Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file defines layout properties related to datatype size/offset/alignment |
||
| 10 | // information. It uses lazy annotations to cache information about how |
||
| 11 | // structure types are laid out and used. |
||
| 12 | // |
||
| 13 | // This structure should be created once, filled in if the defaults are not |
||
| 14 | // correct and then passed around by const&. None of the members functions |
||
| 15 | // require modification to the object. |
||
| 16 | // |
||
| 17 | //===----------------------------------------------------------------------===// |
||
| 18 | |||
| 19 | #ifndef LLVM_IR_DATALAYOUT_H |
||
| 20 | #define LLVM_IR_DATALAYOUT_H |
||
| 21 | |||
| 22 | #include "llvm/ADT/APInt.h" |
||
| 23 | #include "llvm/ADT/ArrayRef.h" |
||
| 24 | #include "llvm/ADT/STLExtras.h" |
||
| 25 | #include "llvm/ADT/SmallVector.h" |
||
| 26 | #include "llvm/ADT/StringRef.h" |
||
| 27 | #include "llvm/IR/DerivedTypes.h" |
||
| 28 | #include "llvm/IR/Type.h" |
||
| 29 | #include "llvm/Support/Alignment.h" |
||
| 30 | #include "llvm/Support/Casting.h" |
||
| 31 | #include "llvm/Support/Compiler.h" |
||
| 32 | #include "llvm/Support/ErrorHandling.h" |
||
| 33 | #include "llvm/Support/MathExtras.h" |
||
| 34 | #include "llvm/Support/TrailingObjects.h" |
||
| 35 | #include "llvm/Support/TypeSize.h" |
||
| 36 | #include <cassert> |
||
| 37 | #include <cstdint> |
||
| 38 | #include <string> |
||
| 39 | |||
| 40 | // This needs to be outside of the namespace, to avoid conflict with llvm-c |
||
| 41 | // decl. |
||
| 42 | using LLVMTargetDataRef = struct LLVMOpaqueTargetData *; |
||
| 43 | |||
| 44 | namespace llvm { |
||
| 45 | |||
| 46 | class GlobalVariable; |
||
| 47 | class LLVMContext; |
||
| 48 | class Module; |
||
| 49 | class StructLayout; |
||
| 50 | class Triple; |
||
| 51 | class Value; |
||
| 52 | |||
| 53 | /// Enum used to categorize the alignment types stored by LayoutAlignElem |
||
| 54 | enum AlignTypeEnum { |
||
| 55 | INVALID_ALIGN = 0, |
||
| 56 | INTEGER_ALIGN = 'i', |
||
| 57 | VECTOR_ALIGN = 'v', |
||
| 58 | FLOAT_ALIGN = 'f', |
||
| 59 | AGGREGATE_ALIGN = 'a' |
||
| 60 | }; |
||
| 61 | |||
| 62 | // FIXME: Currently the DataLayout string carries a "preferred alignment" |
||
| 63 | // for types. As the DataLayout is module/global, this should likely be |
||
| 64 | // sunk down to an FTTI element that is queried rather than a global |
||
| 65 | // preference. |
||
| 66 | |||
| 67 | /// Layout alignment element. |
||
| 68 | /// |
||
| 69 | /// Stores the alignment data associated with a given alignment type (integer, |
||
| 70 | /// vector, float) and type bit width. |
||
| 71 | /// |
||
| 72 | /// \note The unusual order of elements in the structure attempts to reduce |
||
| 73 | /// padding and make the structure slightly more cache friendly. |
||
| 74 | struct LayoutAlignElem { |
||
| 75 | /// Alignment type from \c AlignTypeEnum |
||
| 76 | unsigned AlignType : 8; |
||
| 77 | unsigned TypeBitWidth : 24; |
||
| 78 | Align ABIAlign; |
||
| 79 | Align PrefAlign; |
||
| 80 | |||
| 81 | static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align, |
||
| 82 | Align pref_align, uint32_t bit_width); |
||
| 83 | |||
| 84 | bool operator==(const LayoutAlignElem &rhs) const; |
||
| 85 | }; |
||
| 86 | |||
| 87 | /// Layout pointer alignment element. |
||
| 88 | /// |
