type |
||
512 | /// identification. |
||
513 | enum ValueTy { |
||
514 | #define HANDLE_VALUE(Name) Name##Val, |
||
515 | #include "llvm/IR/Value.def" |
||
516 | |||
517 | // Markers: |
||
518 | #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, |
||
519 | #include "llvm/IR/Value.def" |
||
520 | }; |
||
521 | |||
522 | /// Return an ID for the concrete type of this object. |
||
523 | /// |
||
524 | /// This is used to implement the classof checks. This should not be used |
||
525 | /// for any other purpose, as the values may change as LLVM evolves. Also, |
||
526 | /// note that for instructions, the Instruction's opcode is added to |
||
527 | /// InstructionVal. So this means three things: |
||
528 | /// # there is no value with code InstructionVal (no opcode==0). |
||
529 | /// # there are more possible values for the value type than in ValueTy enum. |
||
530 | /// # the InstructionVal enumerator must be the highest valued enumerator in |
||
531 | /// the ValueTy enum. |
||
532 | unsigned getValueID() const { |
||
533 | return SubclassID; |
||
534 | } |
||
535 | |||
536 | /// Return the raw optional flags value contained in this value. |
||
537 | /// |
||
538 | /// This should only be used when testing two Values for equivalence. |
||
539 | unsigned getRawSubclassOptionalData() const { |
||
540 | return SubclassOptionalData; |
||
541 | } |
||
542 | |||
543 | /// Clear the optional flags contained in this value. |
||
544 | void clearSubclassOptionalData() { |
||
545 | SubclassOptionalData = 0; |
||
546 | } |
||
547 | |||
548 | /// Check the optional flags for equality. |
||
549 | bool hasSameSubclassOptionalData(const Value *V) const { |
||
550 | return SubclassOptionalData == V->SubclassOptionalData; |
||
551 | } |
||
552 | |||
553 | /// Return true if there is a value handle associated with this value. |
||
554 | bool hasValueHandle() const { return HasValueHandle; } |
||
555 | |||
556 | /// Return true if there is metadata referencing this value. |
||
557 | bool isUsedByMetadata() const { return IsUsedByMD; } |
||
558 | |||
559 | protected: |
||
560 | /// Get the current metadata attachments for the given kind, if any. |
||
561 | /// |
||
562 | /// These functions require that the value have at most a single attachment |
||
563 | /// of the given kind, and return \c nullptr if such an attachment is missing. |
||
564 | /// @{ |
||
565 | MDNode *getMetadata(unsigned KindID) const; |
||
566 | MDNode *getMetadata(StringRef Kind) const; |
||
567 | /// @} |
||
568 | |||
569 | /// Appends all attachments with the given ID to \c MDs in insertion order. |
||
570 | /// If the Value has no attachments with the given ID, or if ID is invalid, |
||
571 | /// leaves MDs unchanged. |
||
572 | /// @{ |
||
573 | void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const; |
||
574 | void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const; |
||
575 | /// @} |
||
576 | |||
577 | /// Appends all metadata attached to this value to \c MDs, sorting by |
||
578 | /// KindID. The first element of each pair returned is the KindID, the second |
||
579 | /// element is the metadata value. Attachments with the same ID appear in |
||
580 | /// insertion order. |
||
581 | void |
||
582 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const; |
||
583 | |||
584 | /// Return true if this value has any metadata attached to it. |
||
585 | bool hasMetadata() const { return (bool)HasMetadata; } |
||
586 | |||
587 | /// Return true if this value has the given type of metadata attached. |
||
588 | /// @{ |
||
589 | bool hasMetadata(unsigned KindID) const { |
||
590 | return getMetadata(KindID) != nullptr; |
||
591 | } |
||
592 | bool hasMetadata(StringRef Kind) const { |
||
593 | return getMetadata(Kind) != nullptr; |
||
594 | } |
||
595 | /// @} |
||
596 | |||
