Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/ModuleSummaryIndex.h - Module Summary Index ---------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// @file
10
/// ModuleSummaryIndex.h This file contains the declarations the classes that
11
///  hold the module index and summary for function importing.
12
//
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_IR_MODULESUMMARYINDEX_H
16
#define LLVM_IR_MODULESUMMARYINDEX_H
17
 
18
#include "llvm/ADT/ArrayRef.h"
19
#include "llvm/ADT/DenseMap.h"
20
#include "llvm/ADT/STLExtras.h"
21
#include "llvm/ADT/SmallString.h"
22
#include "llvm/ADT/SmallVector.h"
23
#include "llvm/ADT/StringExtras.h"
24
#include "llvm/ADT/StringMap.h"
25
#include "llvm/ADT/StringRef.h"
26
#include "llvm/IR/ConstantRange.h"
27
#include "llvm/IR/GlobalValue.h"
28
#include "llvm/IR/Module.h"
29
#include "llvm/Support/Allocator.h"
30
#include "llvm/Support/MathExtras.h"
31
#include "llvm/Support/ScaledNumber.h"
32
#include "llvm/Support/StringSaver.h"
33
#include "llvm/Support/raw_ostream.h"
34
#include <algorithm>
35
#include <array>
36
#include <cassert>
37
#include <cstddef>
38
#include <cstdint>
39
#include <map>
40
#include <memory>
41
#include <optional>
42
#include <set>
43
#include <string>
44
#include <utility>
45
#include <vector>
46
 
47
namespace llvm {
48
 
49
template <class GraphType> struct GraphTraits;
50
 
51
namespace yaml {
52
 
53
template <typename T> struct MappingTraits;
54
 
55
} // end namespace yaml
56
 
57
/// Class to accumulate and hold information about a callee.
58
struct CalleeInfo {
59
  enum class HotnessType : uint8_t {
60
    Unknown = 0,
61
    Cold = 1,
62
    None = 2,
63
    Hot = 3,
64
    Critical = 4
65
  };
66
 
67
  // The size of the bit-field might need to be adjusted if more values are
68
  // added to HotnessType enum.
69
  uint32_t Hotness : 3;
70
 
71
  /// The value stored in RelBlockFreq has to be interpreted as the digits of
72
  /// a scaled number with a scale of \p -ScaleShift.
73
  uint32_t RelBlockFreq : 29;
74
  static constexpr int32_t ScaleShift = 8;
75
  static constexpr uint64_t MaxRelBlockFreq = (1 << 29) - 1;
76
 
77
  CalleeInfo()
78
      : Hotness(static_cast<uint32_t>(HotnessType::Unknown)), RelBlockFreq(0) {}
79
  explicit CalleeInfo(HotnessType Hotness, uint64_t RelBF)
80
      : Hotness(static_cast<uint32_t>(Hotness)), RelBlockFreq(RelBF) {}
81
 
82
  void updateHotness(const HotnessType OtherHotness) {
83
    Hotness = std::max(Hotness, static_cast<uint32_t>(OtherHotness));
84
  }
85
 
86
  HotnessType getHotness() const { return HotnessType(Hotness); }
87
 
88
  /// Update \p RelBlockFreq from \p BlockFreq and \p EntryFreq
89
  ///
90
  /// BlockFreq is divided by EntryFreq and added to RelBlockFreq. To represent
91
  /// fractional values, the result is represented as a fixed point number with
92
  /// scale of -ScaleShift.
93
  void updateRelBlockFreq(uint64_t BlockFreq, uint64_t EntryFreq) {
94
    if (EntryFreq == 0)
95
      return;
96
    using Scaled64 = ScaledNumber<uint64_t>;
97
    Scaled64 Temp(BlockFreq, ScaleShift);
98
    Temp /= Scaled64::get(EntryFreq);
99
 
100
    uint64_t Sum =
101
        SaturatingAdd<uint64_t>(Temp.toInt<uint64_t>(), RelBlockFreq);
102
    Sum = std::min(Sum, uint64_t(MaxRelBlockFreq));
103
    RelBlockFreq = static_cast<uint32_t>(Sum);
104
  }
105
};
106
 
107
inline const char *getHotnessName(CalleeInfo::HotnessType HT) {
108
  switch (HT) {
109
  case CalleeInfo::HotnessType::Unknown:
110
    return "unknown";
111
  case CalleeInfo::HotnessType::Cold:
112
    return "cold";
113
  case CalleeInfo::HotnessType::None:
114
    return "none";
115
  case CalleeInfo::HotnessType::Hot:
116
    return "hot";
117
  case CalleeInfo::HotnessType::Critical:
118
    return "critical";
119
  }
120
  llvm_unreachable("invalid hotness");
121
}
122
 
123
class GlobalValueSummary;
124
 
125
using GlobalValueSummaryList = std::vector<std::unique_ptr<GlobalValueSummary>>;
126
 
127
struct alignas(8) GlobalValueSummaryInfo {
128
  union NameOrGV {
129
    NameOrGV(bool HaveGVs) {
130
      if (HaveGVs)
131
        GV = nullptr;
132
      else
133
        Name = "";
134
    }
135
 
136
    /// The GlobalValue corresponding to this summary. This is only used in
137
    /// per-module summaries and when the IR is available. E.g. when module
138
    /// analysis is being run, or when parsing both the IR and the summary
139
    /// from assembly.
140
    const GlobalValue *GV;
141
 
142
    /// Summary string representation. This StringRef points to BC module
143
    /// string table and is valid until module data is stored in memory.
144
    /// This is guaranteed to happen until runThinLTOBackend function is
145
    /// called, so it is safe to use this field during thin link. This field
146
    /// is only valid if summary index was loaded from BC file.
147
    StringRef Name;
148
  } U;
149
 
150
  GlobalValueSummaryInfo(bool HaveGVs) : U(HaveGVs) {}
151
 
152
  /// List of global value summary structures for a particular value held
153
  /// in the GlobalValueMap. Requires a vector in the case of multiple
154
  /// COMDAT values of the same name.
155
  GlobalValueSummaryList SummaryList;
156
};
157
 
158
/// Map from global value GUID to corresponding summary structures. Use a
159
/// std::map rather than a DenseMap so that pointers to the map's value_type
160
/// (which are used by ValueInfo) are not invalidated by insertion. Also it will
161
/// likely incur less overhead, as the value type is not very small and the size
162
/// of the map is unknown, resulting in inefficiencies due to repeated
163
/// insertions and resizing.
164
using GlobalValueSummaryMapTy =
165
    std::map<GlobalValue::GUID, GlobalValueSummaryInfo>;
166
 
167
/// Struct that holds a reference to a particular GUID in a global value
168
/// summary.
169
struct ValueInfo {
170
  enum Flags { HaveGV = 1, ReadOnly = 2, WriteOnly = 4 };
171
  PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 3, int>
172
      RefAndFlags;
173
 
174
  ValueInfo() = default;
175
  ValueInfo(bool HaveGVs, const GlobalValueSummaryMapTy::value_type *R) {
176
    RefAndFlags.setPointer(R);
177
    RefAndFlags.setInt(HaveGVs);
178
  }
179
 
180
  explicit operator bool() const { return getRef(); }
181
 
182
  GlobalValue::GUID getGUID() const { return getRef()->first; }
183
  const GlobalValue *getValue() const {
184
    assert(haveGVs());
185
    return getRef()->second.U.GV;
186
  }
187
 
188
  ArrayRef<std::unique_ptr<GlobalValueSummary>> getSummaryList() const {
189
    return getRef()->second.SummaryList;
190
  }
191
 
192
  StringRef name() const {
193
    return haveGVs() ? getRef()->second.U.GV->getName()
194
                     : getRef()->second.U.Name;
195
  }
196
 
197
  bool haveGVs() const { return RefAndFlags.getInt() & HaveGV; }
198
  bool isReadOnly() const {
199
    assert(isValidAccessSpecifier());
200
    return RefAndFlags.getInt() & ReadOnly;
201
  }
202
  bool isWriteOnly() const {
203
    assert(isValidAccessSpecifier());
204
    return RefAndFlags.getInt() & WriteOnly;
205
  }
206
  unsigned getAccessSpecifier() const {
207
    assert(isValidAccessSpecifier());
208
    return RefAndFlags.getInt() & (ReadOnly | WriteOnly);
209
  }
210
  bool isValidAccessSpecifier() const {
211
    unsigned BadAccessMask = ReadOnly | WriteOnly;
212
    return (RefAndFlags.getInt() & BadAccessMask) != BadAccessMask;
213
  }
214
  void setReadOnly() {
215
    // We expect ro/wo attribute to set only once during
216
    // ValueInfo lifetime.
217
    assert(getAccessSpecifier() == 0);
218
    RefAndFlags.setInt(RefAndFlags.getInt() | ReadOnly);
219
  }
220
  void setWriteOnly() {
221
    assert(getAccessSpecifier() == 0);
222
    RefAndFlags.setInt(RefAndFlags.getInt() | WriteOnly);
223
  }
224
 
225
  const GlobalValueSummaryMapTy::value_type *getRef() const {
226
    return RefAndFlags.getPointer();
227
  }
228
 
229
  /// Returns the most constraining visibility among summaries. The
230
  /// visibilities, ordered from least to most constraining, are: default,
231
  /// protected and hidden.
232
  GlobalValue::VisibilityTypes getELFVisibility() const;
233
 
234
  /// Checks if all summaries are DSO local (have the flag set). When DSOLocal
235
  /// propagation has been done, set the parameter to enable fast check.
236
  bool isDSOLocal(bool WithDSOLocalPropagation = false) const;
237
 
238
  /// Checks if all copies are eligible for auto-hiding (have flag set).
239
  bool canAutoHide() const;
240
};
241
 
242
inline raw_ostream &operator<<(raw_ostream &OS, const ValueInfo &VI) {
243
  OS << VI.getGUID();
244
  if (!VI.name().empty())
245
    OS << " (" << VI.name() << ")";
246
  return OS;
247
}
248
 
249
inline bool operator==(const ValueInfo &A, const ValueInfo &B) {
250
  assert(A.getRef() && B.getRef() &&
251
         "Need ValueInfo with non-null Ref for comparison");
252
  return A.getRef() == B.getRef();
253
}
254
 
255
inline bool operator!=(const ValueInfo &A, const ValueInfo &B) {
256
  assert(A.getRef() && B.getRef() &&
257
         "Need ValueInfo with non-null Ref for comparison");
258
  return A.getRef() != B.getRef();
259
}
260
 
