Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the declaration of the Instruction class, which is the
10
// base class for all of the LLVM instructions.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_IR_INSTRUCTION_H
15
#define LLVM_IR_INSTRUCTION_H
16
 
17
#include "llvm/ADT/ArrayRef.h"
18
#include "llvm/ADT/Bitfields.h"
19
#include "llvm/ADT/StringRef.h"
20
#include "llvm/ADT/ilist_node.h"
21
#include "llvm/IR/DebugLoc.h"
22
#include "llvm/IR/SymbolTableListTraits.h"
23
#include "llvm/IR/User.h"
24
#include "llvm/IR/Value.h"
25
#include "llvm/Support/AtomicOrdering.h"
26
#include <cstdint>
27
#include <utility>
28
 
29
namespace llvm {
30
 
31
class BasicBlock;
32
class FastMathFlags;
33
class MDNode;
34
class Module;
35
struct AAMDNodes;
36
 
37
template <> struct ilist_alloc_traits<Instruction> {
38
  static inline void deleteNode(Instruction *V);
39
};
40
 
41
class Instruction : public User,
42
                    public ilist_node_with_parent<Instruction, BasicBlock> {
43
  BasicBlock *Parent;
44
  DebugLoc DbgLoc;                         // 'dbg' Metadata cache.
45
 
46
  /// Relative order of this instruction in its parent basic block. Used for
47
  /// O(1) local dominance checks between instructions.
48
  mutable unsigned Order = 0;
49
 
50
protected:
51
  // The 15 first bits of `Value::SubclassData` are available for subclasses of
52
  // `Instruction` to use.
53
  using OpaqueField = Bitfield::Element<uint16_t, 0, 15>;
54
 
55
  // Template alias so that all Instruction storing alignment use the same
56
  // definiton.
57
  // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent =
58
  // 2^32. We store them as Log2(Alignment), so we need 6 bits to encode the 33
59
  // possible values.
60
  template <unsigned Offset>
61
  using AlignmentBitfieldElementT =
62
      typename Bitfield::Element<unsigned, Offset, 6,
63
                                 Value::MaxAlignmentExponent>;
64
 
65
  template <unsigned Offset>
66
  using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>;
67
 
68
  template <unsigned Offset>
69
  using AtomicOrderingBitfieldElementT =
70
      typename Bitfield::Element<AtomicOrdering, Offset, 3,
71
                                 AtomicOrdering::LAST>;
72
 
73
private:
74
  // The last bit is used to store whether the instruction has metadata attached
75
  // or not.
76
  using HasMetadataField = Bitfield::Element<bool, 15, 1>;
77
 
78
protected:
79
  ~Instruction(); // Use deleteValue() to delete a generic Instruction.
80
 
81
public:
82
  Instruction(const Instruction &) = delete;
83
  Instruction &operator=(const Instruction &) = delete;
84
 
85
  /// Specialize the methods defined in Value, as we know that an instruction
86
  /// can only be used by other instructions.
87
  Instruction       *user_back()       { return cast<Instruction>(*user_begin());}
88
  const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
89
 
90
  inline const BasicBlock *getParent() const { return Parent; }
91
  inline       BasicBlock *getParent()       { return Parent; }
92
 
93
  /// Return the module owning the function this instruction belongs to
94
  /// or nullptr it the function does not have a module.
95
  ///
96
  /// Note: this is undefined behavior if the instruction does not have a
97
  /// parent, or the parent basic block does not have a parent function.
98
  const Module *getModule() const;
99
  Module *getModule() {
100
    return const_cast<Module *>(
101
                           static_cast<const Instruction *>(this)->getModule());
102
  }
103
 
104
  /// Return the function this instruction belongs to.
105
  ///
106
  /// Note: it is undefined behavior to call this on an instruction not
107
  /// currently inserted into a function.
108
  const Function *getFunction() const;
109
  Function *getFunction() {
110
    return const_cast<Function *>(
111
                         static_cast<const Instruction *>(this)->getFunction());
112
  }
113
 
114
  /// This method unlinks 'this' from the containing basic block, but does not
115
  /// delete it.
116
  void removeFromParent();
117
 
118
  /// This method unlinks 'this' from the containing basic block and deletes it.
119
  ///
120
  /// \returns an iterator pointing to the element after the erased one
121
  SymbolTableList<Instruction>::iterator eraseFromParent();
122
 
123
  /// Insert an unlinked instruction into a basic block immediately before
124
  /// the specified instruction.
125
  void insertBefore(Instruction *InsertPos);
126
 