597 | /// Set a particular kind of metadata attachment. |
||
598 | /// |
||
599 | /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or |
||
600 | /// replacing it if it already exists. |
||
601 | /// @{ |
||
602 | void setMetadata(unsigned KindID, MDNode *Node); |
||
603 | void setMetadata(StringRef Kind, MDNode *Node); |
||
604 | /// @} |
||
605 | |||
606 | /// Add a metadata attachment. |
||
607 | /// @{ |
||
608 | void addMetadata(unsigned KindID, MDNode &MD); |
||
609 | void addMetadata(StringRef Kind, MDNode &MD); |
||
610 | /// @} |
||
611 | |||
612 | /// Erase all metadata attachments with the given kind. |
||
613 | /// |
||
614 | /// \returns true if any metadata was removed. |
||
615 | bool eraseMetadata(unsigned KindID); |
||
616 | |||
617 | /// Erase all metadata attached to this Value. |
||
618 | void clearMetadata(); |
||
619 | |||
620 | public: |
||
621 | /// Return true if this value is a swifterror value. |
||
622 | /// |
||
623 | /// swifterror values can be either a function argument or an alloca with a |
||
624 | /// swifterror attribute. |
||
625 | bool isSwiftError() const; |
||
626 | |||
627 | /// Strip off pointer casts, all-zero GEPs and address space casts. |
||
628 | /// |
||
629 | /// Returns the original uncasted value. If this is called on a non-pointer |
||
630 | /// value, it returns 'this'. |
||
631 | const Value *stripPointerCasts() const; |
||
632 | Value *stripPointerCasts() { |
||
633 | return const_cast<Value *>( |
||
634 | static_cast<const Value *>(this)->stripPointerCasts()); |
||
635 | } |
||
636 | |||
637 | /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases. |
||
638 | /// |
||
639 | /// Returns the original uncasted value. If this is called on a non-pointer |
||
640 | /// value, it returns 'this'. |
||
641 | const Value *stripPointerCastsAndAliases() const; |
||
642 | Value *stripPointerCastsAndAliases() { |
||
643 | return const_cast<Value *>( |
||
644 | static_cast<const Value *>(this)->stripPointerCastsAndAliases()); |
||
645 | } |
||
646 | |||
647 | /// Strip off pointer casts, all-zero GEPs and address space casts |
||
648 | /// but ensures the representation of the result stays the same. |
||
649 | /// |
||
650 | /// Returns the original uncasted value with the same representation. If this |
||
651 | /// is called on a non-pointer value, it returns 'this'. |
||
652 | const Value *stripPointerCastsSameRepresentation() const; |
||
653 | Value *stripPointerCastsSameRepresentation() { |
||
654 | return const_cast<Value *>(static_cast<const Value *>(this) |
||
655 | ->stripPointerCastsSameRepresentation()); |
||
656 | } |
||
657 | |||
658 | /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and |
||
659 | /// invariant group info. |
||
660 | /// |
||
661 | /// Returns the original uncasted value. If this is called on a non-pointer |
||
662 | /// value, it returns 'this'. This function should be used only in |
||
663 | /// Alias analysis. |
||
664 | const Value *stripPointerCastsForAliasAnalysis() const; |
||
665 | Value *stripPointerCastsForAliasAnalysis() { |
||
666 | return const_cast<Value *>(static_cast<const Value *>(this) |
||
667 | ->stripPointerCastsForAliasAnalysis()); |
||
668 | } |
||
669 | |||
670 | /// Strip off pointer casts and all-constant inbounds GEPs. |
||
671 | /// |
||
672 | /// Returns the original pointer value. If this is called on a non-pointer |
||
673 | /// value, it returns 'this'. |
||
674 | const Value *stripInBoundsConstantOffsets() const; |
||
675 | Value *stripInBoundsConstantOffsets() { |
||
676 | return const_cast<Value *>( |
||
677 | static_cast<const Value *>(this)->stripInBoundsConstantOffsets()); |
||
678 | } |
||
679 | |||
680 | /// Accumulate the constant offset this value has compared to a base pointer. |
||
681 | /// Only 'getelementptr' instructions (GEPs) are accumulated but other |
||