261
inline bool operator<(const ValueInfo &A, const ValueInfo &B) {
262
  assert(A.getRef() && B.getRef() &&
263
         "Need ValueInfo with non-null Ref to compare GUIDs");
264
  return A.getGUID() < B.getGUID();
265
}
266
 
267
template <> struct DenseMapInfo<ValueInfo> {
268
  static inline ValueInfo getEmptyKey() {
269
    return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
270
  }
271
 
272
  static inline ValueInfo getTombstoneKey() {
273
    return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-16);
274
  }
275
 
276
  static inline bool isSpecialKey(ValueInfo V) {
277
    return V == getTombstoneKey() || V == getEmptyKey();
278
  }
279
 
280
  static bool isEqual(ValueInfo L, ValueInfo R) {
281
    // We are not supposed to mix ValueInfo(s) with different HaveGVs flag
282
    // in a same container.
283
    assert(isSpecialKey(L) || isSpecialKey(R) || (L.haveGVs() == R.haveGVs()));
284
    return L.getRef() == R.getRef();
285
  }
286
  static unsigned getHashValue(ValueInfo I) { return (uintptr_t)I.getRef(); }
287
};
288
 
289
/// Summary of memprof callsite metadata.
290
struct CallsiteInfo {
291
  // Actual callee function.
292
  ValueInfo Callee;
293
 
294
  // Used to record whole program analysis cloning decisions.
295
  // The ThinLTO backend will need to create as many clones as there are entries
296
  // in the vector (it is expected and should be confirmed that all such
297
  // summaries in the same FunctionSummary have the same number of entries).
298
  // Each index records version info for the corresponding clone of this
299
  // function. The value is the callee clone it calls (becomes the appended
300
  // suffix id). Index 0 is the original version, and a value of 0 calls the
301
  // original callee.
302
  SmallVector<unsigned> Clones{0};
303
 
304
  // Represents stack ids in this context, recorded as indices into the
305
  // StackIds vector in the summary index, which in turn holds the full 64-bit
306
  // stack ids. This reduces memory as there are in practice far fewer unique
307
  // stack ids than stack id references.
308
  SmallVector<unsigned> StackIdIndices;
309
 
310
  CallsiteInfo(ValueInfo Callee, SmallVector<unsigned> StackIdIndices)
311
      : Callee(Callee), StackIdIndices(std::move(StackIdIndices)) {}
312
  CallsiteInfo(ValueInfo Callee, SmallVector<unsigned> Clones,
313
               SmallVector<unsigned> StackIdIndices)
314
      : Callee(Callee), Clones(std::move(Clones)),
315
        StackIdIndices(std::move(StackIdIndices)) {}
316
};
317
 
318
// Allocation type assigned to an allocation reached by a given context.
319
// More can be added but initially this is just noncold and cold.
320
// Values should be powers of two so that they can be ORed, in particular to
321
// track allocations that have different behavior with different calling
322
// contexts.
323
enum class AllocationType : uint8_t { None = 0, NotCold = 1, Cold = 2 };
324
 
325
/// Summary of a single MIB in a memprof metadata on allocations.
326
struct MIBInfo {
327
  // The allocation type for this profiled context.
328
  AllocationType AllocType;
329
 
330
  // Represents stack ids in this context, recorded as indices into the
331
  // StackIds vector in the summary index, which in turn holds the full 64-bit
332
  // stack ids. This reduces memory as there are in practice far fewer unique
333
  // stack ids than stack id references.
334
  SmallVector<unsigned> StackIdIndices;
335
 
336
  MIBInfo(AllocationType AllocType, SmallVector<unsigned> StackIdIndices)
337
      : AllocType(AllocType), StackIdIndices(std::move(StackIdIndices)) {}
338
};
339
 
340
/// Summary of memprof metadata on allocations.
341
struct AllocInfo {
342
  // Used to record whole program analysis cloning decisions.
343
  // The ThinLTO backend will need to create as many clones as there are entries
344
  // in the vector (it is expected and should be confirmed that all such
345
  // summaries in the same FunctionSummary have the same number of entries).
346
  // Each index records version info for the corresponding clone of this
347
  // function. The value is the allocation type of the corresponding allocation.
348
  // Index 0 is the original version. Before cloning, index 0 may have more than
349
  // one allocation type.
350
  SmallVector<uint8_t> Versions;
351
 
352
  // Vector of MIBs in this memprof metadata.
353
  std::vector<MIBInfo> MIBs;
354
 
355
  AllocInfo(std::vector<MIBInfo> MIBs) : MIBs(std::move(MIBs)) {
356
    Versions.push_back(0);
357
  }
358
  AllocInfo(SmallVector<uint8_t> Versions, std::vector<MIBInfo> MIBs)
359
      : Versions(std::move(Versions)), MIBs(std::move(MIBs)) {}
360
};
361
 
362
/// Function and variable summary information to aid decisions and
363
/// implementation of importing.
364
class GlobalValueSummary {
365
public:
366
  /// Sububclass discriminator (for dyn_cast<> et al.)
367
  enum SummaryKind : unsigned { AliasKind, FunctionKind, GlobalVarKind };
368
 
369
  /// Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
370
  struct GVFlags {
371
    /// The linkage type of the associated global value.
372
    ///
373
    /// One use is to flag values that have local linkage types and need to
374
    /// have module identifier appended before placing into the combined
375
    /// index, to disambiguate from other values with the same name.
376
    /// In the future this will be used to update and optimize linkage
377
    /// types based on global summary-based analysis.
378
    unsigned Linkage : 4;
379
 
380
    /// Indicates the visibility.
381
    unsigned Visibility : 2;
382
 
383
    /// Indicate if the global value cannot be imported (e.g. it cannot
384
    /// be renamed or references something that can't be renamed).
385
    unsigned NotEligibleToImport : 1;
386
 
387
    /// In per-module summary, indicate that the global value must be considered
388
    /// a live root for index-based liveness analysis. Used for special LLVM
389
    /// values such as llvm.global_ctors that the linker does not know about.
390
    ///
391
    /// In combined summary, indicate that the global value is live.
392
    unsigned Live : 1;
393
 
394
    /// Indicates that the linker resolved the symbol to a definition from
395
    /// within the same linkage unit.
396
    unsigned DSOLocal : 1;
397
 
398
    /// In the per-module summary, indicates that the global value is
399
    /// linkonce_odr and global unnamed addr (so eligible for auto-hiding
400
    /// via hidden visibility). In the combined summary, indicates that the
401
    /// prevailing linkonce_odr copy can be auto-hidden via hidden visibility
402
    /// when it is upgraded to weak_odr in the backend. This is legal when
403
    /// all copies are eligible for auto-hiding (i.e. all copies were
404
    /// linkonce_odr global unnamed addr. If any copy is not (e.g. it was
405
    /// originally weak_odr, we cannot auto-hide the prevailing copy as it
406
    /// means the symbol was externally visible.
407
    unsigned CanAutoHide : 1;
408
 
409
    /// Convenience Constructors
410
    explicit GVFlags(GlobalValue::LinkageTypes Linkage,
411
                     GlobalValue::VisibilityTypes Visibility,
412
                     bool NotEligibleToImport, bool Live, bool IsLocal,
413
                     bool CanAutoHide)
414
        : Linkage(Linkage), Visibility(Visibility),
415
          NotEligibleToImport(NotEligibleToImport), Live(Live),
416
          DSOLocal(IsLocal), CanAutoHide(CanAutoHide) {}
417
  };
418
 
419
private:
420
  /// Kind of summary for use in dyn_cast<> et al.
421
  SummaryKind Kind;
422
 
423
  GVFlags Flags;
424
 
425
  /// This is the hash of the name of the symbol in the original file. It is
426
  /// identical to the GUID for global symbols, but differs for local since the
427
  /// GUID includes the module level id in the hash.
428
  GlobalValue::GUID OriginalName = 0;
429
 
430
  /// Path of module IR containing value's definition, used to locate
431
  /// module during importing.
432
  ///
433
  /// This is only used during parsing of the combined index, or when
434
  /// parsing the per-module index for creation of the combined summary index,
435
  /// not during writing of the per-module index which doesn't contain a
436
  /// module path string table.
437
  StringRef ModulePath;
438
 
439
  /// List of values referenced by this global value's definition
440
  /// (either by the initializer of a global variable, or referenced
441
  /// from within a function). This does not include functions called, which
442
  /// are listed in the derived FunctionSummary object.
443
  std::vector<ValueInfo> RefEdgeList;
444
 
445
protected:
446
  GlobalValueSummary(SummaryKind K, GVFlags Flags, std::vector<ValueInfo> Refs)
447
      : Kind(K), Flags(Flags), RefEdgeList(std::move(Refs)) {
448
    assert((K != AliasKind || Refs.empty()) &&
449
           "Expect no references for AliasSummary");
450
  }
451
 
452
public:
453
  virtual ~GlobalValueSummary() = default;
454
 
455
  /// Returns the hash of the original name, it is identical to the GUID for
456
  /// externally visible symbols, but not for local ones.
457
  GlobalValue::GUID getOriginalName() const { return OriginalName; }
458
 
459
  /// Initialize the original name hash in this summary.
460
  void setOriginalName(GlobalValue::GUID Name) { OriginalName = Name; }
461
 
462
  /// Which kind of summary subclass this is.
463
  SummaryKind getSummaryKind() const { return Kind; }
464
 
465
  /// Set the path to the module containing this function, for use in
466
  /// the combined index.
467
  void setModulePath(StringRef ModPath) { ModulePath = ModPath; }
468
 
469
  /// Get the path to the module containing this function.
470
  StringRef modulePath() const { return ModulePath; }
471
 
472
  /// Get the flags for this GlobalValue (see \p struct GVFlags).
473
  GVFlags flags() const { return Flags; }
474
 
475
  /// Return linkage type recorded for this global value.
476
  GlobalValue::LinkageTypes linkage() const {
477
    return static_cast<GlobalValue::LinkageTypes>(Flags.Linkage);
478
  }
479
 
480
  /// Sets the linkage to the value determined by global summary-based
481
  /// optimization. Will be applied in the ThinLTO backends.
482
  void setLinkage(GlobalValue::LinkageTypes Linkage) {
483
    Flags.Linkage = Linkage;
484
  }
485
 
486
  /// Return true if this global value can't be imported.
487
  bool notEligibleToImport() const { return Flags.NotEligibleToImport; }
488
 