127
  /// Insert an unlinked instruction into a basic block immediately after the
128
  /// specified instruction.
129
  void insertAfter(Instruction *InsertPos);
130
 
131
  /// Inserts an unlinked instruction into \p ParentBB at position \p It and
132
  /// returns the iterator of the inserted instruction.
133
  SymbolTableList<Instruction>::iterator
134
  insertInto(BasicBlock *ParentBB, SymbolTableList<Instruction>::iterator It);
135
 
136
  /// Unlink this instruction from its current basic block and insert it into
137
  /// the basic block that MovePos lives in, right before MovePos.
138
  void moveBefore(Instruction *MovePos);
139
 
140
  /// Unlink this instruction and insert into BB before I.
141
  ///
142
  /// \pre I is a valid iterator into BB.
143
  void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
144
 
145
  /// Unlink this instruction from its current basic block and insert it into
146
  /// the basic block that MovePos lives in, right after MovePos.
147
  void moveAfter(Instruction *MovePos);
148
 
149
  /// Given an instruction Other in the same basic block as this instruction,
150
  /// return true if this instruction comes before Other. In this worst case,
151
  /// this takes linear time in the number of instructions in the block. The
152
  /// results are cached, so in common cases when the block remains unmodified,
153
  /// it takes constant time.
154
  bool comesBefore(const Instruction *Other) const;
155
 
156
  /// Get the first insertion point at which the result of this instruction
157
  /// is defined. This is *not* the directly following instruction in a number
158
  /// of cases, e.g. phi nodes or terminators that return values. This function
159
  /// may return null if the insertion after the definition is not possible,
160
  /// e.g. due to a catchswitch terminator.
161
  Instruction *getInsertionPointAfterDef();
162
 
163
  //===--------------------------------------------------------------------===//
164
  // Subclass classification.
165
  //===--------------------------------------------------------------------===//
166
 
167
  /// Returns a member of one of the enums like Instruction::Add.
168
  unsigned getOpcode() const { return getValueID() - InstructionVal; }
169
 
170
  const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
171
  bool isTerminator() const { return isTerminator(getOpcode()); }
172
  bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
173
  bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
174
  bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
175
  bool isShift() const { return isShift(getOpcode()); }
176
  bool isCast() const { return isCast(getOpcode()); }
177
  bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
178
  bool isExceptionalTerminator() const {
179
    return isExceptionalTerminator(getOpcode());
180
  }
181
 
182
  /// It checks if this instruction is the only user of at least one of
183
  /// its operands.
184
  bool isOnlyUserOfAnyOperand();
185
 
186
  static const char* getOpcodeName(unsigned OpCode);
187
 
188
  static inline bool isTerminator(unsigned OpCode) {
189
    return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
190
  }
191
 
192
  static inline bool isUnaryOp(unsigned Opcode) {
193
    return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
194
  }
195
  static inline bool isBinaryOp(unsigned Opcode) {
196
    return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
197
  }
198
 
199
  static inline bool isIntDivRem(unsigned Opcode) {
200
    return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
201
  }
202
 
203
  /// Determine if the Opcode is one of the shift instructions.
204
  static inline bool isShift(unsigned Opcode) {
205
    return Opcode >= Shl && Opcode <= AShr;
206
  }
207
 
208
  /// Return true if this is a logical shift left or a logical shift right.
209
  inline bool isLogicalShift() const {
210
    return getOpcode() == Shl || getOpcode() == LShr;
211
  }
212
 
213
  /// Return true if this is an arithmetic shift right.
214
  inline bool isArithmeticShift() const {
215
    return getOpcode() == AShr;
216
  }
217
 
218
  /// Determine if the Opcode is and/or/xor.
219
  static inline bool isBitwiseLogicOp(unsigned Opcode) {
220
    return Opcode == And || Opcode == Or || Opcode == Xor;
221
  }
222
 
223
  /// Return true if this is and/or/xor.
224
  inline bool isBitwiseLogicOp() const {
225
    return isBitwiseLogicOp(getOpcode());
226
  }
227
 
228
  /// Determine if the OpCode is one of the CastInst instructions.
229
  static inline bool isCast(unsigned OpCode) {
230
    return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
231
  }
232
 
233
  /// Determine if the OpCode is one of the FuncletPadInst instructions.
234
  static inline bool isFuncletPad(unsigned OpCode) {
235
    return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
236
  }
237
 
238
  /// Returns true if the OpCode is a terminator related to exception handling.
239
  static inline bool isExceptionalTerminator(unsigned OpCode) {
240
    switch (OpCode) {
241
    case Instruction::CatchSwitch:
242
    case Instruction::CatchRet:
243
    case Instruction::CleanupRet:
244
    case Instruction::Invoke:
245
    case Instruction::Resume:
246
      return true;
247
    default:
248
      return false;
249
    }
250
  }
251
 