682 | /// instructions, e.g., casts, are stripped away as well. |
||
683 | /// The accumulated constant offset is added to \p Offset and the base |
||
684 | /// pointer is returned. |
||
685 | /// |
||
686 | /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for |
||
687 | /// the address space of 'this' pointer value, e.g., use |
||
688 | /// DataLayout::getIndexTypeSizeInBits(Ty). |
||
689 | /// |
||
690 | /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and |
||
691 | /// accumulated even if the GEP is not "inbounds". |
||
692 | /// |
||
693 | /// If \p AllowInvariantGroup is true then this method also looks through |
||
694 | /// strip.invariant.group and launder.invariant.group intrinsics. |
||
695 | /// |
||
696 | /// If \p ExternalAnalysis is provided it will be used to calculate a offset |
||
697 | /// when a operand of GEP is not constant. |
||
698 | /// For example, for a value \p ExternalAnalysis might try to calculate a |
||
699 | /// lower bound. If \p ExternalAnalysis is successful, it should return true. |
||
700 | /// |
||
701 | /// If this is called on a non-pointer value, it returns 'this' and the |
||
702 | /// \p Offset is not modified. |
||
703 | /// |
||
704 | /// Note that this function will never return a nullptr. It will also never |
||
705 | /// manipulate the \p Offset in a way that would not match the difference |
||
706 | /// between the underlying value and the returned one. Thus, if no constant |
||
707 | /// offset was found, the returned value is the underlying one and \p Offset |
||
708 | /// is unchanged. |
||
709 | const Value *stripAndAccumulateConstantOffsets( |
||
710 | const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, |
||
711 | bool AllowInvariantGroup = false, |
||
712 | function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis = |
||
713 | nullptr) const; |
||
714 | Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, |
||
715 | bool AllowNonInbounds, |
||
716 | bool AllowInvariantGroup = false) { |
||
717 | return const_cast<Value *>( |
||
718 | static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets( |
||
719 | DL, Offset, AllowNonInbounds, AllowInvariantGroup)); |
||
720 | } |
||
721 | |||
722 | /// This is a wrapper around stripAndAccumulateConstantOffsets with the |
||
723 | /// in-bounds requirement set to false. |
||
724 | const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
||
725 | APInt &Offset) const { |
||
726 | return stripAndAccumulateConstantOffsets(DL, Offset, |
||
727 | /* AllowNonInbounds */ false); |
||
728 | } |
||
729 | Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
||
730 | APInt &Offset) { |
||
731 | return stripAndAccumulateConstantOffsets(DL, Offset, |
||
732 | /* AllowNonInbounds */ false); |
||
733 | } |
||
734 | |||
735 | /// Strip off pointer casts and inbounds GEPs. |
||
736 | /// |
||
737 | /// Returns the original pointer value. If this is called on a non-pointer |
||
738 | /// value, it returns 'this'. |
||
739 | const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
||
740 | [](const Value *) {}) const; |
||
741 | inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
||
742 | [](const Value *) {}) { |
||
743 | return const_cast<Value *>( |
||
744 | static_cast<const Value *>(this)->stripInBoundsOffsets(Func)); |
||
745 | } |
||
746 | |||
747 | /// Return true if the memory object referred to by V can by freed in the |
||
748 | /// scope for which the SSA value defining the allocation is statically |
||
749 | /// defined. E.g. deallocation after the static scope of a value does not |
||
750 | /// count, but a deallocation before that does. |
||
751 | bool canBeFreed() const; |
||
752 | |||
753 | /// Returns the number of bytes known to be dereferenceable for the |
||
754 | /// pointer value. |
||
755 | /// |
||
756 | /// If CanBeNull is set by this function the pointer can either be null or be |