489
  bool isLive() const { return Flags.Live; }
490
 
491
  void setLive(bool Live) { Flags.Live = Live; }
492
 
493
  void setDSOLocal(bool Local) { Flags.DSOLocal = Local; }
494
 
495
  bool isDSOLocal() const { return Flags.DSOLocal; }
496
 
497
  void setCanAutoHide(bool CanAutoHide) { Flags.CanAutoHide = CanAutoHide; }
498
 
499
  bool canAutoHide() const { return Flags.CanAutoHide; }
500
 
501
  GlobalValue::VisibilityTypes getVisibility() const {
502
    return (GlobalValue::VisibilityTypes)Flags.Visibility;
503
  }
504
  void setVisibility(GlobalValue::VisibilityTypes Vis) {
505
    Flags.Visibility = (unsigned)Vis;
506
  }
507
 
508
  /// Flag that this global value cannot be imported.
509
  void setNotEligibleToImport() { Flags.NotEligibleToImport = true; }
510
 
511
  /// Return the list of values referenced by this global value definition.
512
  ArrayRef<ValueInfo> refs() const { return RefEdgeList; }
513
 
514
  /// If this is an alias summary, returns the summary of the aliased object (a
515
  /// global variable or function), otherwise returns itself.
516
  GlobalValueSummary *getBaseObject();
517
  const GlobalValueSummary *getBaseObject() const;
518
 
519
  friend class ModuleSummaryIndex;
520
};
521
 
522
/// Alias summary information.
523
class AliasSummary : public GlobalValueSummary {
524
  ValueInfo AliaseeValueInfo;
525
 
526
  /// This is the Aliasee in the same module as alias (could get from VI, trades
527
  /// memory for time). Note that this pointer may be null (and the value info
528
  /// empty) when we have a distributed index where the alias is being imported
529
  /// (as a copy of the aliasee), but the aliasee is not.
530
  GlobalValueSummary *AliaseeSummary;
531
 
532
public:
533
  AliasSummary(GVFlags Flags)
534
      : GlobalValueSummary(AliasKind, Flags, ArrayRef<ValueInfo>{}),
535
        AliaseeSummary(nullptr) {}
536
 
537
  /// Check if this is an alias summary.
538
  static bool classof(const GlobalValueSummary *GVS) {
539
    return GVS->getSummaryKind() == AliasKind;
540
  }
541
 
542
  void setAliasee(ValueInfo &AliaseeVI, GlobalValueSummary *Aliasee) {
543
    AliaseeValueInfo = AliaseeVI;
544
    AliaseeSummary = Aliasee;
545
  }
546
 
547
  bool hasAliasee() const {
548
    assert(!!AliaseeSummary == (AliaseeValueInfo &&
549
                                !AliaseeValueInfo.getSummaryList().empty()) &&
550
           "Expect to have both aliasee summary and summary list or neither");
551
    return !!AliaseeSummary;
552
  }
553
 
554
  const GlobalValueSummary &getAliasee() const {
555
    assert(AliaseeSummary && "Unexpected missing aliasee summary");
556
    return *AliaseeSummary;
557
  }
558
 
559
  GlobalValueSummary &getAliasee() {
560
    return const_cast<GlobalValueSummary &>(
561
                         static_cast<const AliasSummary *>(this)->getAliasee());
562
  }
563
  ValueInfo getAliaseeVI() const {
564
    assert(AliaseeValueInfo && "Unexpected missing aliasee");
565
    return AliaseeValueInfo;
566
  }
567
  GlobalValue::GUID getAliaseeGUID() const {
568
    assert(AliaseeValueInfo && "Unexpected missing aliasee");
569
    return AliaseeValueInfo.getGUID();
570
  }
571
};
572
 
573
const inline GlobalValueSummary *GlobalValueSummary::getBaseObject() const {
574
  if (auto *AS = dyn_cast<AliasSummary>(this))
575
    return &AS->getAliasee();
576
  return this;
577
}
578
 
579
inline GlobalValueSummary *GlobalValueSummary::getBaseObject() {
580
  if (auto *AS = dyn_cast<AliasSummary>(this))
581
    return &AS->getAliasee();
582
  return this;
583
}
584
 
585
/// Function summary information to aid decisions and implementation of
586
/// importing.
587
class FunctionSummary : public GlobalValueSummary {
588
public:
589
  /// <CalleeValueInfo, CalleeInfo> call edge pair.
590
  using EdgeTy = std::pair<ValueInfo, CalleeInfo>;
591
 
592
  /// Types for -force-summary-edges-cold debugging option.
593
  enum ForceSummaryHotnessType : unsigned {
594
    FSHT_None,
595
    FSHT_AllNonCritical,
596
    FSHT_All
597
  };
598
 
599
  /// An "identifier" for a virtual function. This contains the type identifier
600
  /// represented as a GUID and the offset from the address point to the virtual
601
  /// function pointer, where "address point" is as defined in the Itanium ABI:
602
  /// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general
603
  struct VFuncId {
604
    GlobalValue::GUID GUID;
605
    uint64_t Offset;
606
  };
607
 
608
  /// A specification for a virtual function call with all constant integer
609
  /// arguments. This is used to perform virtual constant propagation on the
610
  /// summary.
611
  struct ConstVCall {
612
    VFuncId VFunc;
613
    std::vector<uint64_t> Args;
614
  };
615
 
616
  /// All type identifier related information. Because these fields are
617
  /// relatively uncommon we only allocate space for them if necessary.
618
  struct TypeIdInfo {
619
    /// List of type identifiers used by this function in llvm.type.test
620
    /// intrinsics referenced by something other than an llvm.assume intrinsic,
621
    /// represented as GUIDs.
622
    std::vector<GlobalValue::GUID> TypeTests;
623
 
624
    /// List of virtual calls made by this function using (respectively)
625
    /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics that do
626
    /// not have all constant integer arguments.
627
    std::vector<VFuncId> TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
628
 
629
    /// List of virtual calls made by this function using (respectively)
630
    /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics with
631
    /// all constant integer arguments.
632
    std::vector<ConstVCall> TypeTestAssumeConstVCalls,
633
        TypeCheckedLoadConstVCalls;
634
  };
635
 
636
  /// Flags specific to function summaries.
637
  struct FFlags {
638
    // Function attribute flags. Used to track if a function accesses memory,
639
    // recurses or aliases.
640
    unsigned ReadNone : 1;
641
    unsigned ReadOnly : 1;
642
    unsigned NoRecurse : 1;
643
    unsigned ReturnDoesNotAlias : 1;
644
 
645
    // Indicate if the global value cannot be inlined.
646
    unsigned NoInline : 1;
647
    // Indicate if function should be always inlined.
648
    unsigned AlwaysInline : 1;
649
    // Indicate if function never raises an exception. Can be modified during
650
    // thinlink function attribute propagation
651
    unsigned NoUnwind : 1;
652
    // Indicate if function contains instructions that mayThrow
653
    unsigned MayThrow : 1;
654
 
655
    // If there are calls to unknown targets (e.g. indirect)
656
    unsigned HasUnknownCall : 1;
657
 
658
    // Indicate if a function must be an unreachable function.
659
    //
660
    // This bit is sufficient but not necessary;
661
    // if this bit is on, the function must be regarded as unreachable;
662
    // if this bit is off, the function might be reachable or unreachable.
663
    unsigned MustBeUnreachable : 1;
664
 
665
    FFlags &operator&=(const FFlags &RHS) {
666
      this->ReadNone &= RHS.ReadNone;
667
      this->ReadOnly &= RHS.ReadOnly;
668
      this->NoRecurse &= RHS.NoRecurse;
669
      this->ReturnDoesNotAlias &= RHS.ReturnDoesNotAlias;
670
      this->NoInline &= RHS.NoInline;
671
      this->AlwaysInline &= RHS.AlwaysInline;
672
      this->NoUnwind &= RHS.NoUnwind;
673
      this->MayThrow &= RHS.MayThrow;
674
      this->HasUnknownCall &= RHS.HasUnknownCall;
675
      this->MustBeUnreachable &= RHS.MustBeUnreachable;
676
      return *this;
677
    }
678
 
679
    bool anyFlagSet() {
680
      return this->ReadNone | this->ReadOnly | this->NoRecurse |
681
             this->ReturnDoesNotAlias | this->NoInline | this->AlwaysInline |
682
             this->NoUnwind | this->MayThrow | this->HasUnknownCall |
683
             this->MustBeUnreachable;
684
    }
685
 
686
    operator std::string() {
687
      std::string Output;
688
      raw_string_ostream OS(Output);
689
      OS << "funcFlags: (";
690
      OS << "readNone: " << this->ReadNone;
691
      OS << ", readOnly: " << this->ReadOnly;
692
      OS << ", noRecurse: " << this->NoRecurse;
693
      OS << ", returnDoesNotAlias: " << this->ReturnDoesNotAlias;
694
      OS << ", noInline: " << this->NoInline;
695
      OS << ", alwaysInline: " << this->AlwaysInline;
696
      OS << ", noUnwind: " << this->NoUnwind;
697
      OS << ", mayThrow: " << this->MayThrow;
698
      OS << ", hasUnknownCall: " << this->HasUnknownCall;
699
      OS << ", mustBeUnreachable: " << this->MustBeUnreachable;
700
      OS << ")";
701
      return OS.str();
702
    }
703
  };
704
 
705
  /// Describes the uses of a parameter by the function.
706
  struct ParamAccess {
707
    static constexpr uint32_t RangeWidth = 64;
708
 
709
    /// Describes the use of a value in a call instruction, specifying the
710
    /// call's target, the value's parameter number, and the possible range of
711
    /// offsets from the beginning of the value that are passed.
712
    struct Call {
713
      uint64_t ParamNo = 0;
714
      ValueInfo Callee;
715
      ConstantRange Offsets{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
716
 
717
      Call() = default;
718
      Call(uint64_t ParamNo, ValueInfo Callee, const ConstantRange &Offsets)
719
          : ParamNo(ParamNo), Callee(Callee), Offsets(Offsets) {}
720
    };
721
 
722
    uint64_t ParamNo = 0;
723
    /// The range contains byte offsets from the parameter pointer which
724
    /// accessed by the function. In the per-module summary, it only includes
725
    /// accesses made by the function instructions. In the combined summary, it
726
    /// also includes accesses by nested function calls.
727
    ConstantRange Use{/*BitWidth=*/RangeWidth, /*isFullSet=*/true};
728
    /// In the per-module summary, it summarizes the byte offset applied to each
729
    /// pointer parameter before passing to each corresponding callee.
730
    /// In the combined summary, it's empty and information is propagated by
731
    /// inter-procedural analysis and applied to the Use field.
732
    std::vector<Call> Calls;
733
 