||
| 89 | /// Stores the alignment data associated with a given pointer and address space. |
||
| 90 | /// |
||
| 91 | /// \note The unusual order of elements in the structure attempts to reduce |
||
| 92 | /// padding and make the structure slightly more cache friendly. |
||
| 93 | struct PointerAlignElem { |
||
| 94 | Align ABIAlign; |
||
| 95 | Align PrefAlign; |
||
| 96 | uint32_t TypeBitWidth; |
||
| 97 | uint32_t AddressSpace; |
||
| 98 | uint32_t IndexBitWidth; |
||
| 99 | |||
| 100 | /// Initializer |
||
| 101 | static PointerAlignElem getInBits(uint32_t AddressSpace, Align ABIAlign, |
||
| 102 | Align PrefAlign, uint32_t TypeBitWidth, |
||
| 103 | uint32_t IndexBitWidth); |
||
| 104 | |||
| 105 | bool operator==(const PointerAlignElem &rhs) const; |
||
| 106 | }; |
||
| 107 | |||
| 108 | /// A parsed version of the target data layout string in and methods for |
||
| 109 | /// querying it. |
||
| 110 | /// |
||
| 111 | /// The target data layout string is specified *by the target* - a frontend |
||
| 112 | /// generating LLVM IR is required to generate the right target data for the |
||
| 113 | /// target being codegen'd to. |
||
| 114 | class DataLayout { |
||
| 115 | public: |
||
| 116 | enum class FunctionPtrAlignType { |
||
| 117 | /// The function pointer alignment is independent of the function alignment. |
||
| 118 | Independent, |
||
| 119 | /// The function pointer alignment is a multiple of the function alignment. |
||
| 120 | MultipleOfFunctionAlign, |
||
| 121 | }; |
||
| 122 | private: |
||
| 123 | /// Defaults to false. |
||
| 124 | bool BigEndian; |
||
| 125 | |||
| 126 | unsigned AllocaAddrSpace; |
||
| 127 | MaybeAlign StackNaturalAlign; |
||
| 128 | unsigned ProgramAddrSpace; |
||
| 129 | unsigned DefaultGlobalsAddrSpace; |
||
| 130 | |||
| 131 | MaybeAlign FunctionPtrAlign; |
||
| 132 | FunctionPtrAlignType TheFunctionPtrAlignType; |
||
| 133 | |||
| 134 | enum ManglingModeT { |
||
| 135 | MM_None, |
||
| 136 | MM_ELF, |
||
| 137 | MM_MachO, |
||
| 138 | MM_WinCOFF, |
||
| 139 | MM_WinCOFFX86, |
||
| 140 | MM_GOFF, |
||
| 141 | MM_Mips, |
||
| 142 | MM_XCOFF |
||
| 143 | }; |
||
| 144 | ManglingModeT ManglingMode; |
||
| 145 | |||
| 146 | SmallVector<unsigned char, 8> LegalIntWidths; |
||
| 147 | |||
| 148 | /// Primitive type alignment data. This is sorted by type and bit |
||
| 149 | /// width during construction. |
||
| 150 | using AlignmentsTy = SmallVector<LayoutAlignElem, 16>; |
||
| 151 | AlignmentsTy Alignments; |
||
| 152 | |||
| 153 | AlignmentsTy::const_iterator |
||
| 154 | findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const { |
||
| 155 | return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType, |
||
| 156 | BitWidth); |
||
| 157 | } |
||
| 158 | |||
| 159 | AlignmentsTy::iterator |
||
| 160 | findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth); |
||
| 161 | |||
| 162 | /// The string representation used to create this DataLayout |
||
| 163 | std::string StringRepresentation; |
||
| 164 | |||
| 165 | using PointersTy = SmallVector<PointerAlignElem, 8>; |
||
| 166 | PointersTy Pointers; |
||
| 167 | |||
| 168 | const PointerAlignElem &getPointerAlignElem(uint32_t AddressSpace) const; |
||
| 169 | |||
| 170 | // The StructType -> StructLayout map. |
||
| 171 | mutable void *LayoutMap = nullptr; |
||
| 172 | |||
| 173 | /// Pointers in these address spaces are non-integral, and don't have a |
