Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file provides a simple and efficient mechanism for performing general |
||
| 10 | // tree-based pattern matches on the LLVM IR. The power of these routines is |
||
| 11 | // that it allows you to write concise patterns that are expressive and easy to |
||
| 12 | // understand. The other major advantage of this is that it allows you to |
||
| 13 | // trivially capture/bind elements in the pattern to variables. For example, |
||
| 14 | // you can do something like this: |
||
| 15 | // |
||
| 16 | // Value *Exp = ... |
||
| 17 | // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) |
||
| 18 | // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), |
||
| 19 | // m_And(m_Value(Y), m_ConstantInt(C2))))) { |
||
| 20 | // ... Pattern is matched and variables are bound ... |
||
| 21 | // } |
||
| 22 | // |
||
| 23 | // This is primarily useful to things like the instruction combiner, but can |
||
| 24 | // also be useful for static analysis tools or code generators. |
||
| 25 | // |
||
| 26 | //===----------------------------------------------------------------------===// |
||
| 27 | |||
| 28 | #ifndef LLVM_IR_PATTERNMATCH_H |
||
| 29 | #define LLVM_IR_PATTERNMATCH_H |
||
| 30 | |||
| 31 | #include "llvm/ADT/APFloat.h" |
||
| 32 | #include "llvm/ADT/APInt.h" |
||
| 33 | #include "llvm/IR/Constant.h" |
||
| 34 | #include "llvm/IR/Constants.h" |
||
| 35 | #include "llvm/IR/DataLayout.h" |
||
| 36 | #include "llvm/IR/InstrTypes.h" |
||
| 37 | #include "llvm/IR/Instruction.h" |
||
| 38 | #include "llvm/IR/Instructions.h" |
||
| 39 | #include "llvm/IR/IntrinsicInst.h" |
||
| 40 | #include "llvm/IR/Intrinsics.h" |
||
| 41 | #include "llvm/IR/Operator.h" |
||
| 42 | #include "llvm/IR/Value.h" |
||
| 43 | #include "llvm/Support/Casting.h" |
||
| 44 | #include <cstdint> |
||
| 45 | |||
| 46 | namespace llvm { |
||
| 47 | namespace PatternMatch { |
||
| 48 | |||
| 49 | template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { |
||
| 50 | return const_cast<Pattern &>(P).match(V); |
||
| 51 | } |
||
| 52 | |||
| 53 | template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { |
||
| 54 | return const_cast<Pattern &>(P).match(Mask); |
||
| 55 | } |
||
| 56 | |||
| 57 | template <typename SubPattern_t> struct OneUse_match { |
||
| 58 | SubPattern_t SubPattern; |
||
| 59 | |||
| 60 | OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
||
| 61 | |||
| 62 | template <typename OpTy> bool match(OpTy *V) { |
||
| 63 | return V->hasOneUse() && SubPattern.match(V); |
||
| 64 | } |
||
| 65 | }; |
||
| 66 | |||
| 67 | template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { |
||
| 68 | return SubPattern; |
||
| 69 | } |
||
| 70 | |||
| 71 | template <typename Class> struct class_match { |
||
| 72 | template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } |
||
| 73 | }; |
||
| 74 | |||
| 75 | /// Match an arbitrary value and ignore it. |
||
| 76 | inline class_match<Value> m_Value() { return class_match<Value>(); } |
||
| 77 | |||
| 78 | /// Match an arbitrary unary operation and ignore it. |
||
| 79 | inline class_match<UnaryOperator> m_UnOp() { |
||
| 80 | return class_match<UnaryOperator>(); |
||
| 81 | } |
||
| 82 | |||
| 83 | /// Match an arbitrary binary operation and ignore it. |
||
| 84 | inline class_match<BinaryOperator> m_BinOp() { |
||
| 85 | return class_match<BinaryOperator>(); |
||
| 86 | } |
||
| 87 | |||
| 88 | /// Matches any compare instruction and ignore it. |
||
| 89 | inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } |
||
| 90 | |||
| 91 | struct undef_match { |
||
| 92 | static bool check(const Value *V) { |
||
| 93 | if (isa<UndefValue>(V)) |
||
| 94 | return true; |
||
| 95 | |||
| 96 | const auto *CA = dyn_cast<ConstantAggregate>(V); |
||
| 97 | if (!CA) |
||
| 98 | return false; |
||
| 99 | |||
| 100 | SmallPtrSet<const ConstantAggregate *, 8> Seen; |
||
| 101 | SmallVector<const ConstantAggregate *, 8> Worklist; |
||
| 102 | |||
| 103 | // Either UndefValue, PoisonValue, or an aggregate that only contains |
||
| 104 | // these is accepted by matcher. |
||
| 105 | // CheckValue returns false if CA cannot satisfy this constraint. |
||
| 106 | auto CheckValue = [&](const ConstantAggregate *CA) { |
||
| 107 | for (const Value *Op : CA->operand_values()) { |
||
| 108 | if (isa<UndefValue>(Op)) |
||
| 109 | continue; |
||
| 110 | |||
| 111 | const auto *CA = dyn_cast<ConstantAggregate>(Op); |
||
| 112 | if (!CA) |
||
| 113 | return false; |
||
| 114 | if (Seen.insert(CA).second) |
||
| 115 | Worklist.emplace_back(CA); |
||
| 116 | } |
||
| 117 | |||
| 118 | return true; |
||
| 119 | }; |
||
| 120 | |||
| 121 | if (!CheckValue(CA)) |
||
| 122 | return false; |
||
| 123 | |||
| 124 | while (!Worklist.empty()) { |
||
| 125 | if (!CheckValue(Worklist.pop_back_val())) |
||
| 126 | return false; |
||
| 127 | } |
||
| 128 | return true; |
||
| 129 | } |
||
| 130 | template <typename ITy> bool match(ITy *V) { return check(V); } |
||
| 131 | }; |
||
| 132 | |||
| 133 | /// Match an arbitrary undef constant. This matches poison as well. |
||
| 134 | /// If this is an aggregate and contains a non-aggregate element that is |
||
| 135 | /// neither undef nor poison, the aggregate is not matched. |
||
| 136 | inline auto m_Undef() { return undef_match(); } |
||
| 137 | |||
| 138 | /// Match an arbitrary poison constant. |
||
| 139 | inline class_match<PoisonValue> m_Poison() { |
||
| 140 | return class_match<PoisonValue>(); |
||
| 141 | } |
||
| 142 | |||
| 143 | /// Match an arbitrary Constant and ignore it. |
||
| 144 | inline class_match<Constant> m_Constant() { return class_match<Constant>(); } |
||
| 145 | |||
| 146 | /// Match an arbitrary ConstantInt and ignore it. |
||
| 147 | inline class_match<ConstantInt> m_ConstantInt() { |
||
| 148 | return class_match<ConstantInt>(); |
||
| 149 | } |
||
| 150 | |||
| 151 | /// Match an arbitrary ConstantFP and ignore it. |
||
| 152 | inline class_match<ConstantFP> m_ConstantFP() { |
||
| 153 | return class_match<ConstantFP>(); |
||
| 154 | } |
||
| 155 | |||
| 156 | struct constantexpr_match { |
||
| 157 | template <typename ITy> bool match(ITy *V) { |
||
| 158 | auto *C = dyn_cast<Constant>(V); |
||
| 159 | return C && (isa<ConstantExpr>(C) || C->containsConstantExpression()); |
||
| 160 | } |
||
| 161 | }; |
||
| 162 | |||
| 163 | /// Match a constant expression or a constant that contains a constant |
||
| 164 | /// expression. |
||
| 165 | inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); } |
||
| 166 | |||
| 167 | /// Match an arbitrary basic block value and ignore it. |
||
| 168 | inline class_match<BasicBlock> m_BasicBlock() { |
||
| 169 | return class_match<BasicBlock>(); |
||
| 170 | } |
||
| 171 | |||
| 172 | /// Inverting matcher |
||
| 173 | template <typename Ty> struct match_unless { |
||
| 174 | Ty M; |
||
| 175 | |||
| 176 | match_unless(const Ty &Matcher) : M(Matcher) {} |
||
| 177 | |||
| 178 | template <typename ITy> bool match(ITy *V) { return !M.match(V); } |
||
| 179 | }; |
||
| 180 | |||
| 181 | /// Match if the inner matcher does *NOT* match. |
||
| 182 | template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { |
||
| 183 | return match_unless<Ty>(M); |
||
| 184 | } |
||
| 185 | |||
| 186 | /// Matching combinators |
||
| 187 | template <typename LTy, typename RTy> struct match_combine_or { |
||
| 188 | LTy L; |
||
| 189 | RTy R; |
||
| 190 | |||
| 191 | match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
||
| 192 | |||
| 193 | template <typename ITy> bool match(ITy *V) { |
||
| 194 | if (L.match(V)) |
||
| 195 | return true; |
||
| 196 | if (R.match(V)) |
||
| 197 | return true; |
||
| 198 | return false; |
||
| 199 | } |
||
| 200 | }; |
||
| 201 | |||
| 202 | template <typename LTy, typename RTy> struct match_combine_and { |
||
| 203 | LTy L; |
||
| 204 | RTy R; |
||
| 205 | |||
| 206 | match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
||
| 207 | |||
| 208 | template <typename ITy> bool match(ITy *V) { |
||
| 209 | if (L.match(V)) |
||
| 210 | if (R.match(V)) |
||
| 211 | return true; |
||
| 212 | return false; |
||
| 213 | } |
||
| 214 | }; |
||
| 215 | |||
| 216 | /// Combine two pattern matchers matching L || R |
||
| 217 | template <typename LTy, typename RTy> |
||
| 218 | inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { |
||
| 219 | return match_combine_or<LTy, RTy>(L, R); |
||
| 220 | } |
||
| 221 | |||
| 222 | /// Combine two pattern matchers matching L && R |
||
| 223 | template <typename LTy, typename RTy> |
||
| 224 | inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { |
||
| 225 | return match_combine_and<LTy, RTy>(L, R); |
||
| 226 | } |
||
| 227 | |||
| 228 | struct apint_match { |
||
| 229 | const APInt *&Res; |
||
| 230 | bool AllowUndef; |
||
| 231 | |||
| 232 | apint_match(const APInt *&Res, bool AllowUndef) |
||
| 233 | : Res(Res), AllowUndef(AllowUndef) {} |
||
| 234 | |||
| 235 | template <typename ITy> bool match(ITy *V) { |
||
| 236 | if (auto *CI = dyn_cast<ConstantInt>(V)) { |
||
| 237 | Res = &CI->getValue(); |
||
| 238 | return true; |
||
| 239 | } |
||
| 240 | if (V->getType()->isVectorTy()) |
||
| 241 | if (const auto *C = dyn_cast<Constant>(V)) |
||
| 242 | if (auto *CI = |
||
| 243 | dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) { |
||
| 244 | Res = &CI->getValue(); |
||
| 245 | return true; |
||
| 246 | } |
||
| 247 | return false; |
||
| 248 | } |
||
| 249 | }; |
||
| 250 | // Either constexpr if or renaming ConstantFP::getValueAPF to |
||
| 251 | // ConstantFP::getValue is needed to do it via single template |
||
| 252 | // function for both apint/apfloat. |
||
| 253 | struct apfloat_match { |
||
| 254 | const APFloat *&Res; |
||
| 255 | bool AllowUndef; |
||
| 256 | |||
| 257 | apfloat_match(const APFloat *&Res, bool AllowUndef) |
||
| 258 | : Res(Res), AllowUndef(AllowUndef) {} |
||
| 259 | |||
| 260 | template <typename ITy> bool match(ITy *V) { |
||
| 261 | if (auto *CI = dyn_cast<ConstantFP>(V)) { |
||
| 262 | Res = &CI->getValueAPF(); |
||
| 263 | return true; |
||
| 264 | } |
||
| 265 | if (V->getType()->isVectorTy()) |
||
| 266 | if (const auto *C = dyn_cast<Constant>(V)) |
||
| 267 | if (auto *CI = |
||
| 268 | dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) { |
||
| 269 | Res = &CI->getValueAPF(); |
||
| 270 | return true; |
||
| 271 | } |
||
| 272 | return false; |
||
| 273 | } |
||
| 274 | }; |
||
| 275 | |||
| 276 | /// Match a ConstantInt or splatted ConstantVector, binding the |
||
| 277 | /// specified pointer to the contained APInt. |
||
| 278 | inline apint_match m_APInt(const APInt *&Res) { |
||
| 279 | // Forbid undefs by default to maintain previous behavior. |
||
| 280 | return apint_match(Res, /* AllowUndef */ false); |
||
| 281 | } |
||
| 282 | |||
| 283 | /// Match APInt while allowing undefs in splat vector constants. |
||
| 284 | inline apint_match m_APIntAllowUndef(const APInt *&Res) { |
||
| 285 | return apint_match(Res, /* AllowUndef */ true); |
||
| 286 | } |
||
| 287 | |||
| 288 | /// Match APInt while forbidding undefs in splat vector constants. |
||
| 289 | inline apint_match m_APIntForbidUndef(const APInt *&Res) { |
||
| 290 | return apint_match(Res, /* AllowUndef */ false); |
||
| 291 | } |
||
| 292 | |||
| 293 | /// Match a ConstantFP or splatted ConstantVector, binding the |
||
| 294 | /// specified pointer to the contained APFloat. |
||
| 295 | inline apfloat_match m_APFloat(const APFloat *&Res) { |
||
| 296 | // Forbid undefs by default to maintain previous behavior. |
||
| 297 | return apfloat_match(Res, /* AllowUndef */ false); |
||
| 298 | } |
||
| 299 | |||
| 300 | /// Match APFloat while allowing undefs in splat vector constants. |
||
| 301 | inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) { |
||
| 302 | return apfloat_match(Res, /* AllowUndef */ true); |
||
| 303 | } |
||
| 304 | |||
| 305 | /// Match APFloat while forbidding undefs in splat vector constants. |
||
| 306 | inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) { |
||
| 307 | return apfloat_match(Res, /* AllowUndef */ false); |
||
| 308 | } |
||
| 309 | |||
| 310 | template <int64_t Val> struct constantint_match { |
||
| 311 | template <typename ITy> bool match(ITy *V) { |
||
| 312 | if (const auto *CI = dyn_cast<ConstantInt>(V)) { |
||
| 313 | const APInt &CIV = CI->getValue(); |
||
| 314 | if (Val >= 0) |
||
| 315 | return CIV == static_cast<uint64_t>(Val); |
||
| 316 | // If Val is negative, and CI is shorter than it, truncate to the right |
||
| 317 | // number of bits. If it is larger, then we have to sign extend. Just |
||
| 318 | // compare their negated values. |
||
| 319 | return -CIV == -Val; |
||
| 320 | } |
||
| 321 | return false; |
||
| 322 | } |
||
| 323 | }; |
||
| 324 | |||
| 325 | /// Match a ConstantInt with a specific value. |
||
| 326 | template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { |
||
| 327 | return constantint_match<Val>(); |
||
| 328 | } |
||
| 329 | |||
| 330 | /// This helper class is used to match constant scalars, vector splats, |
||
| 331 | /// and fixed width vectors that satisfy a specified predicate. |
||
| 332 | /// For fixed width vector constants, undefined elements are ignored. |
||
| 333 | template <typename Predicate, typename ConstantVal> |
||
| 334 | struct cstval_pred_ty : public Predicate { |
||
| 335 | template <typename ITy> bool match(ITy *V) { |
||
| 336 | if (const auto *CV = dyn_cast<ConstantVal>(V)) |
||
| 337 | return this->isValue(CV->getValue()); |
||
| 338 | if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { |
||
| 339 | if (const auto *C = dyn_cast<Constant>(V)) { |
||
| 340 | if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) |
||
| 341 | return this->isValue(CV->getValue()); |
||
| 342 | |||
| 343 | // Number of elements of a scalable vector unknown at compile time |
||
| 344 | auto *FVTy = dyn_cast<FixedVectorType>(VTy); |
||
| 345 | if (!FVTy) |
||
| 346 | return false; |
||
| 347 | |||
| 348 | // Non-splat vector constant: check each element for a match. |
||
| 349 | unsigned NumElts = FVTy->getNumElements(); |
||