734
    ParamAccess() = default;
735
    ParamAccess(uint64_t ParamNo, const ConstantRange &Use)
736
        : ParamNo(ParamNo), Use(Use) {}
737
  };
738
 
739
  /// Create an empty FunctionSummary (with specified call edges).
740
  /// Used to represent external nodes and the dummy root node.
741
  static FunctionSummary
742
  makeDummyFunctionSummary(std::vector<FunctionSummary::EdgeTy> Edges) {
743
    return FunctionSummary(
744
        FunctionSummary::GVFlags(
745
            GlobalValue::LinkageTypes::AvailableExternallyLinkage,
746
            GlobalValue::DefaultVisibility,
747
            /*NotEligibleToImport=*/true, /*Live=*/true, /*IsLocal=*/false,
748
            /*CanAutoHide=*/false),
749
        /*NumInsts=*/0, FunctionSummary::FFlags{}, /*EntryCount=*/0,
750
        std::vector<ValueInfo>(), std::move(Edges),
751
        std::vector<GlobalValue::GUID>(),
752
        std::vector<FunctionSummary::VFuncId>(),
753
        std::vector<FunctionSummary::VFuncId>(),
754
        std::vector<FunctionSummary::ConstVCall>(),
755
        std::vector<FunctionSummary::ConstVCall>(),
756
        std::vector<FunctionSummary::ParamAccess>(),
757
        std::vector<CallsiteInfo>(), std::vector<AllocInfo>());
758
  }
759
 
760
  /// A dummy node to reference external functions that aren't in the index
761
  static FunctionSummary ExternalNode;
762
 
763
private:
764
  /// Number of instructions (ignoring debug instructions, e.g.) computed
765
  /// during the initial compile step when the summary index is first built.
766
  unsigned InstCount;
767
 
768
  /// Function summary specific flags.
769
  FFlags FunFlags;
770
 
771
  /// The synthesized entry count of the function.
772
  /// This is only populated during ThinLink phase and remains unused while
773
  /// generating per-module summaries.
774
  uint64_t EntryCount = 0;
775
 
776
  /// List of <CalleeValueInfo, CalleeInfo> call edge pairs from this function.
777
  std::vector<EdgeTy> CallGraphEdgeList;
778
 
779
  std::unique_ptr<TypeIdInfo> TIdInfo;
780
 
781
  /// Uses for every parameter to this function.
782
  using ParamAccessesTy = std::vector<ParamAccess>;
783
  std::unique_ptr<ParamAccessesTy> ParamAccesses;
784
 
785
  /// Optional list of memprof callsite metadata summaries. The correspondence
786
  /// between the callsite summary and the callsites in the function is implied
787
  /// by the order in the vector (and can be validated by comparing the stack
788
  /// ids in the CallsiteInfo to those in the instruction callsite metadata).
789
  /// As a memory savings optimization, we only create these for the prevailing
790
  /// copy of a symbol when creating the combined index during LTO.
791
  using CallsitesTy = std::vector<CallsiteInfo>;
792
  std::unique_ptr<CallsitesTy> Callsites;
793
 
794
  /// Optional list of allocation memprof metadata summaries. The correspondence
795
  /// between the alloc memprof summary and the allocation callsites in the
796
  /// function is implied by the order in the vector (and can be validated by
797
  /// comparing the stack ids in the AllocInfo to those in the instruction
798
  /// memprof metadata).
799
  /// As a memory savings optimization, we only create these for the prevailing
800
  /// copy of a symbol when creating the combined index during LTO.
801
  using AllocsTy = std::vector<AllocInfo>;
802
  std::unique_ptr<AllocsTy> Allocs;
803
 
804
public:
805
  FunctionSummary(GVFlags Flags, unsigned NumInsts, FFlags FunFlags,
806
                  uint64_t EntryCount, std::vector<ValueInfo> Refs,
807
                  std::vector<EdgeTy> CGEdges,
808
                  std::vector<GlobalValue::GUID> TypeTests,
809
                  std::vector<VFuncId> TypeTestAssumeVCalls,
810
                  std::vector<VFuncId> TypeCheckedLoadVCalls,
811
                  std::vector<ConstVCall> TypeTestAssumeConstVCalls,
812
                  std::vector<ConstVCall> TypeCheckedLoadConstVCalls,
813
                  std::vector<ParamAccess> Params, CallsitesTy CallsiteList,
814
                  AllocsTy AllocList)
815
      : GlobalValueSummary(FunctionKind, Flags, std::move(Refs)),
816
        InstCount(NumInsts), FunFlags(FunFlags), EntryCount(EntryCount),
817
        CallGraphEdgeList(std::move(CGEdges)) {
818
    if (!TypeTests.empty() || !TypeTestAssumeVCalls.empty() ||
819
        !TypeCheckedLoadVCalls.empty() || !TypeTestAssumeConstVCalls.empty() ||
820
        !TypeCheckedLoadConstVCalls.empty())
821
      TIdInfo = std::make_unique<TypeIdInfo>(
822
          TypeIdInfo{std::move(TypeTests), std::move(TypeTestAssumeVCalls),
823
                     std::move(TypeCheckedLoadVCalls),
824
                     std::move(TypeTestAssumeConstVCalls),
825
                     std::move(TypeCheckedLoadConstVCalls)});
826
    if (!Params.empty())
827
      ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(Params));
828
    if (!CallsiteList.empty())
829
      Callsites = std::make_unique<CallsitesTy>(std::move(CallsiteList));
830
    if (!AllocList.empty())
831
      Allocs = std::make_unique<AllocsTy>(std::move(AllocList));
832
  }
833
  // Gets the number of readonly and writeonly refs in RefEdgeList
834
  std::pair<unsigned, unsigned> specialRefCounts() const;
835
 
836
  /// Check if this is a function summary.
837
  static bool classof(const GlobalValueSummary *GVS) {
838
    return GVS->getSummaryKind() == FunctionKind;
839
  }
840
 
841
  /// Get function summary flags.
842
  FFlags fflags() const { return FunFlags; }
843
 
844
  void setNoRecurse() { FunFlags.NoRecurse = true; }
845
 
846
  void setNoUnwind() { FunFlags.NoUnwind = true; }
847
 
848
  /// Get the instruction count recorded for this function.
849
  unsigned instCount() const { return InstCount; }
850
 
851
  /// Get the synthetic entry count for this function.
852
  uint64_t entryCount() const { return EntryCount; }
853
 
854
  /// Set the synthetic entry count for this function.
855
  void setEntryCount(uint64_t EC) { EntryCount = EC; }
856
 
857
  /// Return the list of <CalleeValueInfo, CalleeInfo> pairs.
858
  ArrayRef<EdgeTy> calls() const { return CallGraphEdgeList; }
859
 
860
  std::vector<EdgeTy> &mutableCalls() { return CallGraphEdgeList; }
861
 
862
  void addCall(EdgeTy E) { CallGraphEdgeList.push_back(E); }
863
 
864
  /// Returns the list of type identifiers used by this function in
865
  /// llvm.type.test intrinsics other than by an llvm.assume intrinsic,
866
  /// represented as GUIDs.
867
  ArrayRef<GlobalValue::GUID> type_tests() const {
868
    if (TIdInfo)
869
      return TIdInfo->TypeTests;
870
    return {};
871
  }
872
 
873
  /// Returns the list of virtual calls made by this function using
874
  /// llvm.assume(llvm.type.test) intrinsics that do not have all constant
875
  /// integer arguments.
876
  ArrayRef<VFuncId> type_test_assume_vcalls() const {
877
    if (TIdInfo)
878
      return TIdInfo->TypeTestAssumeVCalls;
879
    return {};
880
  }
881
 
882
  /// Returns the list of virtual calls made by this function using
883
  /// llvm.type.checked.load intrinsics that do not have all constant integer
884
  /// arguments.
885
  ArrayRef<VFuncId> type_checked_load_vcalls() const {
886
    if (TIdInfo)
887
      return TIdInfo->TypeCheckedLoadVCalls;
888
    return {};
889
  }
890
 
891
  /// Returns the list of virtual calls made by this function using
892
  /// llvm.assume(llvm.type.test) intrinsics with all constant integer
893
  /// arguments.
894
  ArrayRef<ConstVCall> type_test_assume_const_vcalls() const {
895
    if (TIdInfo)
896
      return TIdInfo->TypeTestAssumeConstVCalls;
897
    return {};
898
  }
899
 
900
  /// Returns the list of virtual calls made by this function using
901
  /// llvm.type.checked.load intrinsics with all constant integer arguments.
902
  ArrayRef<ConstVCall> type_checked_load_const_vcalls() const {
903
    if (TIdInfo)
904
      return TIdInfo->TypeCheckedLoadConstVCalls;
905
    return {};
906
  }
907
 
908
  /// Returns the list of known uses of pointer parameters.
909
  ArrayRef<ParamAccess> paramAccesses() const {
910
    if (ParamAccesses)
911
      return *ParamAccesses;
912
    return {};
913
  }
914
 
915
  /// Sets the list of known uses of pointer parameters.
916
  void setParamAccesses(std::vector<ParamAccess> NewParams) {
917
    if (NewParams.empty())
918
      ParamAccesses.reset();
919
    else if (ParamAccesses)
920
      *ParamAccesses = std::move(NewParams);
921
    else
922
      ParamAccesses = std::make_unique<ParamAccessesTy>(std::move(NewParams));
923
  }
924
 
925
  /// Add a type test to the summary. This is used by WholeProgramDevirt if we
926
  /// were unable to devirtualize a checked call.
927
  void addTypeTest(GlobalValue::GUID Guid) {
928
    if (!TIdInfo)
929
      TIdInfo = std::make_unique<TypeIdInfo>();
930
    TIdInfo->TypeTests.push_back(Guid);
931
  }
932
 
933
  const TypeIdInfo *getTypeIdInfo() const { return TIdInfo.get(); };
934
 
935
  ArrayRef<CallsiteInfo> callsites() const {
936
    if (Callsites)
937
      return *Callsites;
938
    return {};
939
  }
940
 
941
  ArrayRef<AllocInfo> allocs() const {
942
    if (Allocs)
943
      return *Allocs;
944
    return {};
945
  }
946
 
947
  friend struct GraphTraits<ValueInfo>;
948
};
949
 
950
template <> struct DenseMapInfo<FunctionSummary::VFuncId> {
951
  static FunctionSummary::VFuncId getEmptyKey() { return {0, uint64_t(-1)}; }
952
 