||
| 174 | /// well-defined bitwise representation. |
||
| 175 | SmallVector<unsigned, 8> NonIntegralAddressSpaces; |
||
| 176 | |||
| 177 | /// Attempts to set the alignment of the given type. Returns an error |
||
| 178 | /// description on failure. |
||
| 179 | Error setAlignment(AlignTypeEnum align_type, Align abi_align, |
||
| 180 | Align pref_align, uint32_t bit_width); |
||
| 181 | |||
| 182 | /// Attempts to set the alignment of a pointer in the given address space. |
||
| 183 | /// Returns an error description on failure. |
||
| 184 | Error setPointerAlignmentInBits(uint32_t AddrSpace, Align ABIAlign, |
||
| 185 | Align PrefAlign, uint32_t TypeBitWidth, |
||
| 186 | uint32_t IndexBitWidth); |
||
| 187 | |||
| 188 | /// Internal helper to get alignment for integer of given bitwidth. |
||
| 189 | Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const; |
||
| 190 | |||
| 191 | /// Internal helper method that returns requested alignment for type. |
||
| 192 | Align getAlignment(Type *Ty, bool abi_or_pref) const; |
||
| 193 | |||
| 194 | /// Attempts to parse a target data specification string and reports an error |
||
| 195 | /// if the string is malformed. |
||
| 196 | Error parseSpecifier(StringRef Desc); |
||
| 197 | |||
| 198 | // Free all internal data structures. |
||
| 199 | void clear(); |
||
| 200 | |||
| 201 | public: |
||
| 202 | /// Constructs a DataLayout from a specification string. See reset(). |
||
| 203 | explicit DataLayout(StringRef LayoutDescription) { |
||
| 204 | reset(LayoutDescription); |
||
| 205 | } |
||
| 206 | |||
| 207 | /// Initialize target data from properties stored in the module. |
||
| 208 | explicit DataLayout(const Module *M); |
||
| 209 | |||
| 210 | DataLayout(const DataLayout &DL) { *this = DL; } |
||
| 211 | |||
| 212 | ~DataLayout(); // Not virtual, do not subclass this class |
||
| 213 | |||
| 214 | DataLayout &operator=(const DataLayout &DL) { |
||
| 215 | clear(); |
||
| 216 | StringRepresentation = DL.StringRepresentation; |
||
| 217 | BigEndian = DL.isBigEndian(); |
||
| 218 | AllocaAddrSpace = DL.AllocaAddrSpace; |
||
| 219 | StackNaturalAlign = DL.StackNaturalAlign; |
||
| 220 | FunctionPtrAlign = DL.FunctionPtrAlign; |
||
| 221 | TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType; |
||
| 222 | ProgramAddrSpace = DL.ProgramAddrSpace; |
||
| 223 | DefaultGlobalsAddrSpace = DL.DefaultGlobalsAddrSpace; |
||
| 224 | ManglingMode = DL.ManglingMode; |
||
| 225 | LegalIntWidths = DL.LegalIntWidths; |
||
| 226 | Alignments = DL.Alignments; |
||
| 227 | Pointers = DL.Pointers; |
||
| 228 | NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces; |
||
| 229 | return *this; |
||
| 230 | } |
||
| 231 | |||
| 232 | bool operator==(const DataLayout &Other) const; |
||
| 233 | bool operator!=(const DataLayout &Other) const { return !(*this == Other); } |
||
| 234 | |||
| 235 | void init(const Module *M); |
||
| 236 | |||
| 237 | /// Parse a data layout string (with fallback to default values). |
||
| 238 | void reset(StringRef LayoutDescription); |
||
| 239 | |||
| 240 | /// Parse a data layout string and return the layout. Return an error |
||
| 241 | /// description on failure. |
||
| 242 | static Expected<DataLayout> parse(StringRef LayoutDescription); |
||
| 243 | |||
| 244 | /// Layout endianness... |
||