| 350 | assert(NumElts != 0 && "Constant vector with no elements?"); |
||
| 351 | bool HasNonUndefElements = false; |
||
| 352 | for (unsigned i = 0; i != NumElts; ++i) { |
||
| 353 | Constant *Elt = C->getAggregateElement(i); |
||
| 354 | if (!Elt) |
||
| 355 | return false; |
||
| 356 | if (isa<UndefValue>(Elt)) |
||
| 357 | continue; |
||
| 358 | auto *CV = dyn_cast<ConstantVal>(Elt); |
||
| 359 | if (!CV || !this->isValue(CV->getValue())) |
||
| 360 | return false; |
||
| 361 | HasNonUndefElements = true; |
||
| 362 | } |
||
| 363 | return HasNonUndefElements; |
||
| 364 | } |
||
| 365 | } |
||
| 366 | return false; |
||
| 367 | } |
||
| 368 | }; |
||
| 369 | |||
| 370 | /// specialization of cstval_pred_ty for ConstantInt |
||
| 371 | template <typename Predicate> |
||
| 372 | using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>; |
||
| 373 | |||
| 374 | /// specialization of cstval_pred_ty for ConstantFP |
||
| 375 | template <typename Predicate> |
||
| 376 | using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>; |
||
| 377 | |||
| 378 | /// This helper class is used to match scalar and vector constants that |
||
| 379 | /// satisfy a specified predicate, and bind them to an APInt. |
||
| 380 | template <typename Predicate> struct api_pred_ty : public Predicate { |
||
| 381 | const APInt *&Res; |
||
| 382 | |||
| 383 | api_pred_ty(const APInt *&R) : Res(R) {} |
||
| 384 | |||
| 385 | template <typename ITy> bool match(ITy *V) { |
||
| 386 | if (const auto *CI = dyn_cast<ConstantInt>(V)) |
||
| 387 | if (this->isValue(CI->getValue())) { |
||
| 388 | Res = &CI->getValue(); |
||
| 389 | return true; |
||
| 390 | } |
||
| 391 | if (V->getType()->isVectorTy()) |
||
| 392 | if (const auto *C = dyn_cast<Constant>(V)) |
||
| 393 | if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
||
| 394 | if (this->isValue(CI->getValue())) { |
||
| 395 | Res = &CI->getValue(); |
||
| 396 | return true; |
||
| 397 | } |
||
| 398 | |||
| 399 | return false; |
||
| 400 | } |
||
| 401 | }; |
||
| 402 | |||
| 403 | /// This helper class is used to match scalar and vector constants that |
||
| 404 | /// satisfy a specified predicate, and bind them to an APFloat. |
||
| 405 | /// Undefs are allowed in splat vector constants. |
||
| 406 | template <typename Predicate> struct apf_pred_ty : public Predicate { |
||
| 407 | const APFloat *&Res; |
||
| 408 | |||
| 409 | apf_pred_ty(const APFloat *&R) : Res(R) {} |
||
| 410 | |||
| 411 | template <typename ITy> bool match(ITy *V) { |
||
| 412 | if (const auto *CI = dyn_cast<ConstantFP>(V)) |
||
| 413 | if (this->isValue(CI->getValue())) { |
||
| 414 | Res = &CI->getValue(); |
||
| 415 | return true; |
||
| 416 | } |
||
| 417 | if (V->getType()->isVectorTy()) |
||
| 418 | if (const auto *C = dyn_cast<Constant>(V)) |
||
| 419 | if (auto *CI = dyn_cast_or_null<ConstantFP>( |
||
| 420 | C->getSplatValue(/* AllowUndef */ true))) |
||
| 421 | if (this->isValue(CI->getValue())) { |
||
| 422 | Res = &CI->getValue(); |
||
| 423 | return true; |
||
| 424 | } |
||
| 425 | |||
| 426 | return false; |
||
| 427 | } |
||
| 428 | }; |
||
| 429 | |||
| 430 | /////////////////////////////////////////////////////////////////////////////// |
||
| 431 | // |
||
| 432 | // Encapsulate constant value queries for use in templated predicate matchers. |
||
| 433 | // This allows checking if constants match using compound predicates and works |
||
| 434 | // with vector constants, possibly with relaxed constraints. For example, ignore |
||
| 435 | // undef values. |
||
| 436 | // |
||
| 437 | /////////////////////////////////////////////////////////////////////////////// |
||
| 438 | |||
| 439 | struct is_any_apint { |
||
| 440 | bool isValue(const APInt &C) { return true; } |
||
| 441 | }; |
||
| 442 | /// Match an integer or vector with any integral constant. |
||
| 443 | /// For vectors, this includes constants with undefined elements. |
||
| 444 | inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { |
||
| 445 | return cst_pred_ty<is_any_apint>(); |
||
| 446 | } |
||
| 447 | |||
| 448 | struct is_all_ones { |
||
| 449 | bool isValue(const APInt &C) { return C.isAllOnes(); } |
||
| 450 | }; |
||
| 451 | /// Match an integer or vector with all bits set. |
||
| 452 | /// For vectors, this includes constants with undefined elements. |
||
| 453 | inline cst_pred_ty<is_all_ones> m_AllOnes() { |
||
| 454 | return cst_pred_ty<is_all_ones>(); |
||
| 455 | } |
||
| 456 | |||
| 457 | struct is_maxsignedvalue { |
||
| 458 | bool isValue(const APInt &C) { return C.isMaxSignedValue(); } |
||
| 459 | }; |
||
| 460 | /// Match an integer or vector with values having all bits except for the high |
||
| 461 | /// bit set (0x7f...). |
||
| 462 | /// For vectors, this includes constants with undefined elements. |
||
| 463 | inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { |
||
| 464 | return cst_pred_ty<is_maxsignedvalue>(); |
||
| 465 | } |
||
| 466 | inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { |
||
| 467 | return V; |
||
| 468 | } |
||
| 469 | |||
| 470 | struct is_negative { |
||
| 471 | bool isValue(const APInt &C) { return C.isNegative(); } |
||
| 472 | }; |
||
| 473 | /// Match an integer or vector of negative values. |
||
| 474 | /// For vectors, this includes constants with undefined elements. |
||
| 475 | inline cst_pred_ty<is_negative> m_Negative() { |
||
| 476 | return cst_pred_ty<is_negative>(); |
||
| 477 | } |
||
| 478 | inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; } |
||
| 479 | |||
| 480 | struct is_nonnegative { |
||
| 481 | bool isValue(const APInt &C) { return C.isNonNegative(); } |
||
| 482 | }; |
||
| 483 | /// Match an integer or vector of non-negative values. |
||
| 484 | /// For vectors, this includes constants with undefined elements. |
||
| 485 | inline cst_pred_ty<is_nonnegative> m_NonNegative() { |
||
| 486 | return cst_pred_ty<is_nonnegative>(); |
||
| 487 | } |
||
| 488 | inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; } |
||
| 489 | |||
| 490 | struct is_strictlypositive { |
||
| 491 | bool isValue(const APInt &C) { return C.isStrictlyPositive(); } |
||
| 492 | }; |
||
| 493 | /// Match an integer or vector of strictly positive values. |
||
| 494 | /// For vectors, this includes constants with undefined elements. |
||
| 495 | inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { |
||
| 496 | return cst_pred_ty<is_strictlypositive>(); |
||
| 497 | } |
||
| 498 | inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { |
||
| 499 | return V; |
||
| 500 | } |
||
| 501 | |||
| 502 | struct is_nonpositive { |
||
| 503 | bool isValue(const APInt &C) { return C.isNonPositive(); } |
||
| 504 | }; |
||
| 505 | /// Match an integer or vector of non-positive values. |
||
| 506 | /// For vectors, this includes constants with undefined elements. |
||
| 507 | inline cst_pred_ty<is_nonpositive> m_NonPositive() { |
||
| 508 | return cst_pred_ty<is_nonpositive>(); |
||
| 509 | } |
||
| 510 | inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; } |
||
| 511 | |||
| 512 | struct is_one { |
||
| 513 | bool isValue(const APInt &C) { return C.isOne(); } |
||
| 514 | }; |
||
| 515 | /// Match an integer 1 or a vector with all elements equal to 1. |
||
| 516 | /// For vectors, this includes constants with undefined elements. |
||
| 517 | inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } |
||
| 518 | |||
| 519 | struct is_zero_int { |
||
| 520 | bool isValue(const APInt &C) { return C.isZero(); } |
||
| 521 | }; |
||
| 522 | /// Match an integer 0 or a vector with all elements equal to 0. |
||
| 523 | /// For vectors, this includes constants with undefined elements. |
||
| 524 | inline cst_pred_ty<is_zero_int> m_ZeroInt() { |
||
| 525 | return cst_pred_ty<is_zero_int>(); |
||
| 526 | } |
||
| 527 | |||
| 528 | struct is_zero { |
||
| 529 | template <typename ITy> bool match(ITy *V) { |
||
| 530 | auto *C = dyn_cast<Constant>(V); |
||
| 531 | // FIXME: this should be able to do something for scalable vectors |
||
| 532 | return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); |
||
| 533 | } |
||
| 534 | }; |
||
| 535 | /// Match any null constant or a vector with all elements equal to 0. |
||
| 536 | /// For vectors, this includes constants with undefined elements. |
||
| 537 | inline is_zero m_Zero() { return is_zero(); } |
||
| 538 | |||
| 539 | struct is_power2 { |
||
| 540 | bool isValue(const APInt &C) { return C.isPowerOf2(); } |
||
| 541 | }; |
||
| 542 | /// Match an integer or vector power-of-2. |
||
| 543 | /// For vectors, this includes constants with undefined elements. |
||
| 544 | inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } |
||
| 545 | inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } |
||
| 546 | |||
| 547 | struct is_negated_power2 { |
||
| 548 | bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); } |
||
| 549 | }; |
||
| 550 | /// Match a integer or vector negated power-of-2. |
||
| 551 | /// For vectors, this includes constants with undefined elements. |
||
| 552 | inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { |
||
| 553 | return cst_pred_ty<is_negated_power2>(); |
||
| 554 | } |
||
| 555 | inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { |
||
| 556 | return V; |
||
| 557 | } |
||
| 558 | |||
| 559 | struct is_power2_or_zero { |
||
| 560 | bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } |
||
| 561 | }; |
||
| 562 | /// Match an integer or vector of 0 or power-of-2 values. |
||
| 563 | /// For vectors, this includes constants with undefined elements. |
||
| 564 | inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { |
||
| 565 | return cst_pred_ty<is_power2_or_zero>(); |
||
| 566 | } |
||
| 567 | inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { |
||
| 568 | return V; |
||
| 569 | } |
||
| 570 | |||
| 571 | struct is_sign_mask { |
||
| 572 | bool isValue(const APInt &C) { return C.isSignMask(); } |
||
| 573 | }; |
||
| 574 | /// Match an integer or vector with only the sign bit(s) set. |
||
| 575 | /// For vectors, this includes constants with undefined elements. |
||
| 576 | inline cst_pred_ty<is_sign_mask> m_SignMask() { |
||
| 577 | return cst_pred_ty<is_sign_mask>(); |
||
| 578 | } |
||
| 579 | |||
| 580 | struct is_lowbit_mask { |
||
| 581 | bool isValue(const APInt &C) { return C.isMask(); } |
||
| 582 | }; |
||
| 583 | /// Match an integer or vector with only the low bit(s) set. |
||
| 584 | /// For vectors, this includes constants with undefined elements. |
||
| 585 | inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { |
||
| 586 | return cst_pred_ty<is_lowbit_mask>(); |
||
| 587 | } |
||
| 588 | inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; } |
||
| 589 | |||
| 590 | struct icmp_pred_with_threshold { |
||
| 591 | ICmpInst::Predicate Pred; |
||
| 592 | const APInt *Thr; |
||
| 593 | bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); } |
||
| 594 | }; |
||
| 595 | /// Match an integer or vector with every element comparing 'pred' (eg/ne/...) |
||
| 596 | /// to Threshold. For vectors, this includes constants with undefined elements. |
||
| 597 | inline cst_pred_ty<icmp_pred_with_threshold> |
||
| 598 | m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { |
||
| 599 | cst_pred_ty<icmp_pred_with_threshold> P; |
||
| 600 | P.Pred = Predicate; |
||
| 601 | P.Thr = &Threshold; |
||
| 602 | return P; |
||
| 603 | } |
||
| 604 | |||
| 605 | struct is_nan { |
||
| 606 | bool isValue(const APFloat &C) { return C.isNaN(); } |
||
| 607 | }; |
||
| 608 | /// Match an arbitrary NaN constant. This includes quiet and signalling nans. |
||
| 609 | /// For vectors, this includes constants with undefined elements. |
||
| 610 | inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); } |
||
| 611 | |||
| 612 | struct is_nonnan { |
||
| 613 | bool isValue(const APFloat &C) { return !C.isNaN(); } |
||
| 614 | }; |
||
| 615 | /// Match a non-NaN FP constant. |
||
| 616 | /// For vectors, this includes constants with undefined elements. |
||
| 617 | inline cstfp_pred_ty<is_nonnan> m_NonNaN() { |
||
| 618 | return cstfp_pred_ty<is_nonnan>(); |
||
| 619 | } |
||
| 620 | |||
| 621 | struct is_inf { |
||
| 622 | bool isValue(const APFloat &C) { return C.isInfinity(); } |
||
| 623 | }; |
||
| 624 | /// Match a positive or negative infinity FP constant. |
||
| 625 | /// For vectors, this includes constants with undefined elements. |
||
| 626 | inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); } |
||
| 627 | |||
| 628 | struct is_noninf { |
||
| 629 | bool isValue(const APFloat &C) { return !C.isInfinity(); } |
||
| 630 | }; |
||
| 631 | /// Match a non-infinity FP constant, i.e. finite or NaN. |
||
| 632 | /// For vectors, this includes constants with undefined elements. |
||
| 633 | inline cstfp_pred_ty<is_noninf> m_NonInf() { |
||
| 634 | return cstfp_pred_ty<is_noninf>(); |
||
| 635 | } |
||
| 636 | |||
| 637 | struct is_finite { |
||
| 638 | bool isValue(const APFloat &C) { return C.isFinite(); } |
||
| 639 | }; |
||
| 640 | /// Match a finite FP constant, i.e. not infinity or NaN. |
||
| 641 | /// For vectors, this includes constants with undefined elements. |
||
| 642 | inline cstfp_pred_ty<is_finite> m_Finite() { |
||
| 643 | return cstfp_pred_ty<is_finite>(); |
||
| 644 | } |
||
| 645 | inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; } |
||
| 646 | |||
| 647 | struct is_finitenonzero { |
||
| 648 | bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } |
||
| 649 | }; |
||
| 650 | /// Match a finite non-zero FP constant. |
||
| 651 | /// For vectors, this includes constants with undefined elements. |
||
| 652 | inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { |
||
| 653 | return cstfp_pred_ty<is_finitenonzero>(); |
||
| 654 | } |
||
| 655 | inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { |
||
| 656 | return V; |
||
| 657 | } |
||
| 658 | |||
| 659 | struct is_any_zero_fp { |
||
| 660 | bool isValue(const APFloat &C) { return C.isZero(); } |
||
| 661 | }; |
||
| 662 | /// Match a floating-point negative zero or positive zero. |
||
| 663 | /// For vectors, this includes constants with undefined elements. |