953
  static FunctionSummary::VFuncId getTombstoneKey() {
954
    return {0, uint64_t(-2)};
955
  }
956
 
957
  static bool isEqual(FunctionSummary::VFuncId L, FunctionSummary::VFuncId R) {
958
    return L.GUID == R.GUID && L.Offset == R.Offset;
959
  }
960
 
961
  static unsigned getHashValue(FunctionSummary::VFuncId I) { return I.GUID; }
962
};
963
 
964
template <> struct DenseMapInfo<FunctionSummary::ConstVCall> {
965
  static FunctionSummary::ConstVCall getEmptyKey() {
966
    return {{0, uint64_t(-1)}, {}};
967
  }
968
 
969
  static FunctionSummary::ConstVCall getTombstoneKey() {
970
    return {{0, uint64_t(-2)}, {}};
971
  }
972
 
973
  static bool isEqual(FunctionSummary::ConstVCall L,
974
                      FunctionSummary::ConstVCall R) {
975
    return DenseMapInfo<FunctionSummary::VFuncId>::isEqual(L.VFunc, R.VFunc) &&
976
           L.Args == R.Args;
977
  }
978
 
979
  static unsigned getHashValue(FunctionSummary::ConstVCall I) {
980
    return I.VFunc.GUID;
981
  }
982
};
983
 
984
/// The ValueInfo and offset for a function within a vtable definition
985
/// initializer array.
986
struct VirtFuncOffset {
987
  VirtFuncOffset(ValueInfo VI, uint64_t Offset)
988
      : FuncVI(VI), VTableOffset(Offset) {}
989
 
990
  ValueInfo FuncVI;
991
  uint64_t VTableOffset;
992
};
993
/// List of functions referenced by a particular vtable definition.
994
using VTableFuncList = std::vector<VirtFuncOffset>;
995
 
996
/// Global variable summary information to aid decisions and
997
/// implementation of importing.
998
///
999
/// Global variable summary has two extra flag, telling if it is
1000
/// readonly or writeonly. Both readonly and writeonly variables
1001
/// can be optimized in the backed: readonly variables can be
1002
/// const-folded, while writeonly vars can be completely eliminated
1003
/// together with corresponding stores. We let both things happen
1004
/// by means of internalizing such variables after ThinLTO import.
1005
class GlobalVarSummary : public GlobalValueSummary {
1006
private:
1007
  /// For vtable definitions this holds the list of functions and
1008
  /// their corresponding offsets within the initializer array.
1009
  std::unique_ptr<VTableFuncList> VTableFuncs;
1010
 
1011
public:
1012
  struct GVarFlags {
1013
    GVarFlags(bool ReadOnly, bool WriteOnly, bool Constant,
1014
              GlobalObject::VCallVisibility Vis)
1015
        : MaybeReadOnly(ReadOnly), MaybeWriteOnly(WriteOnly),
1016
          Constant(Constant), VCallVisibility(Vis) {}
1017
 
1018
    // If true indicates that this global variable might be accessed
1019
    // purely by non-volatile load instructions. This in turn means
1020
    // it can be internalized in source and destination modules during
1021
    // thin LTO import because it neither modified nor its address
1022
    // is taken.
1023
    unsigned MaybeReadOnly : 1;
1024
    // If true indicates that variable is possibly only written to, so
1025
    // its value isn't loaded and its address isn't taken anywhere.
1026
    // False, when 'Constant' attribute is set.
1027
    unsigned MaybeWriteOnly : 1;
1028
    // Indicates that value is a compile-time constant. Global variable
1029
    // can be 'Constant' while not being 'ReadOnly' on several occasions:
1030
    // - it is volatile, (e.g mapped device address)
1031
    // - its address is taken, meaning that unlike 'ReadOnly' vars we can't
1032
    //   internalize it.
1033
    // Constant variables are always imported thus giving compiler an
1034
    // opportunity to make some extra optimizations. Readonly constants
1035
    // are also internalized.
1036
    unsigned Constant : 1;
1037
    // Set from metadata on vtable definitions during the module summary
1038
    // analysis.
1039
    unsigned VCallVisibility : 2;
1040
  } VarFlags;
1041
 
1042
  GlobalVarSummary(GVFlags Flags, GVarFlags VarFlags,
1043
                   std::vector<ValueInfo> Refs)
1044
      : GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)),
1045
        VarFlags(VarFlags) {}
1046
 
1047
  /// Check if this is a global variable summary.
1048
  static bool classof(const GlobalValueSummary *GVS) {
1049
    return GVS->getSummaryKind() == GlobalVarKind;
1050
  }
1051
 
1052
  GVarFlags varflags() const { return VarFlags; }
1053
  void setReadOnly(bool RO) { VarFlags.MaybeReadOnly = RO; }
1054
  void setWriteOnly(bool WO) { VarFlags.MaybeWriteOnly = WO; }
1055
  bool maybeReadOnly() const { return VarFlags.MaybeReadOnly; }
1056
  bool maybeWriteOnly() const { return VarFlags.MaybeWriteOnly; }
1057
  bool isConstant() const { return VarFlags.Constant; }
1058
  void setVCallVisibility(GlobalObject::VCallVisibility Vis) {
1059
    VarFlags.VCallVisibility = Vis;
1060
  }
1061
  GlobalObject::VCallVisibility getVCallVisibility() const {
1062
    return (GlobalObject::VCallVisibility)VarFlags.VCallVisibility;
1063
  }
1064
 
1065
  void setVTableFuncs(VTableFuncList Funcs) {
1066
    assert(!VTableFuncs);
1067
    VTableFuncs = std::make_unique<VTableFuncList>(std::move(Funcs));
1068
  }
1069
 
1070
  ArrayRef<VirtFuncOffset> vTableFuncs() const {
1071
    if (VTableFuncs)
1072
      return *VTableFuncs;
1073
    return {};
1074
  }
1075
};
1076
 
1077
struct TypeTestResolution {
1078
  /// Specifies which kind of type check we should emit for this byte array.
1079
  /// See http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html for full
1080
  /// details on each kind of check; the enumerators are described with
1081
  /// reference to that document.
1082
  enum Kind {
1083
    Unsat,     ///< Unsatisfiable type (i.e. no global has this type metadata)
1084
    ByteArray, ///< Test a byte array (first example)
1085
    Inline,    ///< Inlined bit vector ("Short Inline Bit Vectors")
1086
    Single,    ///< Single element (last example in "Short Inline Bit Vectors")
1087
    AllOnes,   ///< All-ones bit vector ("Eliminating Bit Vector Checks for
1088
               ///  All-Ones Bit Vectors")
1089
    Unknown,   ///< Unknown (analysis not performed, don't lower)
1090
  } TheKind = Unknown;
1091
 
1092
  /// Range of size-1 expressed as a bit width. For example, if the size is in
1093
  /// range [1,256], this number will be 8. This helps generate the most compact
1094
  /// instruction sequences.
1095
  unsigned SizeM1BitWidth = 0;
1096
 
1097
  // The following fields are only used if the target does not support the use
1098
  // of absolute symbols to store constants. Their meanings are the same as the
1099
  // corresponding fields in LowerTypeTestsModule::TypeIdLowering in
1100
  // LowerTypeTests.cpp.
1101
 
1102
  uint64_t AlignLog2 = 0;
1103
  uint64_t SizeM1 = 0;
1104
  uint8_t BitMask = 0;
1105
  uint64_t InlineBits = 0;
1106
};
1107
 
1108
struct WholeProgramDevirtResolution {
1109
  enum Kind {
1110
    Indir,        ///< Just do a regular virtual call
1111
    SingleImpl,   ///< Single implementation devirtualization
1112
    BranchFunnel, ///< When retpoline mitigation is enabled, use a branch funnel
1113
                  ///< that is defined in the merged module. Otherwise same as
1114
                  ///< Indir.
1115
  } TheKind = Indir;
1116
 
1117
  std::string SingleImplName;
1118
 
1119
  struct ByArg {
1120
    enum Kind {
1121
      Indir,            ///< Just do a regular virtual call
1122
      UniformRetVal,    ///< Uniform return value optimization
1123
      UniqueRetVal,     ///< Unique return value optimization
1124
      VirtualConstProp, ///< Virtual constant propagation
1125
    } TheKind = Indir;
1126
 
1127
    /// Additional information for the resolution:
1128
    /// - UniformRetVal: the uniform return value.
1129
    /// - UniqueRetVal: the return value associated with the unique vtable (0 or
1130
    ///   1).
1131
    uint64_t Info = 0;
1132
 
1133
    // The following fields are only used if the target does not support the use
1134
    // of absolute symbols to store constants.
1135
 
1136
    uint32_t Byte = 0;
1137
    uint32_t Bit = 0;
1138
  };
1139
 
1140
  /// Resolutions for calls with all constant integer arguments (excluding the
1141
  /// first argument, "this"), where the key is the argument vector.
1142
  std::map<std::vector<uint64_t>, ByArg> ResByArg;
1143
};
1144
 
1145
struct TypeIdSummary {
1146
  TypeTestResolution TTRes;
1147
 
1148
  /// Mapping from byte offset to whole-program devirt resolution for that
1149
  /// (typeid, byte offset) pair.
1150
  std::map<uint64_t, WholeProgramDevirtResolution> WPDRes;
1151
};
1152
 
1153
/// 160 bits SHA1
1154
using ModuleHash = std::array<uint32_t, 5>;
1155
 
1156
/// Type used for iterating through the global value summary map.
1157
using const_gvsummary_iterator = GlobalValueSummaryMapTy::const_iterator;
1158
using gvsummary_iterator = GlobalValueSummaryMapTy::iterator;
1159
 
1160
/// String table to hold/own module path strings, which additionally holds the
1161
/// module ID assigned to each module during the plugin step, as well as a hash
1162
/// of the module. The StringMap makes a copy of and owns inserted strings.
1163
using ModulePathStringTableTy = StringMap<std::pair<uint64_t, ModuleHash>>;
1164
 
1165
/// Map of global value GUID to its summary, used to identify values defined in
1166
/// a particular module, and provide efficient access to their summary.
1167
using GVSummaryMapTy = DenseMap<GlobalValue::GUID, GlobalValueSummary *>;
1168
 
1169
/// Map of a type GUID to type id string and summary (multimap used
1170
/// in case of GUID conflicts).
1171
using TypeIdSummaryMapTy =
1172
    std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
1173
 