| 245 | bool isLittleEndian() const { return !BigEndian; } |
||
| 246 | bool isBigEndian() const { return BigEndian; } |
||
| 247 | |||
| 248 | /// Returns the string representation of the DataLayout. |
||
| 249 | /// |
||
| 250 | /// This representation is in the same format accepted by the string |
||
| 251 | /// constructor above. This should not be used to compare two DataLayout as |
||
| 252 | /// different string can represent the same layout. |
||
| 253 | const std::string &getStringRepresentation() const { |
||
| 254 | return StringRepresentation; |
||
| 255 | } |
||
| 256 | |||
| 257 | /// Test if the DataLayout was constructed from an empty string. |
||
| 258 | bool isDefault() const { return StringRepresentation.empty(); } |
||
| 259 | |||
| 260 | /// Returns true if the specified type is known to be a native integer |
||
| 261 | /// type supported by the CPU. |
||
| 262 | /// |
||
| 263 | /// For example, i64 is not native on most 32-bit CPUs and i37 is not native |
||
| 264 | /// on any known one. This returns false if the integer width is not legal. |
||
| 265 | /// |
||
| 266 | /// The width is specified in bits. |
||
| 267 | bool isLegalInteger(uint64_t Width) const { |
||
| 268 | return llvm::is_contained(LegalIntWidths, Width); |
||
| 269 | } |
||
| 270 | |||
| 271 | bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); } |
||
| 272 | |||
| 273 | /// Returns true if the given alignment exceeds the natural stack alignment. |
||
| 274 | bool exceedsNaturalStackAlignment(Align Alignment) const { |
||
| 275 | return StackNaturalAlign && (Alignment > *StackNaturalAlign); |
||
| 276 | } |
||
| 277 | |||
| 278 | Align getStackAlignment() const { |
||
| 279 | assert(StackNaturalAlign && "StackNaturalAlign must be defined"); |
||
| 280 | return *StackNaturalAlign; |
||
| 281 | } |
||
| 282 | |||
| 283 | unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; } |
||
| 284 | |||
| 285 | /// Returns the alignment of function pointers, which may or may not be |
||
| 286 | /// related to the alignment of functions. |
||
| 287 | /// \see getFunctionPtrAlignType |
||
| 288 | MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; } |
||
| 289 | |||
| 290 | /// Return the type of function pointer alignment. |
||
| 291 | /// \see getFunctionPtrAlign |
||
| 292 | FunctionPtrAlignType getFunctionPtrAlignType() const { |
||
| 293 | return TheFunctionPtrAlignType; |
||
| 294 | } |
||
| 295 | |||
| 296 | unsigned getProgramAddressSpace() const { return ProgramAddrSpace; } |
||
| 297 | unsigned getDefaultGlobalsAddressSpace() const { |
||
| 298 | return DefaultGlobalsAddrSpace; |
||
| 299 | } |
||
| 300 | |||
| 301 | bool hasMicrosoftFastStdCallMangling() const { |
||
| 302 | return ManglingMode == MM_WinCOFFX86; |
||
| 303 | } |
||
| 304 | |||
| 305 | /// Returns true if symbols with leading question marks should not receive IR |
||
| 306 | /// mangling. True for Windows mangling modes. |
||
| 307 | bool doNotMangleLeadingQuestionMark() const { |
||
| 308 | return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86; |
||
| 309 | } |
||
| 310 | |||
| 311 | bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; } |
||
| 312 | |||
| 313 | StringRef getLinkerPrivateGlobalPrefix() const { |
||
| 314 | if (ManglingMode == MM_MachO) |
||
| 315 | return "l"; |
||
| 316 | return ""; |
||
| 317 | } |
||
| 318 | |||
| 319 | char getGlobalPrefix() const { |