||
| 664 | inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { |
||
| 665 | return cstfp_pred_ty<is_any_zero_fp>(); |
||
| 666 | } |
||
| 667 | |||
| 668 | struct is_pos_zero_fp { |
||
| 669 | bool isValue(const APFloat &C) { return C.isPosZero(); } |
||
| 670 | }; |
||
| 671 | /// Match a floating-point positive zero. |
||
| 672 | /// For vectors, this includes constants with undefined elements. |
||
| 673 | inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { |
||
| 674 | return cstfp_pred_ty<is_pos_zero_fp>(); |
||
| 675 | } |
||
| 676 | |||
| 677 | struct is_neg_zero_fp { |
||
| 678 | bool isValue(const APFloat &C) { return C.isNegZero(); } |
||
| 679 | }; |
||
| 680 | /// Match a floating-point negative zero. |
||
| 681 | /// For vectors, this includes constants with undefined elements. |
||
| 682 | inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { |
||
| 683 | return cstfp_pred_ty<is_neg_zero_fp>(); |
||
| 684 | } |
||
| 685 | |||
| 686 | struct is_non_zero_fp { |
||
| 687 | bool isValue(const APFloat &C) { return C.isNonZero(); } |
||
| 688 | }; |
||
| 689 | /// Match a floating-point non-zero. |
||
| 690 | /// For vectors, this includes constants with undefined elements. |
||
| 691 | inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { |
||
| 692 | return cstfp_pred_ty<is_non_zero_fp>(); |
||
| 693 | } |
||
| 694 | |||
| 695 | /////////////////////////////////////////////////////////////////////////////// |
||
| 696 | |||
| 697 | template <typename Class> struct bind_ty { |
||
| 698 | Class *&VR; |
||
| 699 | |||
| 700 | bind_ty(Class *&V) : VR(V) {} |
||
| 701 | |||
| 702 | template <typename ITy> bool match(ITy *V) { |
||
| 703 | if (auto *CV = dyn_cast<Class>(V)) { |
||
| 704 | VR = CV; |
||
| 705 | return true; |
||
| 706 | } |
||
| 707 | return false; |
||
| 708 | } |
||
| 709 | }; |
||
| 710 | |||
| 711 | /// Match a value, capturing it if we match. |
||
| 712 | inline bind_ty<Value> m_Value(Value *&V) { return V; } |
||
| 713 | inline bind_ty<const Value> m_Value(const Value *&V) { return V; } |
||
| 714 | |||
| 715 | /// Match an instruction, capturing it if we match. |
||
| 716 | inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } |
||
| 717 | /// Match a unary operator, capturing it if we match. |
||
| 718 | inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } |
||
| 719 | /// Match a binary operator, capturing it if we match. |
||
| 720 | inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } |
||
| 721 | /// Match a with overflow intrinsic, capturing it if we match. |
||
| 722 | inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { |
||
| 723 | return I; |
||
| 724 | } |
||
| 725 | inline bind_ty<const WithOverflowInst> |
||
| 726 | m_WithOverflowInst(const WithOverflowInst *&I) { |
||
| 727 | return I; |
||
| 728 | } |
||
| 729 | |||
| 730 | /// Match a Constant, capturing the value if we match. |
||
| 731 | inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } |
||
| 732 | |||
| 733 | /// Match a ConstantInt, capturing the value if we match. |
||
| 734 | inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } |
||
| 735 | |||
| 736 | /// Match a ConstantFP, capturing the value if we match. |
||
| 737 | inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } |
||
| 738 | |||
| 739 | /// Match a ConstantExpr, capturing the value if we match. |
||
| 740 | inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; } |
||
| 741 | |||
| 742 | /// Match a basic block value, capturing it if we match. |
||
| 743 | inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } |
||
| 744 | inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { |
||
| 745 | return V; |
||
| 746 | } |
||
| 747 | |||
| 748 | /// Match an arbitrary immediate Constant and ignore it. |
||
| 749 | inline match_combine_and<class_match<Constant>, |
||
| 750 | match_unless<constantexpr_match>> |
||
| 751 | m_ImmConstant() { |
||
| 752 | return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); |
||
| 753 | } |
||
| 754 | |||
| 755 | /// Match an immediate Constant, capturing the value if we match. |
||
| 756 | inline match_combine_and<bind_ty<Constant>, |
||
| 757 | match_unless<constantexpr_match>> |
||
| 758 | m_ImmConstant(Constant *&C) { |
||
| 759 | return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); |
||
| 760 | } |
||
| 761 | |||
| 762 | /// Match a specified Value*. |
||
| 763 | struct specificval_ty { |
||
| 764 | const Value *Val; |
||
| 765 | |||
| 766 | specificval_ty(const Value *V) : Val(V) {} |
||
| 767 | |||
| 768 | template <typename ITy> bool match(ITy *V) { return V == Val; } |
||
| 769 | }; |
||
| 770 | |||
| 771 | /// Match if we have a specific specified value. |
||
| 772 | inline specificval_ty m_Specific(const Value *V) { return V; } |
||
| 773 | |||
| 774 | /// Stores a reference to the Value *, not the Value * itself, |
||
| 775 | /// thus can be used in commutative matchers. |
||
| 776 | template <typename Class> struct deferredval_ty { |
||
| 777 | Class *const &Val; |
||
| 778 | |||
| 779 | deferredval_ty(Class *const &V) : Val(V) {} |
||
| 780 | |||
| 781 | template <typename ITy> bool match(ITy *const V) { return V == Val; } |
||
| 782 | }; |
||
| 783 | |||
| 784 | /// Like m_Specific(), but works if the specific value to match is determined |
||
| 785 | /// as part of the same match() expression. For example: |
||
| 786 | /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will |
||
| 787 | /// bind X before the pattern match starts. |
||
| 788 | /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against |
||
| 789 | /// whichever value m_Value(X) populated. |
||
| 790 | inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } |
||
| 791 | inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { |
||
| 792 | return V; |
||
| 793 | } |
||
| 794 | |||
| 795 | /// Match a specified floating point value or vector of all elements of |
||
| 796 | /// that value. |
||
| 797 | struct specific_fpval { |
||
| 798 | double Val; |
||
| 799 | |||
| 800 | specific_fpval(double V) : Val(V) {} |
||
| 801 | |||
| 802 | template <typename ITy> bool match(ITy *V) { |
||
| 803 | if (const auto *CFP = dyn_cast<ConstantFP>(V)) |
||
| 804 | return CFP->isExactlyValue(Val); |
||
| 805 | if (V->getType()->isVectorTy()) |
||
| 806 | if (const auto *C = dyn_cast<Constant>(V)) |
||
| 807 | if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
||
| 808 | return CFP->isExactlyValue(Val); |
||
| 809 | return false; |
||
| 810 | } |
||
| 811 | }; |
||
| 812 | |||
| 813 | /// Match a specific floating point value or vector with all elements |
||
| 814 | /// equal to the value. |
||
| 815 | inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } |
||
| 816 | |||
| 817 | /// Match a float 1.0 or vector with all elements equal to 1.0. |
||
| 818 | inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } |
||
| 819 | |||
| 820 | struct bind_const_intval_ty { |
||
| 821 | uint64_t &VR; |
||
| 822 | |||
| 823 | bind_const_intval_ty(uint64_t &V) : VR(V) {} |
||
| 824 | |||
| 825 | template <typename ITy> bool match(ITy *V) { |
||
| 826 | if (const auto *CV = dyn_cast<ConstantInt>(V)) |
||
| 827 | if (CV->getValue().ule(UINT64_MAX)) { |
||
| 828 | VR = CV->getZExtValue(); |
||
| 829 | return true; |
||
| 830 | } |
||
| 831 | return false; |
||
| 832 | } |
||
| 833 | }; |
||
| 834 | |||
| 835 | /// Match a specified integer value or vector of all elements of that |
||
| 836 | /// value. |
||
| 837 | template <bool AllowUndefs> struct specific_intval { |
||
| 838 | APInt Val; |
||
| 839 | |||
| 840 | specific_intval(APInt V) : Val(std::move(V)) {} |
||
| 841 | |||
| 842 | template <typename ITy> bool match(ITy *V) { |
||
| 843 | const auto *CI = dyn_cast<ConstantInt>(V); |
||
| 844 | if (!CI && V->getType()->isVectorTy()) |
||
| 845 | if (const auto *C = dyn_cast<Constant>(V)) |
||
| 846 | CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs)); |
||
| 847 | |||
| 848 | return CI && APInt::isSameValue(CI->getValue(), Val); |
||
| 849 | } |
||
| 850 | }; |
||
| 851 | |||
| 852 | /// Match a specific integer value or vector with all elements equal to |
||
| 853 | /// the value. |
||
| 854 | inline specific_intval<false> m_SpecificInt(APInt V) { |
||
| 855 | return specific_intval<false>(std::move(V)); |
||
| 856 | } |
||
| 857 | |||
| 858 | inline specific_intval<false> m_SpecificInt(uint64_t V) { |
||
| 859 | return m_SpecificInt(APInt(64, V)); |
||
| 860 | } |
||
| 861 | |||
| 862 | inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) { |
||
| 863 | return specific_intval<true>(std::move(V)); |
||
| 864 | } |
||
| 865 | |||
| 866 | inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) { |
||
| 867 | return m_SpecificIntAllowUndef(APInt(64, V)); |
||
| 868 | } |
||
| 869 | |||
| 870 | /// Match a ConstantInt and bind to its value. This does not match |
||
| 871 | /// ConstantInts wider than 64-bits. |
||
| 872 | inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } |
||
| 873 | |||
| 874 | /// Match a specified basic block value. |
||
| 875 | struct specific_bbval { |
||
| 876 | BasicBlock *Val; |
||
| 877 | |||
| 878 | specific_bbval(BasicBlock *Val) : Val(Val) {} |
||
| 879 | |||
| 880 | template <typename ITy> bool match(ITy *V) { |
||
| 881 | const auto *BB = dyn_cast<BasicBlock>(V); |
||
| 882 | return BB && BB == Val; |
||
| 883 | } |
||
| 884 | }; |
||
| 885 | |||
| 886 | /// Match a specific basic block value. |
||
| 887 | inline specific_bbval m_SpecificBB(BasicBlock *BB) { |
||
| 888 | return specific_bbval(BB); |
||
| 889 | } |
||
| 890 | |||
| 891 | /// A commutative-friendly version of m_Specific(). |
||
| 892 | inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { |
||
| 893 | return BB; |
||
| 894 | } |
||
| 895 | inline deferredval_ty<const BasicBlock> |
||
| 896 | m_Deferred(const BasicBlock *const &BB) { |
||
| 897 | return BB; |
||
| 898 | } |
||
| 899 | |||
| 900 | //===----------------------------------------------------------------------===// |
||
| 901 | // Matcher for any binary operator. |
||
| 902 | // |
||
| 903 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
||
| 904 | struct AnyBinaryOp_match { |
||
| 905 | LHS_t L; |
||
| 906 | RHS_t R; |
||
| 907 | |||
| 908 | // The evaluation order is always stable, regardless of Commutability. |
||
| 909 | // The LHS is always matched first. |
||
| 910 | AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
||
| 911 | |||
| 912 | template <typename OpTy> bool match(OpTy *V) { |
||
| 913 | if (auto *I = dyn_cast<BinaryOperator>(V)) |
||
| 914 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
||
| 915 | (Commutable && L.match(I->getOperand(1)) && |
||
| 916 | R.match(I->getOperand(0))); |
||
| 917 | return false; |
||
| 918 | } |
||
| 919 | }; |
||
| 920 | |||
| 921 | template <typename LHS, typename RHS> |
||
| 922 | inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { |
||
| 923 | return AnyBinaryOp_match<LHS, RHS>(L, R); |
||
| 924 | } |
||
| 925 | |||
| 926 | //===----------------------------------------------------------------------===// |
||
| 927 | // Matcher for any unary operator. |
||
| 928 | // TODO fuse unary, binary matcher into n-ary matcher |
||
| 929 | // |
||
| 930 | template <typename OP_t> struct AnyUnaryOp_match { |
||
| 931 | OP_t X; |
||
| 932 | |||
| 933 | AnyUnaryOp_match(const OP_t &X) : X(X) {} |
||
| 934 | |||
| 935 | template <typename OpTy> bool match(OpTy *V) { |
||
| 936 | if (auto *I = dyn_cast<UnaryOperator>(V)) |
||
| 937 | return X.match(I->getOperand(0)); |
||
| 938 | return false; |
||
| 939 | } |
||
| 940 | }; |
||
| 941 | |||
| 942 | template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { |
||
| 943 | return AnyUnaryOp_match<OP_t>(X); |
||
| 944 | } |
||
| 945 | |||
| 946 | //===----------------------------------------------------------------------===// |
||
| 947 | // Matchers for specific binary operators. |
||
| 948 | // |
||
| 949 | |||
| 950 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
||
| 951 | bool Commutable = false> |
||
| 952 | struct BinaryOp_match { |
||
| 953 | LHS_t L; |
||
| 954 | RHS_t R; |
||
| 955 | |||
| 956 | // The evaluation order is always stable, regardless of Commutability. |
||
| 957 | // The LHS is always matched first. |
||
| 958 | BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
||
| 959 | |||
| 960 | template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) { |
||
| 961 | if (V->getValueID() == Value::InstructionVal + Opc) { |
||
| 962 | auto *I = cast<BinaryOperator>(V); |
||
| 963 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
||
| 964 | (Commutable && L.match(I->getOperand(1)) && |
||
| 965 | R.match(I->getOperand(0))); |
||
| 966 | } |
||
| 967 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
||
| 968 | return CE->getOpcode() == Opc && |
||
| 969 | ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || |
||
| 970 | (Commutable && L.match(CE->getOperand(1)) && |
||
| 971 | R.match(CE->getOperand(0)))); |
||
| 972 | return false; |
||
| 973 | } |
||
| 974 | |||
| 975 | template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); } |
||
| 976 | }; |
||
| 977 | |||
| 978 | template <typename LHS, typename RHS> |
||
| 979 | inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, |
||
| 980 | const RHS &R) { |
||
| 981 | return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); |
||
| 982 | } |
||
| 983 | |||
| 984 | template <typename LHS, typename RHS> |
||
| 985 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, |
||
| 986 | const RHS &R) { |
||
| 987 | return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); |
||
| 988 | } |
||
| 989 | |||
| 990 | template <typename LHS, typename RHS> |
||
| 991 | inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, |
||
| 992 | const RHS &R) { |
||
| 993 | return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); |
||
| 994 | } |
||
| 995 | |||
| 996 | template <typename LHS, typename RHS> |
||
| 997 | inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, |
||
| 998 | const RHS &R) { |
||
| 999 | return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); |