252
  //===--------------------------------------------------------------------===//
253
  // Metadata manipulation.
254
  //===--------------------------------------------------------------------===//
255
 
256
  /// Return true if this instruction has any metadata attached to it.
257
  bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); }
258
 
259
  /// Return true if this instruction has metadata attached to it other than a
260
  /// debug location.
261
  bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); }
262
 
263
  /// Return true if this instruction has the given type of metadata attached.
264
  bool hasMetadata(unsigned KindID) const {
265
    return getMetadata(KindID) != nullptr;
266
  }
267
 
268
  /// Return true if this instruction has the given type of metadata attached.
269
  bool hasMetadata(StringRef Kind) const {
270
    return getMetadata(Kind) != nullptr;
271
  }
272
 
273
  /// Get the metadata of given kind attached to this Instruction.
274
  /// If the metadata is not found then return null.
275
  MDNode *getMetadata(unsigned KindID) const {
276
    if (!hasMetadata()) return nullptr;
277
    return getMetadataImpl(KindID);
278
  }
279
 
280
  /// Get the metadata of given kind attached to this Instruction.
281
  /// If the metadata is not found then return null.
282
  MDNode *getMetadata(StringRef Kind) const {
283
    if (!hasMetadata()) return nullptr;
284
    return getMetadataImpl(Kind);
285
  }
286
 
287
  /// Get all metadata attached to this Instruction. The first element of each
288
  /// pair returned is the KindID, the second element is the metadata value.
289
  /// This list is returned sorted by the KindID.
290
  void
291
  getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
292
    if (hasMetadata())
293
      getAllMetadataImpl(MDs);
294
  }
295
 
296
  /// This does the same thing as getAllMetadata, except that it filters out the
297
  /// debug location.
298
  void getAllMetadataOtherThanDebugLoc(
299
      SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
300
    Value::getAllMetadata(MDs);
301
  }
302
 
303
  /// Set the metadata of the specified kind to the specified node. This updates
304
  /// or replaces metadata if already present, or removes it if Node is null.
305
  void setMetadata(unsigned KindID, MDNode *Node);
306
  void setMetadata(StringRef Kind, MDNode *Node);
307
 
308
  /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
309
  /// specifies the list of meta data that needs to be copied. If \p WL is
310
  /// empty, all meta data will be copied.
311
  void copyMetadata(const Instruction &SrcInst,
312
                    ArrayRef<unsigned> WL = ArrayRef<unsigned>());
313
 
314
  /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
315
  /// has three operands (including name string), swap the order of the
316
  /// metadata.
317
  void swapProfMetadata();
318
 
319
  /// Drop all unknown metadata except for debug locations.
320
  /// @{
321
  /// Passes are required to drop metadata they don't understand. This is a
322
  /// convenience method for passes to do so.
323
  /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of
324
  /// this API if the Instruction being modified is a call.
325
  void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
326
  void dropUnknownNonDebugMetadata() {
327
    return dropUnknownNonDebugMetadata(std::nullopt);
328
  }
329
  void dropUnknownNonDebugMetadata(unsigned ID1) {
330
    return dropUnknownNonDebugMetadata(ArrayRef(ID1));
331
  }
332
  void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
333
    unsigned IDs[] = {ID1, ID2};
334
    return dropUnknownNonDebugMetadata(IDs);
335
  }
336
  /// @}
337
 
338
  /// Adds an !annotation metadata node with \p Annotation to this instruction.
339
  /// If this instruction already has !annotation metadata, append \p Annotation
340
  /// to the existing node.
341
  void addAnnotationMetadata(StringRef Annotation);
342
 
343
  /// Returns the AA metadata for this instruction.
344
  AAMDNodes getAAMetadata() const;
345
 
346
  /// Sets the AA metadata on this instruction from the AAMDNodes structure.
347
  void setAAMetadata(const AAMDNodes &N);
348
 
349
  /// Retrieve total raw weight values of a branch.
350
  /// Returns true on success with profile total weights filled in.
351
  /// Returns false if no metadata was found.
352
  bool extractProfTotalWeight(uint64_t &TotalVal) const;
353
 
354
  /// Set the debug location information for this instruction.
355
  void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
356
 
357
  /// Return the debug location for this node as a DebugLoc.
358
  const DebugLoc &getDebugLoc() const { return DbgLoc; }
359
 