||
| 320 | switch (ManglingMode) { |
||
| 321 | case MM_None: |
||
| 322 | case MM_ELF: |
||
| 323 | case MM_GOFF: |
||
| 324 | case MM_Mips: |
||
| 325 | case MM_WinCOFF: |
||
| 326 | case MM_XCOFF: |
||
| 327 | return '\0'; |
||
| 328 | case MM_MachO: |
||
| 329 | case MM_WinCOFFX86: |
||
| 330 | return '_'; |
||
| 331 | } |
||
| 332 | llvm_unreachable("invalid mangling mode"); |
||
| 333 | } |
||
| 334 | |||
| 335 | StringRef getPrivateGlobalPrefix() const { |
||
| 336 | switch (ManglingMode) { |
||
| 337 | case MM_None: |
||
| 338 | return ""; |
||
| 339 | case MM_ELF: |
||
| 340 | case MM_WinCOFF: |
||
| 341 | return ".L"; |
||
| 342 | case MM_GOFF: |
||
| 343 | return "@"; |
||
| 344 | case MM_Mips: |
||
| 345 | return "$"; |
||
| 346 | case MM_MachO: |
||
| 347 | case MM_WinCOFFX86: |
||
| 348 | return "L"; |
||
| 349 | case MM_XCOFF: |
||
| 350 | return "L.."; |
||
| 351 | } |
||
| 352 | llvm_unreachable("invalid mangling mode"); |
||
| 353 | } |
||
| 354 | |||
| 355 | static const char *getManglingComponent(const Triple &T); |
||
| 356 | |||
| 357 | /// Returns true if the specified type fits in a native integer type |
||
| 358 | /// supported by the CPU. |
||
| 359 | /// |
||
| 360 | /// For example, if the CPU only supports i32 as a native integer type, then |
||
| 361 | /// i27 fits in a legal integer type but i45 does not. |
||
| 362 | bool fitsInLegalInteger(unsigned Width) const { |
||
| 363 | for (unsigned LegalIntWidth : LegalIntWidths) |
||
| 364 | if (Width <= LegalIntWidth) |
||
| 365 | return true; |
||
| 366 | return false; |
||
| 367 | } |
||
| 368 | |||
| 369 | /// Layout pointer alignment |
||
| 370 | Align getPointerABIAlignment(unsigned AS) const; |
||
| 371 | |||
| 372 | /// Return target's alignment for stack-based pointers |
||
| 373 | /// FIXME: The defaults need to be removed once all of |
||
| 374 | /// the backends/clients are updated. |
||
| 375 | Align getPointerPrefAlignment(unsigned AS = 0) const; |
||
| 376 | |||
| 377 | /// Layout pointer size in bytes, rounded up to a whole |
||
| 378 | /// number of bytes. |
||
| 379 | /// FIXME: The defaults need to be removed once all of |
||
| 380 | /// the backends/clients are updated. |
||
| 381 | unsigned getPointerSize(unsigned AS = 0) const; |
||
| 382 | |||
| 383 | /// Returns the maximum index size over all address spaces. |
||
| 384 | unsigned getMaxIndexSize() const; |
||
| 385 | |||
| 386 | // Index size in bytes used for address calculation, |
||
| 387 | /// rounded up to a whole number of bytes. |
||
| 388 | unsigned getIndexSize(unsigned AS) const; |
||
| 389 | |||
| 390 | /// Return the address spaces containing non-integral pointers. Pointers in |
||
| 391 | /// this address space don't have a well-defined bitwise representation. |
||
| 392 | ArrayRef<unsigned> getNonIntegralAddressSpaces() const { |
||
| 393 | return NonIntegralAddressSpaces; |
||
| 394 | } |
||
| 395 | |||
| 396 | bool isNonIntegralAddressSpace(unsigned AddrSpace) const { |
||
| 397 | ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces(); |
||
| 398 | return is_contained(NonIntegralSpaces, AddrSpace); |
||
| 399 | } |
||
| 400 | |||
| 401 | bool isNonIntegralPointerType(PointerType *PT) const { |
||
| 402 | return isNonIntegralAddressSpace(PT->getAddressSpace()); |
||
| 403 | } |
||
| 404 | |||
| 405 | bool isNonIntegralPointerType(Type *Ty) const { |
||