||
| 1000 | } |
||
| 1001 | |||
| 1002 | template <typename Op_t> struct FNeg_match { |
||
| 1003 | Op_t X; |
||
| 1004 | |||
| 1005 | FNeg_match(const Op_t &Op) : X(Op) {} |
||
| 1006 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1007 | auto *FPMO = dyn_cast<FPMathOperator>(V); |
||
| 1008 | if (!FPMO) |
||
| 1009 | return false; |
||
| 1010 | |||
| 1011 | if (FPMO->getOpcode() == Instruction::FNeg) |
||
| 1012 | return X.match(FPMO->getOperand(0)); |
||
| 1013 | |||
| 1014 | if (FPMO->getOpcode() == Instruction::FSub) { |
||
| 1015 | if (FPMO->hasNoSignedZeros()) { |
||
| 1016 | // With 'nsz', any zero goes. |
||
| 1017 | if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) |
||
| 1018 | return false; |
||
| 1019 | } else { |
||
| 1020 | // Without 'nsz', we need fsub -0.0, X exactly. |
||
| 1021 | if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) |
||
| 1022 | return false; |
||
| 1023 | } |
||
| 1024 | |||
| 1025 | return X.match(FPMO->getOperand(1)); |
||
| 1026 | } |
||
| 1027 | |||
| 1028 | return false; |
||
| 1029 | } |
||
| 1030 | }; |
||
| 1031 | |||
| 1032 | /// Match 'fneg X' as 'fsub -0.0, X'. |
||
| 1033 | template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) { |
||
| 1034 | return FNeg_match<OpTy>(X); |
||
| 1035 | } |
||
| 1036 | |||
| 1037 | /// Match 'fneg X' as 'fsub +-0.0, X'. |
||
| 1038 | template <typename RHS> |
||
| 1039 | inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> |
||
| 1040 | m_FNegNSZ(const RHS &X) { |
||
| 1041 | return m_FSub(m_AnyZeroFP(), X); |
||
| 1042 | } |
||
| 1043 | |||
| 1044 | template <typename LHS, typename RHS> |
||
| 1045 | inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, |
||
| 1046 | const RHS &R) { |
||
| 1047 | return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); |
||
| 1048 | } |
||
| 1049 | |||
| 1050 | template <typename LHS, typename RHS> |
||
| 1051 | inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, |
||
| 1052 | const RHS &R) { |
||
| 1053 | return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); |
||
| 1054 | } |
||
| 1055 | |||
| 1056 | template <typename LHS, typename RHS> |
||
| 1057 | inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, |
||
| 1058 | const RHS &R) { |
||
| 1059 | return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); |
||
| 1060 | } |
||
| 1061 | |||
| 1062 | template <typename LHS, typename RHS> |
||
| 1063 | inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, |
||
| 1064 | const RHS &R) { |
||
| 1065 | return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); |
||
| 1066 | } |
||
| 1067 | |||
| 1068 | template <typename LHS, typename RHS> |
||
| 1069 | inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, |
||
| 1070 | const RHS &R) { |
||
| 1071 | return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); |
||
| 1072 | } |
||
| 1073 | |||
| 1074 | template <typename LHS, typename RHS> |
||
| 1075 | inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, |
||
| 1076 | const RHS &R) { |
||
| 1077 | return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); |
||
| 1078 | } |
||
| 1079 | |||
| 1080 | template <typename LHS, typename RHS> |
||
| 1081 | inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, |
||
| 1082 | const RHS &R) { |
||
| 1083 | return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); |
||
| 1084 | } |
||
| 1085 | |||
| 1086 | template <typename LHS, typename RHS> |
||
| 1087 | inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, |
||
| 1088 | const RHS &R) { |
||
| 1089 | return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); |
||
| 1090 | } |
||
| 1091 | |||
| 1092 | template <typename LHS, typename RHS> |
||
| 1093 | inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, |
||
| 1094 | const RHS &R) { |
||
| 1095 | return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); |
||
| 1096 | } |
||
| 1097 | |||
| 1098 | template <typename LHS, typename RHS> |
||
| 1099 | inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, |
||
| 1100 | const RHS &R) { |
||
| 1101 | return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); |
||
| 1102 | } |
||
| 1103 | |||
| 1104 | template <typename LHS, typename RHS> |
||
| 1105 | inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, |
||
| 1106 | const RHS &R) { |
||
| 1107 | return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); |
||
| 1108 | } |
||
| 1109 | |||
| 1110 | template <typename LHS, typename RHS> |
||
| 1111 | inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, |
||
| 1112 | const RHS &R) { |
||
| 1113 | return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); |
||
| 1114 | } |
||
| 1115 | |||
| 1116 | template <typename LHS, typename RHS> |
||
| 1117 | inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, |
||
| 1118 | const RHS &R) { |
||
| 1119 | return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); |
||
| 1120 | } |
||
| 1121 | |||
| 1122 | template <typename LHS, typename RHS> |
||
| 1123 | inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, |
||
| 1124 | const RHS &R) { |
||
| 1125 | return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); |
||
| 1126 | } |
||
| 1127 | |||
| 1128 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
||
| 1129 | unsigned WrapFlags = 0> |
||
| 1130 | struct OverflowingBinaryOp_match { |
||
| 1131 | LHS_t L; |
||
| 1132 | RHS_t R; |
||
| 1133 | |||
| 1134 | OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) |
||
| 1135 | : L(LHS), R(RHS) {} |
||
| 1136 | |||
| 1137 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1138 | if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { |
||
| 1139 | if (Op->getOpcode() != Opcode) |
||
| 1140 | return false; |
||
| 1141 | if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && |
||
| 1142 | !Op->hasNoUnsignedWrap()) |
||
| 1143 | return false; |
||
| 1144 | if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && |
||
| 1145 | !Op->hasNoSignedWrap()) |
||
| 1146 | return false; |
||
| 1147 | return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); |
||
| 1148 | } |
||
| 1149 | return false; |
||
| 1150 | } |
||
| 1151 | }; |
||
| 1152 | |||
| 1153 | template <typename LHS, typename RHS> |
||
| 1154 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
||
| 1155 | OverflowingBinaryOperator::NoSignedWrap> |
||
| 1156 | m_NSWAdd(const LHS &L, const RHS &R) { |
||
| 1157 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
||
| 1158 | OverflowingBinaryOperator::NoSignedWrap>(L, |
||
| 1159 | R); |
||
| 1160 | } |
||
| 1161 | template <typename LHS, typename RHS> |
||
| 1162 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
||
| 1163 | OverflowingBinaryOperator::NoSignedWrap> |
||
| 1164 | m_NSWSub(const LHS &L, const RHS &R) { |
||
| 1165 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
||
| 1166 | OverflowingBinaryOperator::NoSignedWrap>(L, |
||
| 1167 | R); |
||
| 1168 | } |
||
| 1169 | template <typename LHS, typename RHS> |
||
| 1170 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
||
| 1171 | OverflowingBinaryOperator::NoSignedWrap> |
||
| 1172 | m_NSWMul(const LHS &L, const RHS &R) { |
||
| 1173 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
||
| 1174 | OverflowingBinaryOperator::NoSignedWrap>(L, |
||
| 1175 | R); |
||
| 1176 | } |
||
| 1177 | template <typename LHS, typename RHS> |
||
| 1178 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
||
| 1179 | OverflowingBinaryOperator::NoSignedWrap> |
||
| 1180 | m_NSWShl(const LHS &L, const RHS &R) { |
||
| 1181 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
||
| 1182 | OverflowingBinaryOperator::NoSignedWrap>(L, |
||
| 1183 | R); |
||
| 1184 | } |
||
| 1185 | |||
| 1186 | template <typename LHS, typename RHS> |
||
| 1187 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
||
| 1188 | OverflowingBinaryOperator::NoUnsignedWrap> |
||
| 1189 | m_NUWAdd(const LHS &L, const RHS &R) { |
||
| 1190 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
||
| 1191 | OverflowingBinaryOperator::NoUnsignedWrap>( |
||
| 1192 | L, R); |
||
| 1193 | } |
||
| 1194 | template <typename LHS, typename RHS> |
||
| 1195 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
||
| 1196 | OverflowingBinaryOperator::NoUnsignedWrap> |
||
| 1197 | m_NUWSub(const LHS &L, const RHS &R) { |
||
| 1198 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
||
| 1199 | OverflowingBinaryOperator::NoUnsignedWrap>( |
||
| 1200 | L, R); |
||
| 1201 | } |
||
| 1202 | template <typename LHS, typename RHS> |
||
| 1203 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
||
| 1204 | OverflowingBinaryOperator::NoUnsignedWrap> |
||
| 1205 | m_NUWMul(const LHS &L, const RHS &R) { |
||
| 1206 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
||
| 1207 | OverflowingBinaryOperator::NoUnsignedWrap>( |
||
| 1208 | L, R); |
||
| 1209 | } |
||
| 1210 | template <typename LHS, typename RHS> |
||
| 1211 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
||
| 1212 | OverflowingBinaryOperator::NoUnsignedWrap> |
||
| 1213 | m_NUWShl(const LHS &L, const RHS &R) { |
||
| 1214 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
||
| 1215 | OverflowingBinaryOperator::NoUnsignedWrap>( |
||
| 1216 | L, R); |
||
| 1217 | } |
||
| 1218 | |||
| 1219 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
||
| 1220 | struct SpecificBinaryOp_match |
||
| 1221 | : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> { |
||
| 1222 | unsigned Opcode; |
||
| 1223 | |||
| 1224 | SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS) |
||
| 1225 | : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {} |
||
| 1226 | |||
| 1227 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1228 | return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V); |
||
| 1229 | } |
||
| 1230 | }; |
||
| 1231 | |||
| 1232 | /// Matches a specific opcode. |
||
| 1233 | template <typename LHS, typename RHS> |
||
| 1234 | inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L, |
||
| 1235 | const RHS &R) { |
||
| 1236 | return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R); |
||
| 1237 | } |
||
| 1238 | |||
| 1239 | //===----------------------------------------------------------------------===// |
||
| 1240 | // Class that matches a group of binary opcodes. |
||
| 1241 | // |
||
| 1242 | template <typename LHS_t, typename RHS_t, typename Predicate> |
||
| 1243 | struct BinOpPred_match : Predicate { |
||
| 1244 | LHS_t L; |
||
| 1245 | RHS_t R; |
||
| 1246 | |||
| 1247 | BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
||
| 1248 | |||
| 1249 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1250 | if (auto *I = dyn_cast<Instruction>(V)) |
||
| 1251 | return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && |
||
| 1252 | R.match(I->getOperand(1)); |
||
| 1253 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
||
| 1254 | return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && |
||
| 1255 | R.match(CE->getOperand(1)); |
||
| 1256 | return false; |
||
| 1257 | } |
||
| 1258 | }; |
||
| 1259 | |||
| 1260 | struct is_shift_op { |
||
| 1261 | bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } |
||
| 1262 | }; |
||
| 1263 | |||
| 1264 | struct is_right_shift_op { |
||
| 1265 | bool isOpType(unsigned Opcode) { |
||
| 1266 | return Opcode == Instruction::LShr || Opcode == Instruction::AShr; |
||
| 1267 | } |
||
| 1268 | }; |
||
| 1269 | |||
| 1270 | struct is_logical_shift_op { |
||
| 1271 | bool isOpType(unsigned Opcode) { |
||
| 1272 | return Opcode == Instruction::LShr || Opcode == Instruction::Shl; |
||
| 1273 | } |
||
| 1274 | }; |
||
| 1275 | |||
| 1276 | struct is_bitwiselogic_op { |
||
| 1277 | bool isOpType(unsigned Opcode) { |
||
| 1278 | return Instruction::isBitwiseLogicOp(Opcode); |
||
| 1279 | } |
||
| 1280 | }; |
||
| 1281 | |||
| 1282 | struct is_idiv_op { |
||
| 1283 | bool isOpType(unsigned Opcode) { |
||
| 1284 | return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; |
||
| 1285 | } |
||
| 1286 | }; |
||
| 1287 | |||
| 1288 | struct is_irem_op { |
||
| 1289 | bool isOpType(unsigned Opcode) { |
||
| 1290 | return Opcode == Instruction::SRem || Opcode == Instruction::URem; |
||
| 1291 | } |
||
| 1292 | }; |
||
| 1293 | |||
| 1294 | /// Matches shift operations. |
||
| 1295 | template <typename LHS, typename RHS> |
||
| 1296 | inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, |
||
| 1297 | const RHS &R) { |
||
| 1298 | return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); |
||
| 1299 | } |
||
| 1300 | |||
| 1301 | /// Matches logical shift operations. |
||
| 1302 | template <typename LHS, typename RHS> |
||
| 1303 | inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, |
||
| 1304 | const RHS &R) { |
||
| 1305 | return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); |
||
| 1306 | } |
||
| 1307 | |||
| 1308 | /// Matches logical shift operations. |
||
| 1309 | template <typename LHS, typename RHS> |
||
| 1310 | inline BinOpPred_match<LHS, RHS, is_logical_shift_op> |
||
| 1311 | m_LogicalShift(const LHS &L, const RHS &R) { |
||
| 1312 | return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); |
||
| 1313 | } |
||
| 1314 | |||
| 1315 | /// Matches bitwise logic operations. |
||
| 1316 | template <typename LHS, typename RHS> |
||
| 1317 | inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> |
||
| 1318 | m_BitwiseLogic(const LHS &L, const RHS &R) { |
||
| 1319 | return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); |
||
| 1320 | } |
||
| 1321 | |||
| 1322 | /// Matches integer division operations. |
||
| 1323 | template <typename LHS, typename RHS> |
||
| 1324 | inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, |
||
| 1325 | const RHS &R) { |
||
| 1326 | return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); |
||
| 1327 | } |
||
| 1328 | |||
| 1329 | /// Matches integer remainder operations. |
||
| 1330 | template <typename LHS, typename RHS> |
||
| 1331 | inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, |
||
| 1332 | const RHS &R) { |
||
| 1333 | return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); |
||