360
  /// Set or clear the nuw flag on this instruction, which must be an operator
361
  /// which supports this flag. See LangRef.html for the meaning of this flag.
362
  void setHasNoUnsignedWrap(bool b = true);
363
 
364
  /// Set or clear the nsw flag on this instruction, which must be an operator
365
  /// which supports this flag. See LangRef.html for the meaning of this flag.
366
  void setHasNoSignedWrap(bool b = true);
367
 
368
  /// Set or clear the exact flag on this instruction, which must be an operator
369
  /// which supports this flag. See LangRef.html for the meaning of this flag.
370
  void setIsExact(bool b = true);
371
 
372
  /// Determine whether the no unsigned wrap flag is set.
373
  bool hasNoUnsignedWrap() const LLVM_READONLY;
374
 
375
  /// Determine whether the no signed wrap flag is set.
376
  bool hasNoSignedWrap() const LLVM_READONLY;
377
 
378
  /// Return true if this operator has flags which may cause this instruction
379
  /// to evaluate to poison despite having non-poison inputs.
380
  bool hasPoisonGeneratingFlags() const LLVM_READONLY;
381
 
382
  /// Drops flags that may cause this instruction to evaluate to poison despite
383
  /// having non-poison inputs.
384
  void dropPoisonGeneratingFlags();
385
 
386
  /// Return true if this instruction has poison-generating metadata.
387
  bool hasPoisonGeneratingMetadata() const LLVM_READONLY;
388
 
389
  /// Drops metadata that may generate poison.
390
  void dropPoisonGeneratingMetadata();
391
 
392
  /// Return true if this instruction has poison-generating flags or metadata.
393
  bool hasPoisonGeneratingFlagsOrMetadata() const {
394
    return hasPoisonGeneratingFlags() || hasPoisonGeneratingMetadata();
395
  }
396
 
397
  /// Drops flags and metadata that may generate poison.
398
  void dropPoisonGeneratingFlagsAndMetadata() {
399
    dropPoisonGeneratingFlags();
400
    dropPoisonGeneratingMetadata();
401
  }
402
 
403
  /// This function drops non-debug unknown metadata (through
404
  /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and 
405
  /// return attributes that can cause undefined behaviour. Both of these should
406
  /// be done by passes which move instructions in IR.
407
  void
408
  dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {});
409
 
410
  /// Determine whether the exact flag is set.
411
  bool isExact() const LLVM_READONLY;
412
 
413
  /// Set or clear all fast-math-flags on this instruction, which must be an
414
  /// operator which supports this flag. See LangRef.html for the meaning of
415
  /// this flag.
416
  void setFast(bool B);
417
 
418
  /// Set or clear the reassociation flag on this instruction, which must be
419
  /// an operator which supports this flag. See LangRef.html for the meaning of
420
  /// this flag.
421
  void setHasAllowReassoc(bool B);
422
 
423
  /// Set or clear the no-nans flag on this instruction, which must be an
424
  /// operator which supports this flag. See LangRef.html for the meaning of
425
  /// this flag.
426
  void setHasNoNaNs(bool B);
427
 
428
  /// Set or clear the no-infs flag on this instruction, which must be an
429
  /// operator which supports this flag. See LangRef.html for the meaning of
430
  /// this flag.
431
  void setHasNoInfs(bool B);
432
 
433
  /// Set or clear the no-signed-zeros flag on this instruction, which must be
434
  /// an operator which supports this flag. See LangRef.html for the meaning of
435
  /// this flag.
436
  void setHasNoSignedZeros(bool B);
437
 
438
  /// Set or clear the allow-reciprocal flag on this instruction, which must be
439
  /// an operator which supports this flag. See LangRef.html for the meaning of
440
  /// this flag.
441
  void setHasAllowReciprocal(bool B);
442
 
443
  /// Set or clear the allow-contract flag on this instruction, which must be
444
  /// an operator which supports this flag. See LangRef.html for the meaning of
445
  /// this flag.
446
  void setHasAllowContract(bool B);
447
 
448
  /// Set or clear the approximate-math-functions flag on this instruction,
449
  /// which must be an operator which supports this flag. See LangRef.html for
450
  /// the meaning of this flag.
451
  void setHasApproxFunc(bool B);
452
 
453
  /// Convenience function for setting multiple fast-math flags on this
454
  /// instruction, which must be an operator which supports these flags. See
455
  /// LangRef.html for the meaning of these flags.
456
  void setFastMathFlags(FastMathFlags FMF);
457
 
458
  /// Convenience function for transferring all fast-math flag values to this
459
  /// instruction, which must be an operator which supports these flags. See
460
  /// LangRef.html for the meaning of these flags.
461
  void copyFastMathFlags(FastMathFlags FMF);
462
 