1174
/// The following data structures summarize type metadata information.
1175
/// For type metadata overview see https://llvm.org/docs/TypeMetadata.html.
1176
/// Each type metadata includes both the type identifier and the offset of
1177
/// the address point of the type (the address held by objects of that type
1178
/// which may not be the beginning of the virtual table). Vtable definitions
1179
/// are decorated with type metadata for the types they are compatible with.
1180
///
1181
/// Holds information about vtable definitions decorated with type metadata:
1182
/// the vtable definition value and its address point offset in a type
1183
/// identifier metadata it is decorated (compatible) with.
1184
struct TypeIdOffsetVtableInfo {
1185
  TypeIdOffsetVtableInfo(uint64_t Offset, ValueInfo VI)
1186
      : AddressPointOffset(Offset), VTableVI(VI) {}
1187
 
1188
  uint64_t AddressPointOffset;
1189
  ValueInfo VTableVI;
1190
};
1191
/// List of vtable definitions decorated by a particular type identifier,
1192
/// and their corresponding offsets in that type identifier's metadata.
1193
/// Note that each type identifier may be compatible with multiple vtables, due
1194
/// to inheritance, which is why this is a vector.
1195
using TypeIdCompatibleVtableInfo = std::vector<TypeIdOffsetVtableInfo>;
1196
 
1197
/// Class to hold module path string table and global value map,
1198
/// and encapsulate methods for operating on them.
1199
class ModuleSummaryIndex {
1200
private:
1201
  /// Map from value name to list of summary instances for values of that
1202
  /// name (may be duplicates in the COMDAT case, e.g.).
1203
  GlobalValueSummaryMapTy GlobalValueMap;
1204
 
1205
  /// Holds strings for combined index, mapping to the corresponding module ID.
1206
  ModulePathStringTableTy ModulePathStringTable;
1207
 
1208
  /// Mapping from type identifier GUIDs to type identifier and its summary
1209
  /// information. Produced by thin link.
1210
  TypeIdSummaryMapTy TypeIdMap;
1211
 
1212
  /// Mapping from type identifier to information about vtables decorated
1213
  /// with that type identifier's metadata. Produced by per module summary
1214
  /// analysis and consumed by thin link. For more information, see description
1215
  /// above where TypeIdCompatibleVtableInfo is defined.
1216
  std::map<std::string, TypeIdCompatibleVtableInfo, std::less<>>
1217
      TypeIdCompatibleVtableMap;
1218
 
1219
  /// Mapping from original ID to GUID. If original ID can map to multiple
1220
  /// GUIDs, it will be mapped to 0.
1221
  std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
1222
 
1223
  /// Indicates that summary-based GlobalValue GC has run, and values with
1224
  /// GVFlags::Live==false are really dead. Otherwise, all values must be
1225
  /// considered live.
1226
  bool WithGlobalValueDeadStripping = false;
1227
 
1228
  /// Indicates that summary-based attribute propagation has run and
1229
  /// GVarFlags::MaybeReadonly / GVarFlags::MaybeWriteonly are really
1230
  /// read/write only.
1231
  bool WithAttributePropagation = false;
1232
 
1233
  /// Indicates that summary-based DSOLocal propagation has run and the flag in
1234
  /// every summary of a GV is synchronized.
1235
  bool WithDSOLocalPropagation = false;
1236
 
1237
  /// Indicates that we have whole program visibility.
1238
  bool WithWholeProgramVisibility = false;
1239
 
1240
  /// Indicates that summary-based synthetic entry count propagation has run
1241
  bool HasSyntheticEntryCounts = false;
1242
 
1243
  /// Indicates that distributed backend should skip compilation of the
1244
  /// module. Flag is suppose to be set by distributed ThinLTO indexing
1245
  /// when it detected that the module is not needed during the final
1246
  /// linking. As result distributed backend should just output a minimal
1247
  /// valid object file.
1248
  bool SkipModuleByDistributedBackend = false;
1249
 
1250
  /// If true then we're performing analysis of IR module, or parsing along with
1251
  /// the IR from assembly. The value of 'false' means we're reading summary
1252
  /// from BC or YAML source. Affects the type of value stored in NameOrGV
1253
  /// union.
1254
  bool HaveGVs;
1255
 
1256
  // True if the index was created for a module compiled with -fsplit-lto-unit.
1257
  bool EnableSplitLTOUnit;
1258
 
1259
  // True if some of the modules were compiled with -fsplit-lto-unit and
1260
  // some were not. Set when the combined index is created during the thin link.
1261
  bool PartiallySplitLTOUnits = false;
1262
 
1263
  /// True if some of the FunctionSummary contains a ParamAccess.
1264
  bool HasParamAccess = false;
1265
 
1266
  std::set<std::string> CfiFunctionDefs;
1267
  std::set<std::string> CfiFunctionDecls;
1268
 
1269
  // Used in cases where we want to record the name of a global, but
1270
  // don't have the string owned elsewhere (e.g. the Strtab on a module).
1271
  BumpPtrAllocator Alloc;
1272
  StringSaver Saver;
1273
 
1274
  // The total number of basic blocks in the module in the per-module summary or
1275
  // the total number of basic blocks in the LTO unit in the combined index.
1276
  uint64_t BlockCount;
1277
 
1278
  // List of unique stack ids (hashes). We use a 4B index of the id in the
1279
  // stack id lists on the alloc and callsite summaries for memory savings,
1280
  // since the number of unique ids is in practice much smaller than the
1281
  // number of stack id references in the summaries.
1282
  std::vector<uint64_t> StackIds;
1283
 
1284
  // Temporary map while building StackIds list. Clear when index is completely
1285
  // built via releaseTemporaryMemory.
1286
  std::map<uint64_t, unsigned> StackIdToIndex;
1287
 
1288
  // YAML I/O support.
1289
  friend yaml::MappingTraits<ModuleSummaryIndex>;
1290
 
1291
  GlobalValueSummaryMapTy::value_type *
1292
  getOrInsertValuePtr(GlobalValue::GUID GUID) {
1293
    return &*GlobalValueMap.emplace(GUID, GlobalValueSummaryInfo(HaveGVs))
1294
                 .first;
1295
  }
1296
 
1297
public:
1298
  // See HaveGVs variable comment.
1299
  ModuleSummaryIndex(bool HaveGVs, bool EnableSplitLTOUnit = false)
1300
      : HaveGVs(HaveGVs), EnableSplitLTOUnit(EnableSplitLTOUnit), Saver(Alloc),
1301
        BlockCount(0) {}
1302
 
1303
  // Current version for the module summary in bitcode files.
1304
  // The BitcodeSummaryVersion should be bumped whenever we introduce changes
1305
  // in the way some record are interpreted, like flags for instance.
1306
  // Note that incrementing this may require changes in both BitcodeReader.cpp
1307
  // and BitcodeWriter.cpp.
1308
  static constexpr uint64_t BitcodeSummaryVersion = 9;
1309
 
1310
  // Regular LTO module name for ASM writer
1311
  static constexpr const char *getRegularLTOModuleName() {
1312
    return "[Regular LTO]";
1313
  }
1314
 
1315
  bool haveGVs() const { return HaveGVs; }
1316
 
1317
  uint64_t getFlags() const;
1318
  void setFlags(uint64_t Flags);
1319
 
1320
  uint64_t getBlockCount() const { return BlockCount; }
1321
  void addBlockCount(uint64_t C) { BlockCount += C; }
1322
  void setBlockCount(uint64_t C) { BlockCount = C; }
1323
 
1324
  gvsummary_iterator begin() { return GlobalValueMap.begin(); }
1325
  const_gvsummary_iterator begin() const { return GlobalValueMap.begin(); }
1326
  gvsummary_iterator end() { return GlobalValueMap.end(); }
1327
  const_gvsummary_iterator end() const { return GlobalValueMap.end(); }
1328
  size_t size() const { return GlobalValueMap.size(); }
1329
 
1330
  const std::vector<uint64_t> &stackIds() const { return StackIds; }
1331
 
1332
  unsigned addOrGetStackIdIndex(uint64_t StackId) {
1333
    auto Inserted = StackIdToIndex.insert({StackId, StackIds.size()});
1334
    if (Inserted.second)
1335
      StackIds.push_back(StackId);
1336
    return Inserted.first->second;
1337
  }
1338
 
1339
  uint64_t getStackIdAtIndex(unsigned Index) const {
1340
    assert(StackIds.size() > Index);
1341
    return StackIds[Index];
1342
  }
1343
 
1344
  // Facility to release memory from data structures only needed during index
1345
  // construction (including while building combined index). Currently this only
1346
  // releases the temporary map used while constructing a correspondence between
1347
  // stack ids and their index in the StackIds vector. Mostly impactful when
1348
  // building a large combined index.
1349
  void releaseTemporaryMemory() {
1350
    assert(StackIdToIndex.size() == StackIds.size());
1351
    StackIdToIndex.clear();
1352
    StackIds.shrink_to_fit();
1353
  }
1354
 
1355
  /// Convenience function for doing a DFS on a ValueInfo. Marks the function in
1356
  /// the FunctionHasParent map.
1357
  static void discoverNodes(ValueInfo V,
1358
                            std::map<ValueInfo, bool> &FunctionHasParent) {
1359
    if (!V.getSummaryList().size())
1360
      return; // skip external functions that don't have summaries
1361
 
1362
    // Mark discovered if we haven't yet
1363
    auto S = FunctionHasParent.emplace(V, false);
1364
 
1365
    // Stop if we've already discovered this node
1366
    if (!S.second)
1367
      return;
1368
 
1369
    FunctionSummary *F =
1370
        dyn_cast<FunctionSummary>(V.getSummaryList().front().get());
1371
    assert(F != nullptr && "Expected FunctionSummary node");
1372
 
1373
    for (const auto &C : F->calls()) {
1374
      // Insert node if necessary
1375
      auto S = FunctionHasParent.emplace(C.first, true);
1376
 
1377
      // Skip nodes that we're sure have parents
1378
      if (!S.second && S.first->second)
1379
        continue;
1380
 
1381
      if (S.second)
1382
        discoverNodes(C.first, FunctionHasParent);
1383
      else
1384
        S.first->second = true;
1385
    }
1386
  }
1387
 
1388
  // Calculate the callgraph root
1389
  FunctionSummary calculateCallGraphRoot() {
1390
    // Functions that have a parent will be marked in FunctionHasParent pair.
1391
    // Once we've marked all functions, the functions in the map that are false
1392
    // have no parent (so they're the roots)
1393
    std::map<ValueInfo, bool> FunctionHasParent;
1394
 