| 1334 | } |
||
| 1335 | |||
| 1336 | //===----------------------------------------------------------------------===// |
||
| 1337 | // Class that matches exact binary ops. |
||
| 1338 | // |
||
| 1339 | template <typename SubPattern_t> struct Exact_match { |
||
| 1340 | SubPattern_t SubPattern; |
||
| 1341 | |||
| 1342 | Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} |
||
| 1343 | |||
| 1344 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1345 | if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) |
||
| 1346 | return PEO->isExact() && SubPattern.match(V); |
||
| 1347 | return false; |
||
| 1348 | } |
||
| 1349 | }; |
||
| 1350 | |||
| 1351 | template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { |
||
| 1352 | return SubPattern; |
||
| 1353 | } |
||
| 1354 | |||
| 1355 | //===----------------------------------------------------------------------===// |
||
| 1356 | // Matchers for CmpInst classes |
||
| 1357 | // |
||
| 1358 | |||
| 1359 | template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, |
||
| 1360 | bool Commutable = false> |
||
| 1361 | struct CmpClass_match { |
||
| 1362 | PredicateTy &Predicate; |
||
| 1363 | LHS_t L; |
||
| 1364 | RHS_t R; |
||
| 1365 | |||
| 1366 | // The evaluation order is always stable, regardless of Commutability. |
||
| 1367 | // The LHS is always matched first. |
||
| 1368 | CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) |
||
| 1369 | : Predicate(Pred), L(LHS), R(RHS) {} |
||
| 1370 | |||
| 1371 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1372 | if (auto *I = dyn_cast<Class>(V)) { |
||
| 1373 | if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { |
||
| 1374 | Predicate = I->getPredicate(); |
||
| 1375 | return true; |
||
| 1376 | } else if (Commutable && L.match(I->getOperand(1)) && |
||
| 1377 | R.match(I->getOperand(0))) { |
||
| 1378 | Predicate = I->getSwappedPredicate(); |
||
| 1379 | return true; |
||
| 1380 | } |
||
| 1381 | } |
||
| 1382 | return false; |
||
| 1383 | } |
||
| 1384 | }; |
||
| 1385 | |||
| 1386 | template <typename LHS, typename RHS> |
||
| 1387 | inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> |
||
| 1388 | m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
||
| 1389 | return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); |
||
| 1390 | } |
||
| 1391 | |||
| 1392 | template <typename LHS, typename RHS> |
||
| 1393 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> |
||
| 1394 | m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
||
| 1395 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); |
||
| 1396 | } |
||
| 1397 | |||
| 1398 | template <typename LHS, typename RHS> |
||
| 1399 | inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> |
||
| 1400 | m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
||
| 1401 | return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); |
||
| 1402 | } |
||
| 1403 | |||
| 1404 | //===----------------------------------------------------------------------===// |
||
| 1405 | // Matchers for instructions with a given opcode and number of operands. |
||
| 1406 | // |
||
| 1407 | |||
| 1408 | /// Matches instructions with Opcode and three operands. |
||
| 1409 | template <typename T0, unsigned Opcode> struct OneOps_match { |
||
| 1410 | T0 Op1; |
||
| 1411 | |||
| 1412 | OneOps_match(const T0 &Op1) : Op1(Op1) {} |
||
| 1413 | |||
| 1414 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1415 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
||
| 1416 | auto *I = cast<Instruction>(V); |
||
| 1417 | return Op1.match(I->getOperand(0)); |
||
| 1418 | } |
||
| 1419 | return false; |
||
| 1420 | } |
||
| 1421 | }; |
||
| 1422 | |||
| 1423 | /// Matches instructions with Opcode and three operands. |
||
| 1424 | template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { |
||
| 1425 | T0 Op1; |
||
| 1426 | T1 Op2; |
||
| 1427 | |||
| 1428 | TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} |
||
| 1429 | |||
| 1430 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1431 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
||
| 1432 | auto *I = cast<Instruction>(V); |
||
| 1433 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); |
||
| 1434 | } |
||
| 1435 | return false; |
||
| 1436 | } |
||
| 1437 | }; |
||
| 1438 | |||
| 1439 | /// Matches instructions with Opcode and three operands. |
||
| 1440 | template <typename T0, typename T1, typename T2, unsigned Opcode> |
||
| 1441 | struct ThreeOps_match { |
||
| 1442 | T0 Op1; |
||
| 1443 | T1 Op2; |
||
| 1444 | T2 Op3; |
||
| 1445 | |||
| 1446 | ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) |
||
| 1447 | : Op1(Op1), Op2(Op2), Op3(Op3) {} |
||
| 1448 | |||
| 1449 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1450 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
||
| 1451 | auto *I = cast<Instruction>(V); |
||
| 1452 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
||
| 1453 | Op3.match(I->getOperand(2)); |
||
| 1454 | } |
||
| 1455 | return false; |
||
| 1456 | } |
||
| 1457 | }; |
||
| 1458 | |||
| 1459 | /// Matches SelectInst. |
||
| 1460 | template <typename Cond, typename LHS, typename RHS> |
||
| 1461 | inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> |
||
| 1462 | m_Select(const Cond &C, const LHS &L, const RHS &R) { |
||
| 1463 | return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); |
||
| 1464 | } |
||
| 1465 | |||
| 1466 | /// This matches a select of two constants, e.g.: |
||
| 1467 | /// m_SelectCst<-1, 0>(m_Value(V)) |
||
| 1468 | template <int64_t L, int64_t R, typename Cond> |
||
| 1469 | inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, |
||
| 1470 | Instruction::Select> |
||
| 1471 | m_SelectCst(const Cond &C) { |
||
| 1472 | return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); |
||
| 1473 | } |
||
| 1474 | |||
| 1475 | /// Matches FreezeInst. |
||
| 1476 | template <typename OpTy> |
||
| 1477 | inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { |
||
| 1478 | return OneOps_match<OpTy, Instruction::Freeze>(Op); |
||
| 1479 | } |
||
| 1480 | |||
| 1481 | /// Matches InsertElementInst. |
||
| 1482 | template <typename Val_t, typename Elt_t, typename Idx_t> |
||
| 1483 | inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> |
||
| 1484 | m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { |
||
| 1485 | return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( |
||
| 1486 | Val, Elt, Idx); |
||
| 1487 | } |
||
| 1488 | |||
| 1489 | /// Matches ExtractElementInst. |
||
| 1490 | template <typename Val_t, typename Idx_t> |
||
| 1491 | inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> |
||
| 1492 | m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { |
||
| 1493 | return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); |
||
| 1494 | } |
||
| 1495 | |||
| 1496 | /// Matches shuffle. |
||
| 1497 | template <typename T0, typename T1, typename T2> struct Shuffle_match { |
||
| 1498 | T0 Op1; |
||
| 1499 | T1 Op2; |
||
| 1500 | T2 Mask; |
||
| 1501 | |||
| 1502 | Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) |
||
| 1503 | : Op1(Op1), Op2(Op2), Mask(Mask) {} |
||
| 1504 | |||
| 1505 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1506 | if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { |
||
| 1507 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
||
| 1508 | Mask.match(I->getShuffleMask()); |
||
| 1509 | } |
||
| 1510 | return false; |
||
| 1511 | } |
||
| 1512 | }; |
||
| 1513 | |||
| 1514 | struct m_Mask { |
||
| 1515 | ArrayRef<int> &MaskRef; |
||
| 1516 | m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} |
||
| 1517 | bool match(ArrayRef<int> Mask) { |
||
| 1518 | MaskRef = Mask; |
||
| 1519 | return true; |
||
| 1520 | } |
||
| 1521 | }; |
||
| 1522 | |||
| 1523 | struct m_ZeroMask { |
||
| 1524 | bool match(ArrayRef<int> Mask) { |
||
| 1525 | return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); |
||
| 1526 | } |
||
| 1527 | }; |
||
| 1528 | |||
| 1529 | struct m_SpecificMask { |
||
| 1530 | ArrayRef<int> &MaskRef; |
||
| 1531 | m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} |
||
| 1532 | bool match(ArrayRef<int> Mask) { return MaskRef == Mask; } |
||
| 1533 | }; |
||
| 1534 | |||
| 1535 | struct m_SplatOrUndefMask { |
||
| 1536 | int &SplatIndex; |
||
| 1537 | m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {} |
||
| 1538 | bool match(ArrayRef<int> Mask) { |
||
| 1539 | auto First = find_if(Mask, [](int Elem) { return Elem != -1; }); |
||
| 1540 | if (First == Mask.end()) |
||
| 1541 | return false; |
||
| 1542 | SplatIndex = *First; |
||
| 1543 | return all_of(Mask, |
||
| 1544 | [First](int Elem) { return Elem == *First || Elem == -1; }); |
||
| 1545 | } |
||
| 1546 | }; |
||
| 1547 | |||
| 1548 | /// Matches ShuffleVectorInst independently of mask value. |
||
| 1549 | template <typename V1_t, typename V2_t> |
||
| 1550 | inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> |
||
| 1551 | m_Shuffle(const V1_t &v1, const V2_t &v2) { |
||
| 1552 | return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); |
||
| 1553 | } |
||
| 1554 | |||
| 1555 | template <typename V1_t, typename V2_t, typename Mask_t> |
||
| 1556 | inline Shuffle_match<V1_t, V2_t, Mask_t> |
||
| 1557 | m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { |
||
| 1558 | return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); |
||
| 1559 | } |
||
| 1560 | |||
| 1561 | /// Matches LoadInst. |
||
| 1562 | template <typename OpTy> |
||
| 1563 | inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { |
||
| 1564 | return OneOps_match<OpTy, Instruction::Load>(Op); |
||
| 1565 | } |
||
| 1566 | |||
| 1567 | /// Matches StoreInst. |
||
| 1568 | template <typename ValueOpTy, typename PointerOpTy> |
||
| 1569 | inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> |
||
| 1570 | m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { |
||
| 1571 | return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, |
||
| 1572 | PointerOp); |
||
| 1573 | } |
||
| 1574 | |||
| 1575 | //===----------------------------------------------------------------------===// |
||
| 1576 | // Matchers for CastInst classes |
||
| 1577 | // |
||
| 1578 | |||
| 1579 | template <typename Op_t, unsigned Opcode> struct CastClass_match { |
||
| 1580 | Op_t Op; |
||
| 1581 | |||
| 1582 | CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} |
||
| 1583 | |||
| 1584 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1585 | if (auto *O = dyn_cast<Operator>(V)) |
||
| 1586 | return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); |
||
| 1587 | return false; |
||
| 1588 | } |
||
| 1589 | }; |
||
| 1590 | |||
| 1591 | /// Matches BitCast. |
||
| 1592 | template <typename OpTy> |
||
| 1593 | inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { |
||
| 1594 | return CastClass_match<OpTy, Instruction::BitCast>(Op); |
||
| 1595 | } |
||
| 1596 | |||
| 1597 | /// Matches PtrToInt. |
||
| 1598 | template <typename OpTy> |
||
| 1599 | inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { |
||
| 1600 | return CastClass_match<OpTy, Instruction::PtrToInt>(Op); |
||
| 1601 | } |
||
| 1602 | |||
| 1603 | /// Matches IntToPtr. |
||
| 1604 | template <typename OpTy> |
||
| 1605 | inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) { |
||
| 1606 | return CastClass_match<OpTy, Instruction::IntToPtr>(Op); |
||
| 1607 | } |
||
| 1608 | |||
| 1609 | /// Matches Trunc. |
||
| 1610 | template <typename OpTy> |
||
| 1611 | inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { |
||
| 1612 | return CastClass_match<OpTy, Instruction::Trunc>(Op); |
||
| 1613 | } |
||
| 1614 | |||
| 1615 | template <typename OpTy> |
||
| 1616 | inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy> |
||
| 1617 | m_TruncOrSelf(const OpTy &Op) { |
||
| 1618 | return m_CombineOr(m_Trunc(Op), Op); |
||
| 1619 | } |
||
| 1620 | |||
| 1621 | /// Matches SExt. |
||
| 1622 | template <typename OpTy> |
||
| 1623 | inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { |
||
| 1624 | return CastClass_match<OpTy, Instruction::SExt>(Op); |
||
| 1625 | } |
||
| 1626 | |||
| 1627 | /// Matches ZExt. |
||
| 1628 | template <typename OpTy> |
||
| 1629 | inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { |
||
| 1630 | return CastClass_match<OpTy, Instruction::ZExt>(Op); |
||
| 1631 | } |
||
| 1632 | |||
| 1633 | template <typename OpTy> |
||
| 1634 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy> |
||
| 1635 | m_ZExtOrSelf(const OpTy &Op) { |
||
| 1636 | return m_CombineOr(m_ZExt(Op), Op); |
||
| 1637 | } |
||
| 1638 | |||
| 1639 | template <typename OpTy> |
||
| 1640 | inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy> |
||
| 1641 | m_SExtOrSelf(const OpTy &Op) { |
||
| 1642 | return m_CombineOr(m_SExt(Op), Op); |
||
| 1643 | } |
||
| 1644 | |||
| 1645 | template <typename OpTy> |
||
| 1646 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
||
| 1647 | CastClass_match<OpTy, Instruction::SExt>> |
||
| 1648 | m_ZExtOrSExt(const OpTy &Op) { |
||
| 1649 | return m_CombineOr(m_ZExt(Op), m_SExt(Op)); |
||
| 1650 | } |
||
| 1651 | |||
| 1652 | template <typename OpTy> |
||
| 1653 | inline match_combine_or< |
||
| 1654 | match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
||
| 1655 | CastClass_match<OpTy, Instruction::SExt>>, |
||
| 1656 | OpTy> |
||
| 1657 | m_ZExtOrSExtOrSelf(const OpTy &Op) { |
||
| 1658 | return m_CombineOr(m_ZExtOrSExt(Op), Op); |
||
| 1659 | } |
||
| 1660 | |||
| 1661 | template <typename OpTy> |
||
| 1662 | inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { |
||
| 1663 | return CastClass_match<OpTy, Instruction::UIToFP>(Op); |
||
| 1664 | } |
||
| 1665 | |||
| 1666 | template <typename OpTy> |
||
| 1667 | inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { |
||
| 1668 | return CastClass_match<OpTy, Instruction::SIToFP>(Op); |
||
| 1669 | } |
||
| 1670 | |||
| 1671 | template <typename OpTy> |
||
| 1672 | inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) { |
||
| 1673 | return CastClass_match<OpTy, Instruction::FPToUI>(Op); |
||
| 1674 | } |
||
| 1675 | |||
| 1676 | template <typename OpTy> |
||