||
757 | /// dereferenceable up to the returned number of bytes. |
||
758 | /// |
||
759 | /// IF CanBeFreed is true, the pointer is known to be dereferenceable at |
||
760 | /// point of definition only. Caller must prove that allocation is not |
||
761 | /// deallocated between point of definition and use. |
||
762 | uint64_t getPointerDereferenceableBytes(const DataLayout &DL, |
||
763 | bool &CanBeNull, |
||
764 | bool &CanBeFreed) const; |
||
765 | |||
766 | /// Returns an alignment of the pointer value. |
||
767 | /// |
||
768 | /// Returns an alignment which is either specified explicitly, e.g. via |
||
769 | /// align attribute of a function argument, or guaranteed by DataLayout. |
||
770 | Align getPointerAlignment(const DataLayout &DL) const; |
||
771 | |||
772 | /// Translate PHI node to its predecessor from the given basic block. |
||
773 | /// |
||
774 | /// If this value is a PHI node with CurBB as its parent, return the value in |
||
775 | /// the PHI node corresponding to PredBB. If not, return ourself. This is |
||
776 | /// useful if you want to know the value something has in a predecessor |
||
777 | /// block. |
||
778 | const Value *DoPHITranslation(const BasicBlock *CurBB, |
||
779 | const BasicBlock *PredBB) const; |
||
780 | Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { |
||
781 | return const_cast<Value *>( |
||
782 | static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB)); |
||
783 | } |
||
784 | |||
785 | /// The maximum alignment for instructions. |
||
786 | /// |
||
787 | /// This is the greatest alignment value supported by load, store, and alloca |
||
788 | /// instructions, and global values. |
||
789 | static constexpr unsigned MaxAlignmentExponent = 32; |
||
790 | static constexpr uint64_t MaximumAlignment = 1ULL << MaxAlignmentExponent; |
||
791 | |||
792 | /// Mutate the type of this Value to be of the specified type. |
||
793 | /// |
||
794 | /// Note that this is an extremely dangerous operation which can create |
||
795 | /// completely invalid IR very easily. It is strongly recommended that you |
||
796 | /// recreate IR objects with the right types instead of mutating them in |
||
797 | /// place. |
||
798 | void mutateType(Type *Ty) { |
||
799 | VTy = Ty; |
||
800 | } |
||
801 | |||
802 | /// Sort the use-list. |
||
803 | /// |
||
804 | /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is |
||
805 | /// expected to compare two \a Use references. |
||
806 | template <class Compare> void sortUseList(Compare Cmp); |
||
807 | |||
808 | /// Reverse the use-list. |
||
809 | void reverseUseList(); |
||
810 | |||
811 | private: |
||
812 | /// Merge two lists together. |
||
813 | /// |
||
814 | /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes |
||
815 | /// "equal" items from L before items from R. |
||
816 | /// |
||
817 | /// \return the first element in the list. |
||
818 | /// |
||
819 | /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). |
||
820 | template <class Compare> |
||
821 | static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { |
||
822 | Use *Merged; |
||
823 | Use **Next = &Merged; |
||
824 | |||
825 | while (true) { |
||
826 | if (!L) { |
||
827 | *Next = R; |
||
828 | break; |
||
829 | } |
||
830 | if (!R) { |
||
831 | *Next = L; |
||
832 | break; |
||
833 | } |
||
834 | if (Cmp(*R, *L)) { |
||
835 | *Next = R; |
||
836 | Next = &R->Next; |
||
837 | R = R->Next; |
||
838 | } else { |
||
839 | *Next = L; |
||
840 | Next = &L->Next; |
||
841 | L = L->Next; |
||
842 | } |
||
843 | } |
||
844 | |||
845 | return Merged; |
||
846 | } |
||
847 | |||
848 | protected: |
||
849 | unsigned short getSubclassDataFromValue() const { return SubclassData; } |
||
850 | void setValueSubclassData(unsigned short D) { SubclassData = D; } |
||
851 | }; |
||
852 | |||