463
  /// Determine whether all fast-math-flags are set.
464
  bool isFast() const LLVM_READONLY;
465
 
466
  /// Determine whether the allow-reassociation flag is set.
467
  bool hasAllowReassoc() const LLVM_READONLY;
468
 
469
  /// Determine whether the no-NaNs flag is set.
470
  bool hasNoNaNs() const LLVM_READONLY;
471
 
472
  /// Determine whether the no-infs flag is set.
473
  bool hasNoInfs() const LLVM_READONLY;
474
 
475
  /// Determine whether the no-signed-zeros flag is set.
476
  bool hasNoSignedZeros() const LLVM_READONLY;
477
 
478
  /// Determine whether the allow-reciprocal flag is set.
479
  bool hasAllowReciprocal() const LLVM_READONLY;
480
 
481
  /// Determine whether the allow-contract flag is set.
482
  bool hasAllowContract() const LLVM_READONLY;
483
 
484
  /// Determine whether the approximate-math-functions flag is set.
485
  bool hasApproxFunc() const LLVM_READONLY;
486
 
487
  /// Convenience function for getting all the fast-math flags, which must be an
488
  /// operator which supports these flags. See LangRef.html for the meaning of
489
  /// these flags.
490
  FastMathFlags getFastMathFlags() const LLVM_READONLY;
491
 
492
  /// Copy I's fast-math flags
493
  void copyFastMathFlags(const Instruction *I);
494
 
495
  /// Convenience method to copy supported exact, fast-math, and (optionally)
496
  /// wrapping flags from V to this instruction.
497
  void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
498
 
499
  /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
500
  /// V and this instruction.
501
  void andIRFlags(const Value *V);
502
 
503
  /// Merge 2 debug locations and apply it to the Instruction. If the
504
  /// instruction is a CallIns, we need to traverse the inline chain to find
505
  /// the common scope. This is not efficient for N-way merging as each time
506
  /// you merge 2 iterations, you need to rebuild the hashmap to find the
507
  /// common scope. However, we still choose this API because:
508
  ///  1) Simplicity: it takes 2 locations instead of a list of locations.
509
  ///  2) In worst case, it increases the complexity from O(N*I) to
510
  ///     O(2*N*I), where N is # of Instructions to merge, and I is the
511
  ///     maximum level of inline stack. So it is still linear.
512
  ///  3) Merging of call instructions should be extremely rare in real
513
  ///     applications, thus the N-way merging should be in code path.
514
  /// The DebugLoc attached to this instruction will be overwritten by the
515
  /// merged DebugLoc.
516
  void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
517
 
518
  /// Updates the debug location given that the instruction has been hoisted
519
  /// from a block to a predecessor of that block.
520
  /// Note: it is undefined behavior to call this on an instruction not
521
  /// currently inserted into a function.
522
  void updateLocationAfterHoist();
523
 
524
  /// Drop the instruction's debug location. This does not guarantee removal
525
  /// of the !dbg source location attachment, as it must set a line 0 location
526
  /// with scope information attached on call instructions. To guarantee
527
  /// removal of the !dbg attachment, use the \ref setDebugLoc() API.
528
  /// Note: it is undefined behavior to call this on an instruction not
529
  /// currently inserted into a function.
530
  void dropLocation();
531
 
532
  /// Merge the DIAssignID metadata from this instruction and those attached to
533
  /// instructions in \p SourceInstructions. This process performs a RAUW on
534
  /// the MetadataAsValue uses of the merged DIAssignID nodes. Not every
535
  /// instruction in \p SourceInstructions needs to have DIAssignID
536
  /// metadata. If none of them do then nothing happens. If this instruction
537
  /// does not have a DIAssignID attachment but at least one in \p
538
  /// SourceInstructions does then the merged one will be attached to
539
  /// it. However, instructions without attachments in \p SourceInstructions
540
  /// are not modified.
541
  void mergeDIAssignID(ArrayRef<const Instruction *> SourceInstructions);
542
 
543
private:
544
  // These are all implemented in Metadata.cpp.
545
  MDNode *getMetadataImpl(unsigned KindID) const;
546
  MDNode *getMetadataImpl(StringRef Kind) const;
547
  void
548
  getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
549
 
550
  /// Update the LLVMContext ID-to-Instruction(s) mapping. If \p ID is nullptr
551
  /// then clear the mapping for this instruction.
552
  void updateDIAssignIDMapping(DIAssignID *ID);
553
 