| 406 | auto *PTy = dyn_cast<PointerType>(Ty); |
||
| 407 | return PTy && isNonIntegralPointerType(PTy); |
||
| 408 | } |
||
| 409 | |||
| 410 | /// Layout pointer size, in bits |
||
| 411 | /// FIXME: The defaults need to be removed once all of |
||
| 412 | /// the backends/clients are updated. |
||
| 413 | unsigned getPointerSizeInBits(unsigned AS = 0) const { |
||
| 414 | return getPointerAlignElem(AS).TypeBitWidth; |
||
| 415 | } |
||
| 416 | |||
| 417 | /// Returns the maximum index size over all address spaces. |
||
| 418 | unsigned getMaxIndexSizeInBits() const { |
||
| 419 | return getMaxIndexSize() * 8; |
||
| 420 | } |
||
| 421 | |||
| 422 | /// Size in bits of index used for address calculation in getelementptr. |
||
| 423 | unsigned getIndexSizeInBits(unsigned AS) const { |
||
| 424 | return getPointerAlignElem(AS).IndexBitWidth; |
||
| 425 | } |
||
| 426 | |||
| 427 | /// Layout pointer size, in bits, based on the type. If this function is |
||
| 428 | /// called with a pointer type, then the type size of the pointer is returned. |
||
| 429 | /// If this function is called with a vector of pointers, then the type size |
||
| 430 | /// of the pointer is returned. This should only be called with a pointer or |
||
| 431 | /// vector of pointers. |
||
| 432 | unsigned getPointerTypeSizeInBits(Type *) const; |
||
| 433 | |||
| 434 | /// Layout size of the index used in GEP calculation. |
||
| 435 | /// The function should be called with pointer or vector of pointers type. |
||
| 436 | unsigned getIndexTypeSizeInBits(Type *Ty) const; |
||
| 437 | |||
| 438 | unsigned getPointerTypeSize(Type *Ty) const { |
||
| 439 | return getPointerTypeSizeInBits(Ty) / 8; |
||
| 440 | } |
||
| 441 | |||
| 442 | /// Size examples: |
||
| 443 | /// |
||
| 444 | /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*] |
||
| 445 | /// ---- ---------- --------------- --------------- |
||
| 446 | /// i1 1 8 8 |
||
| 447 | /// i8 8 8 8 |
||
| 448 | /// i19 19 24 32 |
||
| 449 | /// i32 32 32 32 |
||
| 450 | /// i100 100 104 128 |
||
| 451 | /// i128 128 128 128 |
||
| 452 | /// Float 32 32 32 |
||
| 453 | /// Double 64 64 64 |
||
| 454 | /// X86_FP80 80 80 96 |
||
| 455 | /// |
||
| 456 | /// [*] The alloc size depends on the alignment, and thus on the target. |
||
| 457 | /// These values are for x86-32 linux. |
||
| 458 | |||
| 459 | /// Returns the number of bits necessary to hold the specified type. |
||
| 460 | /// |
||
| 461 | /// If Ty is a scalable vector type, the scalable property will be set and |
||
| 462 | /// the runtime size will be a positive integer multiple of the base size. |
||
| 463 | /// |
||
| 464 | /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must |
||
| 465 | /// have a size (Type::isSized() must return true). |
||
| 466 | TypeSize getTypeSizeInBits(Type *Ty) const; |
||
| 467 | |||
| 468 | /// Returns the maximum number of bytes that may be overwritten by |
||
| 469 | /// storing the specified type. |
||
| 470 | /// |
||
| 471 | /// If Ty is a scalable vector type, the scalable property will be set and |
||
| 472 | /// the runtime size will be a positive integer multiple of the base size. |
||
| 473 | /// |
||
| 474 | /// For example, returns 5 for i36 and 10 for x86_fp80. |
||
| 475 | TypeSize getTypeStoreSize(Type *Ty) const { |
||
| 476 | TypeSize BaseSize = getTypeSizeInBits(Ty); |
||