853 | struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } }; |
||
854 | |||
855 | /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>. |
||
856 | /// Those don't work because Value and Instruction's destructors are protected, |
||
857 | /// aren't virtual, and won't destroy the complete object. |
||
858 | using unique_value = std::unique_ptr<Value, ValueDeleter>; |
||
859 | |||
860 | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { |
||
861 | V.print(OS); |
||
862 | return OS; |
||
863 | } |
||
864 | |||
865 | void Use::set(Value *V) { |
||
866 | if (Val) removeFromList(); |
||
867 | Val = V; |
||
868 | if (V) V->addUse(*this); |
||
869 | } |
||
870 | |||
871 | Value *Use::operator=(Value *RHS) { |
||
872 | set(RHS); |
||
873 | return RHS; |
||
874 | } |
||
875 | |||
876 | const Use &Use::operator=(const Use &RHS) { |
||
877 | set(RHS.Val); |
||
878 | return *this; |
||
879 | } |
||
880 | |||
881 | template <class Compare> void Value::sortUseList(Compare Cmp) { |
||
882 | if (!UseList || !UseList->Next) |
||
883 | // No need to sort 0 or 1 uses. |
||
884 | return; |
||
885 | |||
886 | // Note: this function completely ignores Prev pointers until the end when |
||
887 | // they're fixed en masse. |
||
888 | |||
889 | // Create a binomial vector of sorted lists, visiting uses one at a time and |
||
890 | // merging lists as necessary. |
||
891 | const unsigned MaxSlots = 32; |
||
892 | Use *Slots[MaxSlots]; |
||
893 | |||
894 | // Collect the first use, turning it into a single-item list. |
||
895 | Use *Next = UseList->Next; |
||
896 | UseList->Next = nullptr; |
||
897 | unsigned NumSlots = 1; |
||
898 | Slots[0] = UseList; |
||
899 | |||
900 | // Collect all but the last use. |
||
901 | while (Next->Next) { |
||
902 | Use *Current = Next; |
||
903 | Next = Current->Next; |
||
904 | |||
905 | // Turn Current into a single-item list. |
||
906 | Current->Next = nullptr; |
||
907 | |||
908 | // Save Current in the first available slot, merging on collisions. |
||
909 | unsigned I; |
||
910 | for (I = 0; I < NumSlots; ++I) { |
||
911 | if (!Slots[I]) |
||
912 | break; |
||
913 | |||
914 | // Merge two lists, doubling the size of Current and emptying slot I. |
||
915 | // |
||
916 | // Since the uses in Slots[I] originally preceded those in Current, send |
||
917 | // Slots[I] in as the left parameter to maintain a stable sort. |
||
918 | Current = mergeUseLists(Slots[I], Current, Cmp); |
||
919 | Slots[I] = nullptr; |
||
920 | } |
||
921 | // Check if this is a new slot. |
||
922 | if (I == NumSlots) { |
||
923 | ++NumSlots; |
||
924 | assert(NumSlots <= MaxSlots && "Use list bigger than 2^32"); |
||
925 | } |
||
926 | |||
927 | // Found an open slot. |
||
928 | Slots[I] = Current; |
||
929 | } |
||
930 | |||
931 | // Merge all the lists together. |
||
932 | assert(Next && "Expected one more Use"); |
||
933 | assert(!Next->Next && "Expected only one Use"); |
||
934 | UseList = Next; |
||
935 | for (unsigned I = 0; I < NumSlots; ++I) |
||
936 | if (Slots[I]) |
||
937 | // Since the uses in Slots[I] originally preceded those in UseList, send |
||
938 | // Slots[I] in as the left parameter to maintain a stable sort. |
||
939 | UseList = mergeUseLists(Slots[I], UseList, Cmp); |
||
940 | |||
941 | // Fix the Prev pointers. |
||
942 | for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { |
||
943 | I->Prev = Prev; |
||
944 | Prev = &I->Next; |
||
945 | } |
||
946 | } |
||
947 | |||
948 | // isa - Provide some specializations of isa so that we don't have to include |
||
949 | // the subtype header files to test to see if the value is a subclass... |
||
950 | // |
||
951 | template <> struct isa_impl<Constant, Value> { |
||
952 | static inline bool doit(const Value &Val) { |
||
953 | static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal"); |
||