554
public:
555
  //===--------------------------------------------------------------------===//
556
  // Predicates and helper methods.
557
  //===--------------------------------------------------------------------===//
558
 
559
  /// Return true if the instruction is associative:
560
  ///
561
  ///   Associative operators satisfy:  x op (y op z) === (x op y) op z
562
  ///
563
  /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
564
  ///
565
  bool isAssociative() const LLVM_READONLY;
566
  static bool isAssociative(unsigned Opcode) {
567
    return Opcode == And || Opcode == Or || Opcode == Xor ||
568
           Opcode == Add || Opcode == Mul;
569
  }
570
 
571
  /// Return true if the instruction is commutative:
572
  ///
573
  ///   Commutative operators satisfy: (x op y) === (y op x)
574
  ///
575
  /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
576
  /// applied to any type.
577
  ///
578
  bool isCommutative() const LLVM_READONLY;
579
  static bool isCommutative(unsigned Opcode) {
580
    switch (Opcode) {
581
    case Add: case FAdd:
582
    case Mul: case FMul:
583
    case And: case Or: case Xor:
584
      return true;
585
    default:
586
      return false;
587
  }
588
  }
589
 
590
  /// Return true if the instruction is idempotent:
591
  ///
592
  ///   Idempotent operators satisfy:  x op x === x
593
  ///
594
  /// In LLVM, the And and Or operators are idempotent.
595
  ///
596
  bool isIdempotent() const { return isIdempotent(getOpcode()); }
597
  static bool isIdempotent(unsigned Opcode) {
598
    return Opcode == And || Opcode == Or;
599
  }
600
 
601
  /// Return true if the instruction is nilpotent:
602
  ///
603
  ///   Nilpotent operators satisfy:  x op x === Id,
604
  ///
605
  ///   where Id is the identity for the operator, i.e. a constant such that
606
  ///     x op Id === x and Id op x === x for all x.
607
  ///
608
  /// In LLVM, the Xor operator is nilpotent.
609
  ///
610
  bool isNilpotent() const { return isNilpotent(getOpcode()); }
611
  static bool isNilpotent(unsigned Opcode) {
612
    return Opcode == Xor;
613
  }
614
 
615
  /// Return true if this instruction may modify memory.
616
  bool mayWriteToMemory() const LLVM_READONLY;
617
 
618
  /// Return true if this instruction may read memory.
619
  bool mayReadFromMemory() const LLVM_READONLY;
620
 
621
  /// Return true if this instruction may read or write memory.
622
  bool mayReadOrWriteMemory() const {
623
    return mayReadFromMemory() || mayWriteToMemory();
624
  }
625
 
626
  /// Return true if this instruction has an AtomicOrdering of unordered or
627
  /// higher.
628
  bool isAtomic() const LLVM_READONLY;
629
 
630
  /// Return true if this atomic instruction loads from memory.
631
  bool hasAtomicLoad() const LLVM_READONLY;
632
 
633
  /// Return true if this atomic instruction stores to memory.
634
  bool hasAtomicStore() const LLVM_READONLY;
635
 
636
  /// Return true if this instruction has a volatile memory access.
637
  bool isVolatile() const LLVM_READONLY;
638
 
639
  /// Return true if this instruction may throw an exception.
640
  bool mayThrow() const LLVM_READONLY;
641
 
642
  /// Return true if this instruction behaves like a memory fence: it can load
643
  /// or store to memory location without being given a memory location.
644
  bool isFenceLike() const {
645
    switch (getOpcode()) {
646
    default:
647
      return false;
648
    // This list should be kept in sync with the list in mayWriteToMemory for
649
    // all opcodes which don't have a memory location.
650
    case Instruction::Fence:
651
    case Instruction::CatchPad:
652
    case Instruction::CatchRet:
653
    case Instruction::Call:
654
    case Instruction::Invoke:
655
      return true;
656
    }
657
  }
658
 
659
  /// Return true if the instruction may have side effects.
660
  ///
661
  /// Side effects are:
662
  ///  * Writing to memory.
663
  ///  * Unwinding.
664
  ///  * Not returning (e.g. an infinite loop).
665
  ///
666
  /// Note that this does not consider malloc and alloca to have side
667
  /// effects because the newly allocated memory is completely invisible to
668
  /// instructions which don't use the returned value.  For cases where this
669
  /// matters, isSafeToSpeculativelyExecute may be more appropriate.
670
  bool mayHaveSideEffects() const LLVM_READONLY;
671
 