| 1677 | inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) { |
||
| 1678 | return CastClass_match<OpTy, Instruction::FPToSI>(Op); |
||
| 1679 | } |
||
| 1680 | |||
| 1681 | template <typename OpTy> |
||
| 1682 | inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { |
||
| 1683 | return CastClass_match<OpTy, Instruction::FPTrunc>(Op); |
||
| 1684 | } |
||
| 1685 | |||
| 1686 | template <typename OpTy> |
||
| 1687 | inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { |
||
| 1688 | return CastClass_match<OpTy, Instruction::FPExt>(Op); |
||
| 1689 | } |
||
| 1690 | |||
| 1691 | //===----------------------------------------------------------------------===// |
||
| 1692 | // Matchers for control flow. |
||
| 1693 | // |
||
| 1694 | |||
| 1695 | struct br_match { |
||
| 1696 | BasicBlock *&Succ; |
||
| 1697 | |||
| 1698 | br_match(BasicBlock *&Succ) : Succ(Succ) {} |
||
| 1699 | |||
| 1700 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1701 | if (auto *BI = dyn_cast<BranchInst>(V)) |
||
| 1702 | if (BI->isUnconditional()) { |
||
| 1703 | Succ = BI->getSuccessor(0); |
||
| 1704 | return true; |
||
| 1705 | } |
||
| 1706 | return false; |
||
| 1707 | } |
||
| 1708 | }; |
||
| 1709 | |||
| 1710 | inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } |
||
| 1711 | |||
| 1712 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
||
| 1713 | struct brc_match { |
||
| 1714 | Cond_t Cond; |
||
| 1715 | TrueBlock_t T; |
||
| 1716 | FalseBlock_t F; |
||
| 1717 | |||
| 1718 | brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) |
||
| 1719 | : Cond(C), T(t), F(f) {} |
||
| 1720 | |||
| 1721 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1722 | if (auto *BI = dyn_cast<BranchInst>(V)) |
||
| 1723 | if (BI->isConditional() && Cond.match(BI->getCondition())) |
||
| 1724 | return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); |
||
| 1725 | return false; |
||
| 1726 | } |
||
| 1727 | }; |
||
| 1728 | |||
| 1729 | template <typename Cond_t> |
||
| 1730 | inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> |
||
| 1731 | m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { |
||
| 1732 | return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( |
||
| 1733 | C, m_BasicBlock(T), m_BasicBlock(F)); |
||
| 1734 | } |
||
| 1735 | |||
| 1736 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
||
| 1737 | inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> |
||
| 1738 | m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { |
||
| 1739 | return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); |
||
| 1740 | } |
||
| 1741 | |||
| 1742 | //===----------------------------------------------------------------------===// |
||
| 1743 | // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). |
||
| 1744 | // |
||
| 1745 | |||
| 1746 | template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, |
||
| 1747 | bool Commutable = false> |
||
| 1748 | struct MaxMin_match { |
||
| 1749 | using PredType = Pred_t; |
||
| 1750 | LHS_t L; |
||
| 1751 | RHS_t R; |
||
| 1752 | |||
| 1753 | // The evaluation order is always stable, regardless of Commutability. |
||
| 1754 | // The LHS is always matched first. |
||
| 1755 | MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
||
| 1756 | |||
| 1757 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1758 | if (auto *II = dyn_cast<IntrinsicInst>(V)) { |
||
| 1759 | Intrinsic::ID IID = II->getIntrinsicID(); |
||
| 1760 | if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || |
||
| 1761 | (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || |
||
| 1762 | (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || |
||
| 1763 | (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { |
||
| 1764 | Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); |
||
| 1765 | return (L.match(LHS) && R.match(RHS)) || |
||
| 1766 | (Commutable && L.match(RHS) && R.match(LHS)); |
||
| 1767 | } |
||
| 1768 | } |
||
| 1769 | // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". |
||
| 1770 | auto *SI = dyn_cast<SelectInst>(V); |
||
| 1771 | if (!SI) |
||
| 1772 | return false; |
||
| 1773 | auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); |
||
| 1774 | if (!Cmp) |
||
| 1775 | return false; |
||
| 1776 | // At this point we have a select conditioned on a comparison. Check that |
||
| 1777 | // it is the values returned by the select that are being compared. |
||
| 1778 | auto *TrueVal = SI->getTrueValue(); |
||
| 1779 | auto *FalseVal = SI->getFalseValue(); |
||
| 1780 | auto *LHS = Cmp->getOperand(0); |
||
| 1781 | auto *RHS = Cmp->getOperand(1); |
||
| 1782 | if ((TrueVal != LHS || FalseVal != RHS) && |
||
| 1783 | (TrueVal != RHS || FalseVal != LHS)) |
||
| 1784 | return false; |
||
| 1785 | typename CmpInst_t::Predicate Pred = |
||
| 1786 | LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
||
| 1787 | // Does "(x pred y) ? x : y" represent the desired max/min operation? |
||
| 1788 | if (!Pred_t::match(Pred)) |
||
| 1789 | return false; |
||
| 1790 | // It does! Bind the operands. |
||
| 1791 | return (L.match(LHS) && R.match(RHS)) || |
||
| 1792 | (Commutable && L.match(RHS) && R.match(LHS)); |
||
| 1793 | } |
||
| 1794 | }; |
||
| 1795 | |||
| 1796 | /// Helper class for identifying signed max predicates. |
||
| 1797 | struct smax_pred_ty { |
||
| 1798 | static bool match(ICmpInst::Predicate Pred) { |
||
| 1799 | return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
||
| 1800 | } |
||
| 1801 | }; |
||
| 1802 | |||
| 1803 | /// Helper class for identifying signed min predicates. |
||
| 1804 | struct smin_pred_ty { |
||
| 1805 | static bool match(ICmpInst::Predicate Pred) { |
||
| 1806 | return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; |
||
| 1807 | } |
||
| 1808 | }; |
||
| 1809 | |||
| 1810 | /// Helper class for identifying unsigned max predicates. |
||
| 1811 | struct umax_pred_ty { |
||
| 1812 | static bool match(ICmpInst::Predicate Pred) { |
||
| 1813 | return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; |
||
| 1814 | } |
||
| 1815 | }; |
||
| 1816 | |||
| 1817 | /// Helper class for identifying unsigned min predicates. |
||
| 1818 | struct umin_pred_ty { |
||
| 1819 | static bool match(ICmpInst::Predicate Pred) { |
||
| 1820 | return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; |
||
| 1821 | } |
||
| 1822 | }; |
||
| 1823 | |||
| 1824 | /// Helper class for identifying ordered max predicates. |
||
| 1825 | struct ofmax_pred_ty { |
||
| 1826 | static bool match(FCmpInst::Predicate Pred) { |
||
| 1827 | return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; |
||
| 1828 | } |
||
| 1829 | }; |
||
| 1830 | |||
| 1831 | /// Helper class for identifying ordered min predicates. |
||
| 1832 | struct ofmin_pred_ty { |
||
| 1833 | static bool match(FCmpInst::Predicate Pred) { |
||
| 1834 | return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; |
||
| 1835 | } |
||
| 1836 | }; |
||
| 1837 | |||
| 1838 | /// Helper class for identifying unordered max predicates. |
||
| 1839 | struct ufmax_pred_ty { |
||
| 1840 | static bool match(FCmpInst::Predicate Pred) { |
||
| 1841 | return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; |
||
| 1842 | } |
||
| 1843 | }; |
||
| 1844 | |||
| 1845 | /// Helper class for identifying unordered min predicates. |
||
| 1846 | struct ufmin_pred_ty { |
||
| 1847 | static bool match(FCmpInst::Predicate Pred) { |
||
| 1848 | return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; |
||
| 1849 | } |
||
| 1850 | }; |
||
| 1851 | |||
| 1852 | template <typename LHS, typename RHS> |
||
| 1853 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, |
||
| 1854 | const RHS &R) { |
||
| 1855 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); |
||
| 1856 | } |
||
| 1857 | |||
| 1858 | template <typename LHS, typename RHS> |
||
| 1859 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, |
||
| 1860 | const RHS &R) { |
||
| 1861 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); |
||
| 1862 | } |
||
| 1863 | |||
| 1864 | template <typename LHS, typename RHS> |
||
| 1865 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, |
||
| 1866 | const RHS &R) { |
||
| 1867 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); |
||
| 1868 | } |
||
| 1869 | |||
| 1870 | template <typename LHS, typename RHS> |
||
| 1871 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, |
||
| 1872 | const RHS &R) { |
||
| 1873 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); |
||
| 1874 | } |
||
| 1875 | |||
| 1876 | template <typename LHS, typename RHS> |
||
| 1877 | inline match_combine_or< |
||
| 1878 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, |
||
| 1879 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, |
||
| 1880 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, |
||
| 1881 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> |
||
| 1882 | m_MaxOrMin(const LHS &L, const RHS &R) { |
||
| 1883 | return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), |
||
| 1884 | m_CombineOr(m_UMax(L, R), m_UMin(L, R))); |
||
| 1885 | } |
||
| 1886 | |||
| 1887 | /// Match an 'ordered' floating point maximum function. |
||
| 1888 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
||
| 1889 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
||
| 1890 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
||
| 1891 | /// semantics. In the presence of 'NaN' we have to preserve the original |
||
| 1892 | /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. |
||
| 1893 | /// |
||
| 1894 | /// max(L, R) iff L and R are not NaN |
||
| 1895 | /// m_OrdFMax(L, R) = R iff L or R are NaN |
||
| 1896 | template <typename LHS, typename RHS> |
||
| 1897 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, |
||
| 1898 | const RHS &R) { |
||
| 1899 | return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); |
||
| 1900 | } |
||
| 1901 | |||
| 1902 | /// Match an 'ordered' floating point minimum function. |
||
| 1903 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
||
| 1904 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
||
| 1905 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
||
| 1906 | /// semantics. In the presence of 'NaN' we have to preserve the original |
||
| 1907 | /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. |
||
| 1908 | /// |
||
| 1909 | /// min(L, R) iff L and R are not NaN |
||
| 1910 | /// m_OrdFMin(L, R) = R iff L or R are NaN |
||
| 1911 | template <typename LHS, typename RHS> |
||
| 1912 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, |
||
| 1913 | const RHS &R) { |
||
| 1914 | return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); |
||
| 1915 | } |
||
| 1916 | |||
| 1917 | /// Match an 'unordered' floating point maximum function. |
||
| 1918 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
||
| 1919 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
||
| 1920 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
||
| 1921 | /// semantics. In the presence of 'NaN' we have to preserve the original |
||
| 1922 | /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. |
||
| 1923 | /// |
||
| 1924 | /// max(L, R) iff L and R are not NaN |
||
| 1925 | /// m_UnordFMax(L, R) = L iff L or R are NaN |
||
| 1926 | template <typename LHS, typename RHS> |
||
| 1927 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> |
||
| 1928 | m_UnordFMax(const LHS &L, const RHS &R) { |
||
| 1929 | return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); |
||
| 1930 | } |
||
| 1931 | |||
| 1932 | /// Match an 'unordered' floating point minimum function. |
||
| 1933 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
||
| 1934 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
||
| 1935 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
||
| 1936 | /// semantics. In the presence of 'NaN' we have to preserve the original |
||
| 1937 | /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. |
||
| 1938 | /// |
||
| 1939 | /// min(L, R) iff L and R are not NaN |
||
| 1940 | /// m_UnordFMin(L, R) = L iff L or R are NaN |
||
| 1941 | template <typename LHS, typename RHS> |
||
| 1942 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> |
||
| 1943 | m_UnordFMin(const LHS &L, const RHS &R) { |
||
| 1944 | return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); |
||
| 1945 | } |
||
| 1946 | |||
| 1947 | //===----------------------------------------------------------------------===// |
||
| 1948 | // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b |
||
| 1949 | // Note that S might be matched to other instructions than AddInst. |
||
| 1950 | // |
||
| 1951 | |||
| 1952 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
||
| 1953 | struct UAddWithOverflow_match { |
||
| 1954 | LHS_t L; |
||
| 1955 | RHS_t R; |
||
| 1956 | Sum_t S; |
||
| 1957 | |||
| 1958 | UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) |
||
| 1959 | : L(L), R(R), S(S) {} |
||
| 1960 | |||
| 1961 | template <typename OpTy> bool match(OpTy *V) { |
||
| 1962 | Value *ICmpLHS, *ICmpRHS; |
||
| 1963 | ICmpInst::Predicate Pred; |
||
| 1964 | if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) |
||
| 1965 | return false; |
||
| 1966 | |||
| 1967 | Value *AddLHS, *AddRHS; |
||
| 1968 | auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); |
||
| 1969 | |||
| 1970 | // (a + b) u< a, (a + b) u< b |
||
| 1971 | if (Pred == ICmpInst::ICMP_ULT) |
||
| 1972 | if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) |
||
| 1973 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
||
| 1974 | |||
| 1975 | // a >u (a + b), b >u (a + b) |
||
| 1976 | if (Pred == ICmpInst::ICMP_UGT) |
||
| 1977 | if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) |
||
| 1978 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
||
| 1979 | |||
| 1980 | Value *Op1; |
||
| 1981 | auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes())); |
||
| 1982 | // (a ^ -1) <u b |
||
| 1983 | if (Pred == ICmpInst::ICMP_ULT) { |
||
| 1984 | if (XorExpr.match(ICmpLHS)) |
||
| 1985 | return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); |
||
| 1986 | } |
||
| 1987 | // b > u (a ^ -1) |