954 | return Val.getValueID() <= Value::ConstantLastVal; |
||
955 | } |
||
956 | }; |
||
957 | |||
958 | template <> struct isa_impl<ConstantData, Value> { |
||
959 | static inline bool doit(const Value &Val) { |
||
960 | return Val.getValueID() >= Value::ConstantDataFirstVal && |
||
961 | Val.getValueID() <= Value::ConstantDataLastVal; |
||
962 | } |
||
963 | }; |
||
964 | |||
965 | template <> struct isa_impl<ConstantAggregate, Value> { |
||
966 | static inline bool doit(const Value &Val) { |
||
967 | return Val.getValueID() >= Value::ConstantAggregateFirstVal && |
||
968 | Val.getValueID() <= Value::ConstantAggregateLastVal; |
||
969 | } |
||
970 | }; |
||
971 | |||
972 | template <> struct isa_impl<Argument, Value> { |
||
973 | static inline bool doit (const Value &Val) { |
||
974 | return Val.getValueID() == Value::ArgumentVal; |
||
975 | } |
||
976 | }; |
||
977 | |||
978 | template <> struct isa_impl<InlineAsm, Value> { |
||
979 | static inline bool doit(const Value &Val) { |
||
980 | return Val.getValueID() == Value::InlineAsmVal; |
||
981 | } |
||
982 | }; |
||
983 | |||
984 | template <> struct isa_impl<Instruction, Value> { |
||
985 | static inline bool doit(const Value &Val) { |
||
986 | return Val.getValueID() >= Value::InstructionVal; |
||
987 | } |
||
988 | }; |
||
989 | |||
990 | template <> struct isa_impl<BasicBlock, Value> { |
||
991 | static inline bool doit(const Value &Val) { |
||
992 | return Val.getValueID() == Value::BasicBlockVal; |
||
993 | } |
||
994 | }; |
||
995 | |||
996 | template <> struct isa_impl<Function, Value> { |
||
997 | static inline bool doit(const Value &Val) { |
||
998 | return Val.getValueID() == Value::FunctionVal; |
||
999 | } |
||
1000 | }; |
||
1001 | |||
1002 | template <> struct isa_impl<GlobalVariable, Value> { |
||
1003 | static inline bool doit(const Value &Val) { |
||
1004 | return Val.getValueID() == Value::GlobalVariableVal; |
||
1005 | } |
||
1006 | }; |
||
1007 | |||
1008 | template <> struct isa_impl<GlobalAlias, Value> { |
||
1009 | static inline bool doit(const Value &Val) { |
||
1010 | return Val.getValueID() == Value::GlobalAliasVal; |
||
1011 | } |
||
1012 | }; |
||
1013 | |||
1014 | template <> struct isa_impl<GlobalIFunc, Value> { |
||
1015 | static inline bool doit(const Value &Val) { |
||
1016 | return Val.getValueID() == Value::GlobalIFuncVal; |
||
1017 | } |
||
1018 | }; |
||
1019 | |||
1020 | template <> struct isa_impl<GlobalValue, Value> { |
||
1021 | static inline bool doit(const Value &Val) { |
||
1022 | return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val); |
||
1023 | } |
||
1024 | }; |
||
1025 | |||
1026 | template <> struct isa_impl<GlobalObject, Value> { |
||
1027 | static inline bool doit(const Value &Val) { |
||
1028 | return isa<GlobalVariable>(Val) || isa<Function>(Val) || |
||
1029 | isa<GlobalIFunc>(Val); |
||
1030 | } |
||
1031 | }; |
||
1032 | |||
1033 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
||
1034 | DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef) |
||
1035 | |||
1036 | // Specialized opaque value conversions. |
||
1037 | inline Value **unwrap(LLVMValueRef *Vals) { |
||
1038 | return reinterpret_cast<Value**>(Vals); |
||
1039 | } |
||
1040 | |||
1041 | template<typename T> |
||
1042 | inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { |
||
1043 | #ifndef NDEBUG |
||
1044 | for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) |
||
1045 | unwrap<T>(*I); // For side effect of calling assert on invalid usage. |
||
1046 | #endif |
||
1047 | (void)Length; |
||
1048 | return reinterpret_cast<T**>(Vals); |
||
1049 | } |
||
1050 | |||
1051 | inline LLVMValueRef *wrap(const Value **Vals) { |
||
1052 | return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); |
||
1053 | } |
||
1054 | |||
1055 | } // end namespace llvm |
||
1056 | |||
1057 | #endif // LLVM_IR_VALUE_H |