672
  /// Return true if the instruction can be removed if the result is unused.
673
  ///
674
  /// When constant folding some instructions cannot be removed even if their
675
  /// results are unused. Specifically terminator instructions and calls that
676
  /// may have side effects cannot be removed without semantically changing the
677
  /// generated program.
678
  bool isSafeToRemove() const LLVM_READONLY;
679
 
680
  /// Return true if the instruction will return (unwinding is considered as
681
  /// a form of returning control flow here).
682
  bool willReturn() const LLVM_READONLY;
683
 
684
  /// Return true if the instruction is a variety of EH-block.
685
  bool isEHPad() const {
686
    switch (getOpcode()) {
687
    case Instruction::CatchSwitch:
688
    case Instruction::CatchPad:
689
    case Instruction::CleanupPad:
690
    case Instruction::LandingPad:
691
      return true;
692
    default:
693
      return false;
694
    }
695
  }
696
 
697
  /// Return true if the instruction is a llvm.lifetime.start or
698
  /// llvm.lifetime.end marker.
699
  bool isLifetimeStartOrEnd() const LLVM_READONLY;
700
 
701
  /// Return true if the instruction is a llvm.launder.invariant.group or
702
  /// llvm.strip.invariant.group.
703
  bool isLaunderOrStripInvariantGroup() const LLVM_READONLY;
704
 
705
  /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst.
706
  bool isDebugOrPseudoInst() const LLVM_READONLY;
707
 
708
  /// Return a pointer to the next non-debug instruction in the same basic
709
  /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
710
  /// operations if \c SkipPseudoOp is true.
711
  const Instruction *
712
  getNextNonDebugInstruction(bool SkipPseudoOp = false) const;
713
  Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) {
714
    return const_cast<Instruction *>(
715
        static_cast<const Instruction *>(this)->getNextNonDebugInstruction(
716
            SkipPseudoOp));
717
  }
718
 
719
  /// Return a pointer to the previous non-debug instruction in the same basic
720
  /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
721
  /// operations if \c SkipPseudoOp is true.
722
  const Instruction *
723
  getPrevNonDebugInstruction(bool SkipPseudoOp = false) const;
724
  Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) {
725
    return const_cast<Instruction *>(
726
        static_cast<const Instruction *>(this)->getPrevNonDebugInstruction(
727
            SkipPseudoOp));
728
  }
729
 
730
  /// Create a copy of 'this' instruction that is identical in all ways except
731
  /// the following:
732
  ///   * The instruction has no parent
733
  ///   * The instruction has no name
734
  ///
735
  Instruction *clone() const;
736
 
737
  /// Return true if the specified instruction is exactly identical to the
738
  /// current one. This means that all operands match and any extra information
739
  /// (e.g. load is volatile) agree.
740
  bool isIdenticalTo(const Instruction *I) const LLVM_READONLY;
741
 
742
  /// This is like isIdenticalTo, except that it ignores the
743
  /// SubclassOptionalData flags, which may specify conditions under which the
744
  /// instruction's result is undefined.
745
  bool isIdenticalToWhenDefined(const Instruction *I) const LLVM_READONLY;
746
 
747
  /// When checking for operation equivalence (using isSameOperationAs) it is
748
  /// sometimes useful to ignore certain attributes.
749
  enum OperationEquivalenceFlags {
750
    /// Check for equivalence ignoring load/store alignment.
751
    CompareIgnoringAlignment = 1<<0,
752
    /// Check for equivalence treating a type and a vector of that type
753
    /// as equivalent.
754
    CompareUsingScalarTypes = 1<<1
755
  };
756
 
757
  /// This function determines if the specified instruction executes the same
758
  /// operation as the current one. This means that the opcodes, type, operand
759
  /// types and any other factors affecting the operation must be the same. This
760
  /// is similar to isIdenticalTo except the operands themselves don't have to
761
  /// be identical.
762
  /// @returns true if the specified instruction is the same operation as
763
  /// the current one.
764
  /// Determine if one instruction is the same operation as another.
765
  bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const LLVM_READONLY;
766
 
767
  /// Return true if there are any uses of this instruction in blocks other than
768
  /// the specified block. Note that PHI nodes are considered to evaluate their
769
  /// operands in the corresponding predecessor block.
770
  bool isUsedOutsideOfBlock(const BasicBlock *BB) const LLVM_READONLY;
771
 
772
  /// Return the number of successors that this instruction has. The instruction
773
  /// must be a terminator.
774
  unsigned getNumSuccessors() const LLVM_READONLY;
775
 
776
  /// Return the specified successor. This instruction must be a terminator.
777
  BasicBlock *getSuccessor(unsigned Idx) const LLVM_READONLY;
778
 