1395
    for (auto &S : *this) {
1396
      // Skip external functions
1397
      if (!S.second.SummaryList.size() ||
1398
          !isa<FunctionSummary>(S.second.SummaryList.front().get()))
1399
        continue;
1400
      discoverNodes(ValueInfo(HaveGVs, &S), FunctionHasParent);
1401
    }
1402
 
1403
    std::vector<FunctionSummary::EdgeTy> Edges;
1404
    // create edges to all roots in the Index
1405
    for (auto &P : FunctionHasParent) {
1406
      if (P.second)
1407
        continue; // skip over non-root nodes
1408
      Edges.push_back(std::make_pair(P.first, CalleeInfo{}));
1409
    }
1410
    if (Edges.empty()) {
1411
      // Failed to find root - return an empty node
1412
      return FunctionSummary::makeDummyFunctionSummary({});
1413
    }
1414
    auto CallGraphRoot = FunctionSummary::makeDummyFunctionSummary(Edges);
1415
    return CallGraphRoot;
1416
  }
1417
 
1418
  bool withGlobalValueDeadStripping() const {
1419
    return WithGlobalValueDeadStripping;
1420
  }
1421
  void setWithGlobalValueDeadStripping() {
1422
    WithGlobalValueDeadStripping = true;
1423
  }
1424
 
1425
  bool withAttributePropagation() const { return WithAttributePropagation; }
1426
  void setWithAttributePropagation() {
1427
    WithAttributePropagation = true;
1428
  }
1429
 
1430
  bool withDSOLocalPropagation() const { return WithDSOLocalPropagation; }
1431
  void setWithDSOLocalPropagation() { WithDSOLocalPropagation = true; }
1432
 
1433
  bool withWholeProgramVisibility() const { return WithWholeProgramVisibility; }
1434
  void setWithWholeProgramVisibility() { WithWholeProgramVisibility = true; }
1435
 
1436
  bool isReadOnly(const GlobalVarSummary *GVS) const {
1437
    return WithAttributePropagation && GVS->maybeReadOnly();
1438
  }
1439
  bool isWriteOnly(const GlobalVarSummary *GVS) const {
1440
    return WithAttributePropagation && GVS->maybeWriteOnly();
1441
  }
1442
 
1443
  bool hasSyntheticEntryCounts() const { return HasSyntheticEntryCounts; }
1444
  void setHasSyntheticEntryCounts() { HasSyntheticEntryCounts = true; }
1445
 
1446
  bool skipModuleByDistributedBackend() const {
1447
    return SkipModuleByDistributedBackend;
1448
  }
1449
  void setSkipModuleByDistributedBackend() {
1450
    SkipModuleByDistributedBackend = true;
1451
  }
1452
 
1453
  bool enableSplitLTOUnit() const { return EnableSplitLTOUnit; }
1454
  void setEnableSplitLTOUnit() { EnableSplitLTOUnit = true; }
1455
 
1456
  bool partiallySplitLTOUnits() const { return PartiallySplitLTOUnits; }
1457
  void setPartiallySplitLTOUnits() { PartiallySplitLTOUnits = true; }
1458
 
1459
  bool hasParamAccess() const { return HasParamAccess; }
1460
 
1461
  bool isGlobalValueLive(const GlobalValueSummary *GVS) const {
1462
    return !WithGlobalValueDeadStripping || GVS->isLive();
1463
  }
1464
  bool isGUIDLive(GlobalValue::GUID GUID) const;
1465
 
1466
  /// Return a ValueInfo for the index value_type (convenient when iterating
1467
  /// index).
1468
  ValueInfo getValueInfo(const GlobalValueSummaryMapTy::value_type &R) const {
1469
    return ValueInfo(HaveGVs, &R);
1470
  }
1471
 
1472
  /// Return a ValueInfo for GUID if it exists, otherwise return ValueInfo().
1473
  ValueInfo getValueInfo(GlobalValue::GUID GUID) const {
1474
    auto I = GlobalValueMap.find(GUID);
1475
    return ValueInfo(HaveGVs, I == GlobalValueMap.end() ? nullptr : &*I);
1476
  }
1477
 
1478
  /// Return a ValueInfo for \p GUID.
1479
  ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID) {
1480
    return ValueInfo(HaveGVs, getOrInsertValuePtr(GUID));
1481
  }
1482
 
1483
  // Save a string in the Index. Use before passing Name to
1484
  // getOrInsertValueInfo when the string isn't owned elsewhere (e.g. on the
1485
  // module's Strtab).
1486
  StringRef saveString(StringRef String) { return Saver.save(String); }
1487
 
1488
  /// Return a ValueInfo for \p GUID setting value \p Name.
1489
  ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID, StringRef Name) {
1490
    assert(!HaveGVs);
1491
    auto VP = getOrInsertValuePtr(GUID);
1492
    VP->second.U.Name = Name;
1493
    return ValueInfo(HaveGVs, VP);
1494
  }
1495
 
1496
  /// Return a ValueInfo for \p GV and mark it as belonging to GV.
1497
  ValueInfo getOrInsertValueInfo(const GlobalValue *GV) {
1498
    assert(HaveGVs);
1499
    auto VP = getOrInsertValuePtr(GV->getGUID());
1500
    VP->second.U.GV = GV;
1501
    return ValueInfo(HaveGVs, VP);
1502
  }
1503
 
1504
  /// Return the GUID for \p OriginalId in the OidGuidMap.
1505
  GlobalValue::GUID getGUIDFromOriginalID(GlobalValue::GUID OriginalID) const {
1506
    const auto I = OidGuidMap.find(OriginalID);
1507
    return I == OidGuidMap.end() ? 0 : I->second;
1508
  }
1509
 
1510
  std::set<std::string> &cfiFunctionDefs() { return CfiFunctionDefs; }
1511
  const std::set<std::string> &cfiFunctionDefs() const { return CfiFunctionDefs; }
1512
 
1513
  std::set<std::string> &cfiFunctionDecls() { return CfiFunctionDecls; }
1514
  const std::set<std::string> &cfiFunctionDecls() const { return CfiFunctionDecls; }
1515
 
1516
  /// Add a global value summary for a value.
1517
  void addGlobalValueSummary(const GlobalValue &GV,
1518
                             std::unique_ptr<GlobalValueSummary> Summary) {
1519
    addGlobalValueSummary(getOrInsertValueInfo(&GV), std::move(Summary));
1520
  }
1521
 
1522
  /// Add a global value summary for a value of the given name.
1523
  void addGlobalValueSummary(StringRef ValueName,
1524
                             std::unique_ptr<GlobalValueSummary> Summary) {
1525
    addGlobalValueSummary(getOrInsertValueInfo(GlobalValue::getGUID(ValueName)),
1526
                          std::move(Summary));
1527
  }
1528
 
1529
  /// Add a global value summary for the given ValueInfo.
1530
  void addGlobalValueSummary(ValueInfo VI,
1531
                             std::unique_ptr<GlobalValueSummary> Summary) {
1532
    if (const FunctionSummary *FS = dyn_cast<FunctionSummary>(Summary.get()))
1533
      HasParamAccess |= !FS->paramAccesses().empty();
1534
    addOriginalName(VI.getGUID(), Summary->getOriginalName());
1535
    // Here we have a notionally const VI, but the value it points to is owned
1536
    // by the non-const *this.
1537
    const_cast<GlobalValueSummaryMapTy::value_type *>(VI.getRef())
1538
        ->second.SummaryList.push_back(std::move(Summary));
1539
  }
1540
 
1541
  /// Add an original name for the value of the given GUID.
1542
  void addOriginalName(GlobalValue::GUID ValueGUID,
1543
                       GlobalValue::GUID OrigGUID) {
1544
    if (OrigGUID == 0 || ValueGUID == OrigGUID)
1545
      return;
1546
    if (OidGuidMap.count(OrigGUID) && OidGuidMap[OrigGUID] != ValueGUID)
1547
      OidGuidMap[OrigGUID] = 0;
1548
    else
1549
      OidGuidMap[OrigGUID] = ValueGUID;
1550
  }
1551
 
1552
  /// Find the summary for ValueInfo \p VI in module \p ModuleId, or nullptr if
1553
  /// not found.
1554
  GlobalValueSummary *findSummaryInModule(ValueInfo VI, StringRef ModuleId) const {
1555
    auto SummaryList = VI.getSummaryList();
1556
    auto Summary =
1557
        llvm::find_if(SummaryList,
1558
                      [&](const std::unique_ptr<GlobalValueSummary> &Summary) {
1559
                        return Summary->modulePath() == ModuleId;
1560
                      });
1561
    if (Summary == SummaryList.end())
1562
      return nullptr;
1563
    return Summary->get();
1564
  }
1565
 
1566
  /// Find the summary for global \p GUID in module \p ModuleId, or nullptr if
1567
  /// not found.
1568
  GlobalValueSummary *findSummaryInModule(GlobalValue::GUID ValueGUID,
1569
                                          StringRef ModuleId) const {
1570
    auto CalleeInfo = getValueInfo(ValueGUID);
1571
    if (!CalleeInfo)
1572
      return nullptr; // This function does not have a summary
1573
    return findSummaryInModule(CalleeInfo, ModuleId);
1574
  }
1575
 
1576
  /// Returns the first GlobalValueSummary for \p GV, asserting that there
1577
  /// is only one if \p PerModuleIndex.
1578
  GlobalValueSummary *getGlobalValueSummary(const GlobalValue &GV,
1579
                                            bool PerModuleIndex = true) const {
1580
    assert(GV.hasName() && "Can't get GlobalValueSummary for GV with no name");
1581
    return getGlobalValueSummary(GV.getGUID(), PerModuleIndex);
1582
  }
1583
 
1584
  /// Returns the first GlobalValueSummary for \p ValueGUID, asserting that
1585
  /// there
1586
  /// is only one if \p PerModuleIndex.
1587
  GlobalValueSummary *getGlobalValueSummary(GlobalValue::GUID ValueGUID,
1588
                                            bool PerModuleIndex = true) const;
1589
 
1590
  /// Table of modules, containing module hash and id.
1591
  const StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() const {
1592
    return ModulePathStringTable;
1593
  }
1594
 
1595
  /// Table of modules, containing hash and id.
1596
  StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() {
1597
    return ModulePathStringTable;
1598
  }
1599
 
1600
  /// Get the module ID recorded for the given module path.
1601
  uint64_t getModuleId(const StringRef ModPath) const {
1602
    return ModulePathStringTable.lookup(ModPath).first;
1603
  }
1604
 