||
| 1988 | if (Pred == ICmpInst::ICMP_UGT) { |
||
| 1989 | if (XorExpr.match(ICmpRHS)) |
||
| 1990 | return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); |
||
| 1991 | } |
||
| 1992 | |||
| 1993 | // Match special-case for increment-by-1. |
||
| 1994 | if (Pred == ICmpInst::ICMP_EQ) { |
||
| 1995 | // (a + 1) == 0 |
||
| 1996 | // (1 + a) == 0 |
||
| 1997 | if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && |
||
| 1998 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
||
| 1999 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
||
| 2000 | // 0 == (a + 1) |
||
| 2001 | // 0 == (1 + a) |
||
| 2002 | if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && |
||
| 2003 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
||
| 2004 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
||
| 2005 | } |
||
| 2006 | |||
| 2007 | return false; |
||
| 2008 | } |
||
| 2009 | }; |
||
| 2010 | |||
| 2011 | /// Match an icmp instruction checking for unsigned overflow on addition. |
||
| 2012 | /// |
||
| 2013 | /// S is matched to the addition whose result is being checked for overflow, and |
||
| 2014 | /// L and R are matched to the LHS and RHS of S. |
||
| 2015 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
||
| 2016 | UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> |
||
| 2017 | m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { |
||
| 2018 | return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); |
||
| 2019 | } |
||
| 2020 | |||
| 2021 | template <typename Opnd_t> struct Argument_match { |
||
| 2022 | unsigned OpI; |
||
| 2023 | Opnd_t Val; |
||
| 2024 | |||
| 2025 | Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} |
||
| 2026 | |||
| 2027 | template <typename OpTy> bool match(OpTy *V) { |
||
| 2028 | // FIXME: Should likely be switched to use `CallBase`. |
||
| 2029 | if (const auto *CI = dyn_cast<CallInst>(V)) |
||
| 2030 | return Val.match(CI->getArgOperand(OpI)); |
||
| 2031 | return false; |
||
| 2032 | } |
||
| 2033 | }; |
||
| 2034 | |||
| 2035 | /// Match an argument. |
||
| 2036 | template <unsigned OpI, typename Opnd_t> |
||
| 2037 | inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { |
||
| 2038 | return Argument_match<Opnd_t>(OpI, Op); |
||
| 2039 | } |
||
| 2040 | |||
| 2041 | /// Intrinsic matchers. |
||
| 2042 | struct IntrinsicID_match { |
||
| 2043 | unsigned ID; |
||
| 2044 | |||
| 2045 | IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} |
||
| 2046 | |||
| 2047 | template <typename OpTy> bool match(OpTy *V) { |
||
| 2048 | if (const auto *CI = dyn_cast<CallInst>(V)) |
||
| 2049 | if (const auto *F = CI->getCalledFunction()) |
||
| 2050 | return F->getIntrinsicID() == ID; |
||
| 2051 | return false; |
||
| 2052 | } |
||
| 2053 | }; |
||
| 2054 | |||
| 2055 | /// Intrinsic matches are combinations of ID matchers, and argument |
||
| 2056 | /// matchers. Higher arity matcher are defined recursively in terms of and-ing |
||
| 2057 | /// them with lower arity matchers. Here's some convenient typedefs for up to |
||
| 2058 | /// several arguments, and more can be added as needed |
||
| 2059 | template <typename T0 = void, typename T1 = void, typename T2 = void, |
||
| 2060 | typename T3 = void, typename T4 = void, typename T5 = void, |
||
| 2061 | typename T6 = void, typename T7 = void, typename T8 = void, |
||
| 2062 | typename T9 = void, typename T10 = void> |
||
| 2063 | struct m_Intrinsic_Ty; |
||
| 2064 | template <typename T0> struct m_Intrinsic_Ty<T0> { |
||
| 2065 | using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; |
||
| 2066 | }; |
||
| 2067 | template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { |
||
| 2068 | using Ty = |
||
| 2069 | match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; |
||
| 2070 | }; |
||
| 2071 | template <typename T0, typename T1, typename T2> |
||
| 2072 | struct m_Intrinsic_Ty<T0, T1, T2> { |
||
| 2073 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, |
||
| 2074 | Argument_match<T2>>; |
||
| 2075 | }; |
||
| 2076 | template <typename T0, typename T1, typename T2, typename T3> |
||
| 2077 | struct m_Intrinsic_Ty<T0, T1, T2, T3> { |
||
| 2078 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, |
||
| 2079 | Argument_match<T3>>; |
||
| 2080 | }; |
||
| 2081 | |||
| 2082 | template <typename T0, typename T1, typename T2, typename T3, typename T4> |
||
| 2083 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { |
||
| 2084 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, |
||
| 2085 | Argument_match<T4>>; |
||
| 2086 | }; |
||
| 2087 | |||
| 2088 | template <typename T0, typename T1, typename T2, typename T3, typename T4, |
||
| 2089 | typename T5> |
||
| 2090 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { |
||
| 2091 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, |
||
| 2092 | Argument_match<T5>>; |
||
| 2093 | }; |
||
| 2094 | |||
| 2095 | /// Match intrinsic calls like this: |
||
| 2096 | /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) |
||
| 2097 | template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { |
||
| 2098 | return IntrinsicID_match(IntrID); |
||
| 2099 | } |
||
| 2100 | |||
| 2101 | /// Matches MaskedLoad Intrinsic. |
||
| 2102 | template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> |
||
| 2103 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty |
||
| 2104 | m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, |
||
| 2105 | const Opnd3 &Op3) { |
||
| 2106 | return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); |
||
| 2107 | } |
||
| 2108 | |||
| 2109 | /// Matches MaskedGather Intrinsic. |
||
| 2110 | template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> |
||
| 2111 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty |
||
| 2112 | m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, |
||
| 2113 | const Opnd3 &Op3) { |
||
| 2114 | return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3); |
||
| 2115 | } |
||
| 2116 | |||
| 2117 | template <Intrinsic::ID IntrID, typename T0> |
||
| 2118 | inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { |
||
| 2119 | return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); |
||
| 2120 | } |
||
| 2121 | |||
| 2122 | template <Intrinsic::ID IntrID, typename T0, typename T1> |
||
| 2123 | inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, |
||
| 2124 | const T1 &Op1) { |
||
| 2125 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); |
||
| 2126 | } |
||
| 2127 | |||
| 2128 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> |
||
| 2129 | inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty |
||
| 2130 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { |
||
| 2131 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); |
||
| 2132 | } |
||
| 2133 | |||
| 2134 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
||
| 2135 | typename T3> |
||
| 2136 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty |
||
| 2137 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { |
||
| 2138 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); |
||
| 2139 | } |
||
| 2140 | |||
| 2141 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
||
| 2142 | typename T3, typename T4> |
||
| 2143 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty |
||
| 2144 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
||
| 2145 | const T4 &Op4) { |
||
| 2146 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), |
||
| 2147 | m_Argument<4>(Op4)); |
||
| 2148 | } |
||
| 2149 | |||
| 2150 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
||
| 2151 | typename T3, typename T4, typename T5> |
||
| 2152 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty |
||
| 2153 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
||
| 2154 | const T4 &Op4, const T5 &Op5) { |
||
| 2155 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), |
||
| 2156 | m_Argument<5>(Op5)); |
||
| 2157 | } |
||
| 2158 | |||
| 2159 | // Helper intrinsic matching specializations. |
||
| 2160 | template <typename Opnd0> |
||
| 2161 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { |
||
| 2162 | return m_Intrinsic<Intrinsic::bitreverse>(Op0); |
||
| 2163 | } |
||
| 2164 | |||
| 2165 | template <typename Opnd0> |
||
| 2166 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { |
||
| 2167 | return m_Intrinsic<Intrinsic::bswap>(Op0); |
||
| 2168 | } |
||
| 2169 | |||
| 2170 | template <typename Opnd0> |
||
| 2171 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { |
||
| 2172 | return m_Intrinsic<Intrinsic::fabs>(Op0); |
||
| 2173 | } |
||
| 2174 | |||
| 2175 | template <typename Opnd0> |
||
| 2176 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { |
||
| 2177 | return m_Intrinsic<Intrinsic::canonicalize>(Op0); |
||
| 2178 | } |
||
| 2179 | |||
| 2180 | template <typename Opnd0, typename Opnd1> |
||
| 2181 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, |
||
| 2182 | const Opnd1 &Op1) { |
||
| 2183 | return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); |
||
| 2184 | } |
||
| 2185 | |||
| 2186 | template <typename Opnd0, typename Opnd1> |
||
| 2187 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, |
||
| 2188 | const Opnd1 &Op1) { |
||
| 2189 | return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); |
||
| 2190 | } |
||
| 2191 | |||
| 2192 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
||
| 2193 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
||
| 2194 | m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
||
| 2195 | return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); |
||
| 2196 | } |
||
| 2197 | |||
| 2198 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
||
| 2199 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
||
| 2200 | m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
||
| 2201 | return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); |
||
| 2202 | } |
||
| 2203 | |||
| 2204 | template <typename Opnd0> |
||
| 2205 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) { |
||
| 2206 | return m_Intrinsic<Intrinsic::sqrt>(Op0); |
||
| 2207 | } |
||
| 2208 | |||
| 2209 | template <typename Opnd0, typename Opnd1> |
||
| 2210 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0, |
||
| 2211 | const Opnd1 &Op1) { |
||
| 2212 | return m_Intrinsic<Intrinsic::copysign>(Op0, Op1); |
||
| 2213 | } |
||
| 2214 | |||
| 2215 | template <typename Opnd0> |
||
| 2216 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) { |
||
| 2217 | return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0); |
||
| 2218 | } |
||
| 2219 | |||
| 2220 | //===----------------------------------------------------------------------===// |
||
| 2221 | // Matchers for two-operands operators with the operators in either order |
||
| 2222 | // |
||
| 2223 | |||
| 2224 | /// Matches a BinaryOperator with LHS and RHS in either order. |
||
| 2225 | template <typename LHS, typename RHS> |
||
| 2226 | inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { |
||
| 2227 | return AnyBinaryOp_match<LHS, RHS, true>(L, R); |
||
| 2228 | } |
||
| 2229 | |||
| 2230 | /// Matches an ICmp with a predicate over LHS and RHS in either order. |
||
| 2231 | /// Swaps the predicate if operands are commuted. |
||
| 2232 | template <typename LHS, typename RHS> |
||
| 2233 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> |
||
| 2234 | m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
||
| 2235 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, |
||
| 2236 | R); |
||
| 2237 | } |
||
| 2238 | |||
| 2239 | /// Matches a specific opcode with LHS and RHS in either order. |
||
| 2240 | template <typename LHS, typename RHS> |
||
| 2241 | inline SpecificBinaryOp_match<LHS, RHS, true> |
||
| 2242 | m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { |
||
| 2243 | return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R); |
||
| 2244 | } |
||
| 2245 | |||
| 2246 | /// Matches a Add with LHS and RHS in either order. |
||
| 2247 | template <typename LHS, typename RHS> |
||
| 2248 | inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, |
||
| 2249 | const RHS &R) { |
||
| 2250 | return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); |
||
| 2251 | } |
||
| 2252 | |||
| 2253 | /// Matches a Mul with LHS and RHS in either order. |
||
| 2254 | template <typename LHS, typename RHS> |
||
| 2255 | inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, |
||
| 2256 | const RHS &R) { |
||
| 2257 | return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); |
||
| 2258 | } |
||
| 2259 | |||
| 2260 | /// Matches an And with LHS and RHS in either order. |
||
| 2261 | template <typename LHS, typename RHS> |
||
| 2262 | inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, |
||
| 2263 | const RHS &R) { |
||
| 2264 | return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); |
||
| 2265 | } |
||
| 2266 | |||
| 2267 | /// Matches an Or with LHS and RHS in either order. |
||
| 2268 | template <typename LHS, typename RHS> |
||
| 2269 | inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, |
||
| 2270 | const RHS &R) { |
||
| 2271 | return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
||
| 2272 | } |
||
| 2273 | |||
| 2274 | /// Matches an Xor with LHS and RHS in either order. |
||
| 2275 | template <typename LHS, typename RHS> |
||
| 2276 | inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, |
||
| 2277 | const RHS &R) { |
||
| 2278 | return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); |
||
| 2279 | } |
||
| 2280 | |||
| 2281 | /// Matches a 'Neg' as 'sub 0, V'. |
||
| 2282 | template <typename ValTy> |
||
| 2283 | inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> |
||
| 2284 | m_Neg(const ValTy &V) { |
||
| 2285 | return m_Sub(m_ZeroInt(), V); |
||
| 2286 | } |
||
| 2287 | |||
| 2288 | /// Matches a 'Neg' as 'sub nsw 0, V'. |
||
| 2289 | template <typename ValTy> |
||
| 2290 | inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, |
||
| 2291 | Instruction::Sub, |
||
| 2292 | OverflowingBinaryOperator::NoSignedWrap> |
||
| 2293 | m_NSWNeg(const ValTy &V) { |
||
| 2294 | return m_NSWSub(m_ZeroInt(), V); |
||
| 2295 | } |
||
| 2296 | |||