779
  /// Update the specified successor to point at the provided block. This
780
  /// instruction must be a terminator.
781
  void setSuccessor(unsigned Idx, BasicBlock *BB);
782
 
783
  /// Replace specified successor OldBB to point at the provided block.
784
  /// This instruction must be a terminator.
785
  void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
786
 
787
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
788
  static bool classof(const Value *V) {
789
    return V->getValueID() >= Value::InstructionVal;
790
  }
791
 
792
  //----------------------------------------------------------------------
793
  // Exported enumerations.
794
  //
795
  enum TermOps {       // These terminate basic blocks
796
#define  FIRST_TERM_INST(N)             TermOpsBegin = N,
797
#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
798
#define   LAST_TERM_INST(N)             TermOpsEnd = N+1
799
#include "llvm/IR/Instruction.def"
800
  };
801
 
802
  enum UnaryOps {
803
#define  FIRST_UNARY_INST(N)             UnaryOpsBegin = N,
804
#define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
805
#define   LAST_UNARY_INST(N)             UnaryOpsEnd = N+1
806
#include "llvm/IR/Instruction.def"
807
  };
808
 
809
  enum BinaryOps {
810
#define  FIRST_BINARY_INST(N)             BinaryOpsBegin = N,
811
#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
812
#define   LAST_BINARY_INST(N)             BinaryOpsEnd = N+1
813
#include "llvm/IR/Instruction.def"
814
  };
815
 
816
  enum MemoryOps {
817
#define  FIRST_MEMORY_INST(N)             MemoryOpsBegin = N,
818
#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
819
#define   LAST_MEMORY_INST(N)             MemoryOpsEnd = N+1
820
#include "llvm/IR/Instruction.def"
821
  };
822
 
823
  enum CastOps {
824
#define  FIRST_CAST_INST(N)             CastOpsBegin = N,
825
#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
826
#define   LAST_CAST_INST(N)             CastOpsEnd = N+1
827
#include "llvm/IR/Instruction.def"
828
  };
829
 
830
  enum FuncletPadOps {
831
#define  FIRST_FUNCLETPAD_INST(N)             FuncletPadOpsBegin = N,
832
#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
833
#define   LAST_FUNCLETPAD_INST(N)             FuncletPadOpsEnd = N+1
834
#include "llvm/IR/Instruction.def"
835
  };
836
 
837
  enum OtherOps {
838
#define  FIRST_OTHER_INST(N)             OtherOpsBegin = N,
839
#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
840
#define   LAST_OTHER_INST(N)             OtherOpsEnd = N+1
841
#include "llvm/IR/Instruction.def"
842
  };
843
 
844
private:
845
  friend class SymbolTableListTraits<Instruction>;
846
  friend class BasicBlock; // For renumbering.
847
 
848
  // Shadow Value::setValueSubclassData with a private forwarding method so that
849
  // subclasses cannot accidentally use it.
850
  void setValueSubclassData(unsigned short D) {
851
    Value::setValueSubclassData(D);
852
  }
853
 
854
  unsigned short getSubclassDataFromValue() const {
855
    return Value::getSubclassDataFromValue();
856
  }
857
 
858
  void setParent(BasicBlock *P);
859
 
860
protected:
861
  // Instruction subclasses can stick up to 15 bits of stuff into the
862
  // SubclassData field of instruction with these members.
863
 
864
  template <typename BitfieldElement>
865
  typename BitfieldElement::Type getSubclassData() const {
866
    static_assert(
867
        std::is_same<BitfieldElement, HasMetadataField>::value ||
868
            !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
869
        "Must not overlap with the metadata bit");
870
    return Bitfield::get<BitfieldElement>(getSubclassDataFromValue());
871
  }
872
 
873
  template <typename BitfieldElement>
874
  void setSubclassData(typename BitfieldElement::Type Value) {
875
    static_assert(
876
        std::is_same<BitfieldElement, HasMetadataField>::value ||
877
            !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
878
        "Must not overlap with the metadata bit");
879
    auto Storage = getSubclassDataFromValue();
880
    Bitfield::set<BitfieldElement>(Storage, Value);
881
    setValueSubclassData(Storage);
882
  }
883
 
884
  Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
885
              Instruction *InsertBefore = nullptr);
886
  Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
887
              BasicBlock *InsertAtEnd);
888
 
889
private:
890
  /// Create a copy of this instruction.
891
  Instruction *cloneImpl() const;
892
};
893
 
894
inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
895
  V->deleteValue();
896
}
897
 
898
} // end namespace llvm
899
 
900
#endif // LLVM_IR_INSTRUCTION_H