1605
  /// Get the module SHA1 hash recorded for the given module path.
1606
  const ModuleHash &getModuleHash(const StringRef ModPath) const {
1607
    auto It = ModulePathStringTable.find(ModPath);
1608
    assert(It != ModulePathStringTable.end() && "Module not registered");
1609
    return It->second.second;
1610
  }
1611
 
1612
  /// Convenience method for creating a promoted global name
1613
  /// for the given value name of a local, and its original module's ID.
1614
  static std::string getGlobalNameForLocal(StringRef Name, ModuleHash ModHash) {
1615
    std::string Suffix = utostr((uint64_t(ModHash[0]) << 32) |
1616
                                ModHash[1]); // Take the first 64 bits
1617
    return getGlobalNameForLocal(Name, Suffix);
1618
  }
1619
 
1620
  static std::string getGlobalNameForLocal(StringRef Name, StringRef Suffix) {
1621
    SmallString<256> NewName(Name);
1622
    NewName += ".llvm.";
1623
    NewName += Suffix;
1624
    return std::string(NewName.str());
1625
  }
1626
 
1627
  /// Helper to obtain the unpromoted name for a global value (or the original
1628
  /// name if not promoted). Split off the rightmost ".llvm.${hash}" suffix,
1629
  /// because it is possible in certain clients (not clang at the moment) for
1630
  /// two rounds of ThinLTO optimization and therefore promotion to occur.
1631
  static StringRef getOriginalNameBeforePromote(StringRef Name) {
1632
    std::pair<StringRef, StringRef> Pair = Name.rsplit(".llvm.");
1633
    return Pair.first;
1634
  }
1635
 
1636
  typedef ModulePathStringTableTy::value_type ModuleInfo;
1637
 
1638
  /// Add a new module with the given \p Hash, mapped to the given \p
1639
  /// ModID, and return a reference to the module.
1640
  ModuleInfo *addModule(StringRef ModPath, uint64_t ModId,
1641
                        ModuleHash Hash = ModuleHash{{0}}) {
1642
    return &*ModulePathStringTable.insert({ModPath, {ModId, Hash}}).first;
1643
  }
1644
 
1645
  /// Return module entry for module with the given \p ModPath.
1646
  ModuleInfo *getModule(StringRef ModPath) {
1647
    auto It = ModulePathStringTable.find(ModPath);
1648
    assert(It != ModulePathStringTable.end() && "Module not registered");
1649
    return &*It;
1650
  }
1651
 
1652
  /// Check if the given Module has any functions available for exporting
1653
  /// in the index. We consider any module present in the ModulePathStringTable
1654
  /// to have exported functions.
1655
  bool hasExportedFunctions(const Module &M) const {
1656
    return ModulePathStringTable.count(M.getModuleIdentifier());
1657
  }
1658
 
1659
  const TypeIdSummaryMapTy &typeIds() const { return TypeIdMap; }
1660
 
1661
  /// Return an existing or new TypeIdSummary entry for \p TypeId.
1662
  /// This accessor can mutate the map and therefore should not be used in
1663
  /// the ThinLTO backends.
1664
  TypeIdSummary &getOrInsertTypeIdSummary(StringRef TypeId) {
1665
    auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1666
    for (auto It = TidIter.first; It != TidIter.second; ++It)
1667
      if (It->second.first == TypeId)
1668
        return It->second.second;
1669
    auto It = TypeIdMap.insert(
1670
        {GlobalValue::getGUID(TypeId), {std::string(TypeId), TypeIdSummary()}});
1671
    return It->second.second;
1672
  }
1673
 
1674
  /// This returns either a pointer to the type id summary (if present in the
1675
  /// summary map) or null (if not present). This may be used when importing.
1676
  const TypeIdSummary *getTypeIdSummary(StringRef TypeId) const {
1677
    auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1678
    for (auto It = TidIter.first; It != TidIter.second; ++It)
1679
      if (It->second.first == TypeId)
1680
        return &It->second.second;
1681
    return nullptr;
1682
  }
1683
 
1684
  TypeIdSummary *getTypeIdSummary(StringRef TypeId) {
1685
    return const_cast<TypeIdSummary *>(
1686
        static_cast<const ModuleSummaryIndex *>(this)->getTypeIdSummary(
1687
            TypeId));
1688
  }
1689
 
1690
  const auto &typeIdCompatibleVtableMap() const {
1691
    return TypeIdCompatibleVtableMap;
1692
  }
1693
 
1694
  /// Return an existing or new TypeIdCompatibleVtableMap entry for \p TypeId.
1695
  /// This accessor can mutate the map and therefore should not be used in
1696
  /// the ThinLTO backends.
1697
  TypeIdCompatibleVtableInfo &
1698
  getOrInsertTypeIdCompatibleVtableSummary(StringRef TypeId) {
1699
    return TypeIdCompatibleVtableMap[std::string(TypeId)];
1700
  }
1701
 
1702
  /// For the given \p TypeId, this returns the TypeIdCompatibleVtableMap
1703
  /// entry if present in the summary map. This may be used when importing.
1704
  std::optional<TypeIdCompatibleVtableInfo>
1705
  getTypeIdCompatibleVtableSummary(StringRef TypeId) const {
1706
    auto I = TypeIdCompatibleVtableMap.find(TypeId);
1707
    if (I == TypeIdCompatibleVtableMap.end())
1708
      return std::nullopt;
1709
    return I->second;
1710
  }
1711
 
1712
  /// Collect for the given module the list of functions it defines
1713
  /// (GUID -> Summary).
1714
  void collectDefinedFunctionsForModule(StringRef ModulePath,
1715
                                        GVSummaryMapTy &GVSummaryMap) const;
1716
 
1717
  /// Collect for each module the list of Summaries it defines (GUID ->
1718
  /// Summary).
1719
  template <class Map>
1720
  void
1721
  collectDefinedGVSummariesPerModule(Map &ModuleToDefinedGVSummaries) const {
1722
    for (const auto &GlobalList : *this) {
1723
      auto GUID = GlobalList.first;
1724
      for (const auto &Summary : GlobalList.second.SummaryList) {
1725
        ModuleToDefinedGVSummaries[Summary->modulePath()][GUID] = Summary.get();
1726
      }
1727
    }
1728
  }
1729
 
1730
  /// Print to an output stream.
1731
  void print(raw_ostream &OS, bool IsForDebug = false) const;
1732
 
1733
  /// Dump to stderr (for debugging).
1734
  void dump() const;
1735
 
1736
  /// Export summary to dot file for GraphViz.
1737
  void
1738
  exportToDot(raw_ostream &OS,
1739
              const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) const;
1740
 
1741
  /// Print out strongly connected components for debugging.
1742
  void dumpSCCs(raw_ostream &OS);
1743
 
1744
  /// Do the access attribute and DSOLocal propagation in combined index.
1745
  void propagateAttributes(const DenseSet<GlobalValue::GUID> &PreservedSymbols);
1746
 
1747
  /// Checks if we can import global variable from another module.
1748
  bool canImportGlobalVar(GlobalValueSummary *S, bool AnalyzeRefs) const;
1749
};
1750
 
1751
/// GraphTraits definition to build SCC for the index
1752
template <> struct GraphTraits<ValueInfo> {
1753
  typedef ValueInfo NodeRef;
1754
  using EdgeRef = FunctionSummary::EdgeTy &;
1755
 
1756
  static NodeRef valueInfoFromEdge(FunctionSummary::EdgeTy &P) {
1757
    return P.first;
1758
  }
1759
  using ChildIteratorType =
1760
      mapped_iterator<std::vector<FunctionSummary::EdgeTy>::iterator,
1761
                      decltype(&valueInfoFromEdge)>;
1762
 
1763
  using ChildEdgeIteratorType = std::vector<FunctionSummary::EdgeTy>::iterator;
1764
 
1765
  static NodeRef getEntryNode(ValueInfo V) { return V; }
1766
 
1767
  static ChildIteratorType child_begin(NodeRef N) {
1768
    if (!N.getSummaryList().size()) // handle external function
1769
      return ChildIteratorType(
1770
          FunctionSummary::ExternalNode.CallGraphEdgeList.begin(),
1771
          &valueInfoFromEdge);
1772
    FunctionSummary *F =
1773
        cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1774
    return ChildIteratorType(F->CallGraphEdgeList.begin(), &valueInfoFromEdge);
1775
  }
1776
 
1777
  static ChildIteratorType child_end(NodeRef N) {
1778
    if (!N.getSummaryList().size()) // handle external function
1779
      return ChildIteratorType(
1780
          FunctionSummary::ExternalNode.CallGraphEdgeList.end(),
1781
          &valueInfoFromEdge);
1782
    FunctionSummary *F =
1783
        cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1784
    return ChildIteratorType(F->CallGraphEdgeList.end(), &valueInfoFromEdge);
1785
  }
1786
 
1787
  static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
1788
    if (!N.getSummaryList().size()) // handle external function
1789
      return FunctionSummary::ExternalNode.CallGraphEdgeList.begin();
1790
 
1791
    FunctionSummary *F =
1792
        cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1793
    return F->CallGraphEdgeList.begin();
1794
  }
1795
 
1796
  static ChildEdgeIteratorType child_edge_end(NodeRef N) {
1797
    if (!N.getSummaryList().size()) // handle external function
1798
      return FunctionSummary::ExternalNode.CallGraphEdgeList.end();
1799
 
1800
    FunctionSummary *F =
1801
        cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1802
    return F->CallGraphEdgeList.end();
1803
  }
1804
 
1805
  static NodeRef edge_dest(EdgeRef E) { return E.first; }
1806
};
1807
 
1808
template <>
1809
struct GraphTraits<ModuleSummaryIndex *> : public GraphTraits<ValueInfo> {
1810
  static NodeRef getEntryNode(ModuleSummaryIndex *I) {
1811
    std::unique_ptr<GlobalValueSummary> Root =
1812
        std::make_unique<FunctionSummary>(I->calculateCallGraphRoot());
1813
    GlobalValueSummaryInfo G(I->haveGVs());
1814
    G.SummaryList.push_back(std::move(Root));
1815
    static auto P =
1816
        GlobalValueSummaryMapTy::value_type(GlobalValue::GUID(0), std::move(G));
1817
    return ValueInfo(I->haveGVs(), &P);
1818
  }
1819
};
1820
} // end namespace llvm
1821
 
1822
#endif // LLVM_IR_MODULESUMMARYINDEX_H