| 2297 | /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. |
||
| 2298 | /// NOTE: we first match the 'Not' (by matching '-1'), |
||
| 2299 | /// and only then match the inner matcher! |
||
| 2300 | template <typename ValTy> |
||
| 2301 | inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true> |
||
| 2302 | m_Not(const ValTy &V) { |
||
| 2303 | return m_c_Xor(m_AllOnes(), V); |
||
| 2304 | } |
||
| 2305 | |||
| 2306 | template <typename ValTy> struct NotForbidUndef_match { |
||
| 2307 | ValTy Val; |
||
| 2308 | NotForbidUndef_match(const ValTy &V) : Val(V) {} |
||
| 2309 | |||
| 2310 | template <typename OpTy> bool match(OpTy *V) { |
||
| 2311 | // We do not use m_c_Xor because that could match an arbitrary APInt that is |
||
| 2312 | // not -1 as C and then fail to match the other operand if it is -1. |
||
| 2313 | // This code should still work even when both operands are constants. |
||
| 2314 | Value *X; |
||
| 2315 | const APInt *C; |
||
| 2316 | if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes()) |
||
| 2317 | return Val.match(X); |
||
| 2318 | if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes()) |
||
| 2319 | return Val.match(X); |
||
| 2320 | return false; |
||
| 2321 | } |
||
| 2322 | }; |
||
| 2323 | |||
| 2324 | /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the |
||
| 2325 | /// constant value must be composed of only -1 scalar elements. |
||
| 2326 | template <typename ValTy> |
||
| 2327 | inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) { |
||
| 2328 | return NotForbidUndef_match<ValTy>(V); |
||
| 2329 | } |
||
| 2330 | |||
| 2331 | /// Matches an SMin with LHS and RHS in either order. |
||
| 2332 | template <typename LHS, typename RHS> |
||
| 2333 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> |
||
| 2334 | m_c_SMin(const LHS &L, const RHS &R) { |
||
| 2335 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); |
||
| 2336 | } |
||
| 2337 | /// Matches an SMax with LHS and RHS in either order. |
||
| 2338 | template <typename LHS, typename RHS> |
||
| 2339 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> |
||
| 2340 | m_c_SMax(const LHS &L, const RHS &R) { |
||
| 2341 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); |
||
| 2342 | } |
||
| 2343 | /// Matches a UMin with LHS and RHS in either order. |
||
| 2344 | template <typename LHS, typename RHS> |
||
| 2345 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> |
||
| 2346 | m_c_UMin(const LHS &L, const RHS &R) { |
||
| 2347 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); |
||
| 2348 | } |
||
| 2349 | /// Matches a UMax with LHS and RHS in either order. |
||
| 2350 | template <typename LHS, typename RHS> |
||
| 2351 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> |
||
| 2352 | m_c_UMax(const LHS &L, const RHS &R) { |
||
| 2353 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); |
||
| 2354 | } |
||
| 2355 | |||
| 2356 | template <typename LHS, typename RHS> |
||
| 2357 | inline match_combine_or< |
||
| 2358 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, |
||
| 2359 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, |
||
| 2360 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, |
||
| 2361 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> |
||
| 2362 | m_c_MaxOrMin(const LHS &L, const RHS &R) { |
||
| 2363 | return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), |
||
| 2364 | m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); |
||
| 2365 | } |
||
| 2366 | |||
| 2367 | /// Matches FAdd with LHS and RHS in either order. |
||
| 2368 | template <typename LHS, typename RHS> |
||
| 2369 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> |
||
| 2370 | m_c_FAdd(const LHS &L, const RHS &R) { |
||
| 2371 | return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); |
||
| 2372 | } |
||
| 2373 | |||
| 2374 | /// Matches FMul with LHS and RHS in either order. |
||
| 2375 | template <typename LHS, typename RHS> |
||
| 2376 | inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> |
||
| 2377 | m_c_FMul(const LHS &L, const RHS &R) { |
||
| 2378 | return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); |
||
| 2379 | } |
||
| 2380 | |||
| 2381 | template <typename Opnd_t> struct Signum_match { |
||
| 2382 | Opnd_t Val; |
||
| 2383 | Signum_match(const Opnd_t &V) : Val(V) {} |
||
| 2384 | |||
| 2385 | template <typename OpTy> bool match(OpTy *V) { |
||
| 2386 | unsigned TypeSize = V->getType()->getScalarSizeInBits(); |
||
| 2387 | if (TypeSize == 0) |
||
| 2388 | return false; |
||
| 2389 | |||
| 2390 | unsigned ShiftWidth = TypeSize - 1; |
||
| 2391 | Value *OpL = nullptr, *OpR = nullptr; |
||
| 2392 | |||
| 2393 | // This is the representation of signum we match: |
||
| 2394 | // |
||
| 2395 | // signum(x) == (x >> 63) | (-x >>u 63) |
||
| 2396 | // |
||
| 2397 | // An i1 value is its own signum, so it's correct to match |
||
| 2398 | // |
||
| 2399 | // signum(x) == (x >> 0) | (-x >>u 0) |
||
| 2400 | // |
||
| 2401 | // for i1 values. |
||
| 2402 | |||
| 2403 | auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); |
||
| 2404 | auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); |
||
| 2405 | auto Signum = m_Or(LHS, RHS); |
||
| 2406 | |||
| 2407 | return Signum.match(V) && OpL == OpR && Val.match(OpL); |
||
| 2408 | } |
||
| 2409 | }; |
||
| 2410 | |||
| 2411 | /// Matches a signum pattern. |
||
| 2412 | /// |
||
| 2413 | /// signum(x) = |
||
| 2414 | /// x > 0 -> 1 |
||
| 2415 | /// x == 0 -> 0 |
||
| 2416 | /// x < 0 -> -1 |
||
| 2417 | template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { |
||
| 2418 | return Signum_match<Val_t>(V); |
||
| 2419 | } |
||
| 2420 | |||
| 2421 | template <int Ind, typename Opnd_t> struct ExtractValue_match { |
||
| 2422 | Opnd_t Val; |
||
| 2423 | ExtractValue_match(const Opnd_t &V) : Val(V) {} |
||
| 2424 | |||
| 2425 | template <typename OpTy> bool match(OpTy *V) { |
||
| 2426 | if (auto *I = dyn_cast<ExtractValueInst>(V)) { |
||
| 2427 | // If Ind is -1, don't inspect indices |
||
| 2428 | if (Ind != -1 && |
||
| 2429 | !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) |
||
| 2430 | return false; |
||
| 2431 | return Val.match(I->getAggregateOperand()); |
||
| 2432 | } |
||
| 2433 | return false; |
||
| 2434 | } |
||
| 2435 | }; |
||
| 2436 | |||
| 2437 | /// Match a single index ExtractValue instruction. |
||
| 2438 | /// For example m_ExtractValue<1>(...) |
||
| 2439 | template <int Ind, typename Val_t> |
||
| 2440 | inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) { |
||
| 2441 | return ExtractValue_match<Ind, Val_t>(V); |
||
| 2442 | } |
||
| 2443 | |||
| 2444 | /// Match an ExtractValue instruction with any index. |
||
| 2445 | /// For example m_ExtractValue(...) |
||
| 2446 | template <typename Val_t> |
||
| 2447 | inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { |
||
| 2448 | return ExtractValue_match<-1, Val_t>(V); |
||
| 2449 | } |
||
| 2450 | |||
| 2451 | /// Matcher for a single index InsertValue instruction. |
||
| 2452 | template <int Ind, typename T0, typename T1> struct InsertValue_match { |
||
| 2453 | T0 Op0; |
||
| 2454 | T1 Op1; |
||
| 2455 | |||
| 2456 | InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} |
||
| 2457 | |||
| 2458 | template <typename OpTy> bool match(OpTy *V) { |
||
| 2459 | if (auto *I = dyn_cast<InsertValueInst>(V)) { |
||
| 2460 | return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && |
||
| 2461 | I->getNumIndices() == 1 && Ind == I->getIndices()[0]; |
||
| 2462 | } |
||
| 2463 | return false; |
||
| 2464 | } |
||
| 2465 | }; |
||
| 2466 | |||
| 2467 | /// Matches a single index InsertValue instruction. |
||
| 2468 | template <int Ind, typename Val_t, typename Elt_t> |
||
| 2469 | inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, |
||
| 2470 | const Elt_t &Elt) { |
||
| 2471 | return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); |
||
| 2472 | } |
||
| 2473 | |||
| 2474 | /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or |
||
| 2475 | /// the constant expression |
||
| 2476 | /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>` |
||
| 2477 | /// under the right conditions determined by DataLayout. |
||
| 2478 | struct VScaleVal_match { |
||
| 2479 | const DataLayout &DL; |
||
| 2480 | VScaleVal_match(const DataLayout &DL) : DL(DL) {} |
||
| 2481 | |||
| 2482 | template <typename ITy> bool match(ITy *V) { |
||
| 2483 | if (m_Intrinsic<Intrinsic::vscale>().match(V)) |
||
| 2484 | return true; |
||
| 2485 | |||
| 2486 | Value *Ptr; |
||
| 2487 | if (m_PtrToInt(m_Value(Ptr)).match(V)) { |
||
| 2488 | if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { |
||
| 2489 | auto *DerefTy = GEP->getSourceElementType(); |
||
| 2490 | if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) && |
||
| 2491 | m_Zero().match(GEP->getPointerOperand()) && |
||
| 2492 | m_SpecificInt(1).match(GEP->idx_begin()->get()) && |
||
| 2493 | DL.getTypeAllocSizeInBits(DerefTy).getKnownMinValue() == 8) |
||
| 2494 | return true; |
||
| 2495 | } |
||
| 2496 | } |
||
| 2497 | |||
| 2498 | return false; |
||
| 2499 | } |
||
| 2500 | }; |
||
| 2501 | |||
| 2502 | inline VScaleVal_match m_VScale(const DataLayout &DL) { |
||
| 2503 | return VScaleVal_match(DL); |
||
| 2504 | } |
||
| 2505 | |||
| 2506 | template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false> |
||
| 2507 | struct LogicalOp_match { |
||
| 2508 | LHS L; |
||
| 2509 | RHS R; |
||
| 2510 | |||
| 2511 | LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} |
||
| 2512 | |||
| 2513 | template <typename T> bool match(T *V) { |
||
| 2514 | auto *I = dyn_cast<Instruction>(V); |
||
| 2515 | if (!I || !I->getType()->isIntOrIntVectorTy(1)) |
||
| 2516 | return false; |
||
| 2517 | |||
| 2518 | if (I->getOpcode() == Opcode) { |
||
| 2519 | auto *Op0 = I->getOperand(0); |
||
| 2520 | auto *Op1 = I->getOperand(1); |
||
| 2521 | return (L.match(Op0) && R.match(Op1)) || |
||
| 2522 | (Commutable && L.match(Op1) && R.match(Op0)); |
||
| 2523 | } |
||
| 2524 | |||
| 2525 | if (auto *Select = dyn_cast<SelectInst>(I)) { |
||
| 2526 | auto *Cond = Select->getCondition(); |
||
| 2527 | auto *TVal = Select->getTrueValue(); |
||
| 2528 | auto *FVal = Select->getFalseValue(); |
||
| 2529 | |||
| 2530 | // Don't match a scalar select of bool vectors. |
||
| 2531 | // Transforms expect a single type for operands if this matches. |
||
| 2532 | if (Cond->getType() != Select->getType()) |
||
| 2533 | return false; |
||
| 2534 | |||
| 2535 | if (Opcode == Instruction::And) { |
||
| 2536 | auto *C = dyn_cast<Constant>(FVal); |
||
| 2537 | if (C && C->isNullValue()) |
||
| 2538 | return (L.match(Cond) && R.match(TVal)) || |
||
| 2539 | (Commutable && L.match(TVal) && R.match(Cond)); |
||
| 2540 | } else { |
||
| 2541 | assert(Opcode == Instruction::Or); |
||
| 2542 | auto *C = dyn_cast<Constant>(TVal); |
||
| 2543 | if (C && C->isOneValue()) |
||
| 2544 | return (L.match(Cond) && R.match(FVal)) || |
||
| 2545 | (Commutable && L.match(FVal) && R.match(Cond)); |
||
| 2546 | } |
||
| 2547 | } |
||
| 2548 | |||
| 2549 | return false; |
||
| 2550 | } |
||
| 2551 | }; |
||
| 2552 | |||
| 2553 | /// Matches L && R either in the form of L & R or L ? R : false. |
||
| 2554 | /// Note that the latter form is poison-blocking. |
||
| 2555 | template <typename LHS, typename RHS> |
||
| 2556 | inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L, |
||
| 2557 | const RHS &R) { |
||
| 2558 | return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); |
||
| 2559 | } |
||
| 2560 | |||
| 2561 | /// Matches L && R where L and R are arbitrary values. |
||
| 2562 | inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); } |
||
| 2563 | |||
| 2564 | /// Matches L && R with LHS and RHS in either order. |
||
| 2565 | template <typename LHS, typename RHS> |
||
| 2566 | inline LogicalOp_match<LHS, RHS, Instruction::And, true> |
||
| 2567 | m_c_LogicalAnd(const LHS &L, const RHS &R) { |
||
| 2568 | return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R); |
||
| 2569 | } |
||
| 2570 | |||
| 2571 | /// Matches L || R either in the form of L | R or L ? true : R. |
||
| 2572 | /// Note that the latter form is poison-blocking. |
||
| 2573 | template <typename LHS, typename RHS> |
||
| 2574 | inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L, |
||
| 2575 | const RHS &R) { |
||
| 2576 | return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); |
||
| 2577 | } |
||
| 2578 | |||
| 2579 | /// Matches L || R where L and R are arbitrary values. |
||
| 2580 | inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); } |
||
| 2581 | |||
| 2582 | /// Matches L || R with LHS and RHS in either order. |
||
| 2583 | template <typename LHS, typename RHS> |
||
| 2584 | inline LogicalOp_match<LHS, RHS, Instruction::Or, true> |
||
| 2585 | m_c_LogicalOr(const LHS &L, const RHS &R) { |
||
| 2586 | return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
||
| 2587 | } |
||
| 2588 | |||
| 2589 | /// Matches either L && R or L || R, |
||
| 2590 | /// either one being in the either binary or logical form. |
||
| 2591 | /// Note that the latter form is poison-blocking. |
||
| 2592 | template <typename LHS, typename RHS, bool Commutable = false> |
||
| 2593 | inline auto m_LogicalOp(const LHS &L, const RHS &R) { |
||
| 2594 | return m_CombineOr( |
||
| 2595 | LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R), |
||
| 2596 | LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R)); |
||
| 2597 | } |
||
| 2598 | |||
| 2599 | /// Matches either L && R or L || R where L and R are arbitrary values. |
||
| 2600 | inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); } |
||
| 2601 | |||
| 2602 | /// Matches either L && R or L || R with LHS and RHS in either order. |
||
| 2603 | template <typename LHS, typename RHS> |
||
| 2604 | inline auto m_c_LogicalOp(const LHS &L, const RHS &R) { |
||
| 2605 | return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R); |
||
| 2606 | } |
||
| 2607 | |||
| 2608 | } // end namespace PatternMatch |
||
| 2609 | } // end namespace llvm |
||
| 2610 | |||
| 2611 | #endif // LLVM_IR_PATTERNMATCH_H |