| 477 | return {divideCeil(BaseSize.getKnownMinValue(), 8), BaseSize.isScalable()}; |
||
| 478 | } |
||
| 479 | |||
| 480 | /// Returns the maximum number of bits that may be overwritten by |
||
| 481 | /// storing the specified type; always a multiple of 8. |
||
| 482 | /// |
||
| 483 | /// If Ty is a scalable vector type, the scalable property will be set and |
||
| 484 | /// the runtime size will be a positive integer multiple of the base size. |
||
| 485 | /// |
||
| 486 | /// For example, returns 40 for i36 and 80 for x86_fp80. |
||
| 487 | TypeSize getTypeStoreSizeInBits(Type *Ty) const { |
||
| 488 | return 8 * getTypeStoreSize(Ty); |
||
| 489 | } |
||
| 490 | |||
| 491 | /// Returns true if no extra padding bits are needed when storing the |
||
| 492 | /// specified type. |
||
| 493 | /// |
||
| 494 | /// For example, returns false for i19 that has a 24-bit store size. |
||
| 495 | bool typeSizeEqualsStoreSize(Type *Ty) const { |
||
| 496 | return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty); |
||
| 497 | } |
||
| 498 | |||
| 499 | /// Returns the offset in bytes between successive objects of the |
||
| 500 | /// specified type, including alignment padding. |
||
| 501 | /// |
||
| 502 | /// If Ty is a scalable vector type, the scalable property will be set and |
||
| 503 | /// the runtime size will be a positive integer multiple of the base size. |
||
| 504 | /// |
||
| 505 | /// This is the amount that alloca reserves for this type. For example, |
||
| 506 | /// returns 12 or 16 for x86_fp80, depending on alignment. |
||
| 507 | TypeSize getTypeAllocSize(Type *Ty) const { |
||
| 508 | // Round up to the next alignment boundary. |
||
| 509 | return alignTo(getTypeStoreSize(Ty), getABITypeAlign(Ty).value()); |
||
| 510 | } |
||
| 511 | |||
| 512 | /// Returns the offset in bits between successive objects of the |
||
| 513 | /// specified type, including alignment padding; always a multiple of 8. |
||
| 514 | /// |
||
| 515 | /// If Ty is a scalable vector type, the scalable property will be set and |
||
| 516 | /// the runtime size will be a positive integer multiple of the base size. |
||
| 517 | /// |
||
| 518 | /// This is the amount that alloca reserves for this type. For example, |
||
| 519 | /// returns 96 or 128 for x86_fp80, depending on alignment. |
||
| 520 | TypeSize getTypeAllocSizeInBits(Type *Ty) const { |
||
| 521 | return 8 * getTypeAllocSize(Ty); |
||
| 522 | } |
||
| 523 | |||
| 524 | /// Returns the minimum ABI-required alignment for the specified type. |
||
| 525 | /// FIXME: Deprecate this function once migration to Align is over. |
||
| 526 | LLVM_DEPRECATED("use getABITypeAlign instead", "getABITypeAlign") |
||
| 527 | uint64_t getABITypeAlignment(Type *Ty) const; |
||
| 528 | |||
| 529 | /// Returns the minimum ABI-required alignment for the specified type. |
||
| 530 | Align getABITypeAlign(Type *Ty) const; |
||
| 531 | |||
| 532 | /// Helper function to return `Alignment` if it's set or the result of |
||
| 533 | /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment. |
||
| 534 | inline Align getValueOrABITypeAlignment(MaybeAlign Alignment, |
||
| 535 | Type *Ty) const { |
||
| 536 | return Alignment ? *Alignment : getABITypeAlign(Ty); |
||
| 537 | } |
||
| 538 | |||
| 539 | /// Returns the minimum ABI-required alignment for an integer type of |
||
| 540 | /// the specified bitwidth. |
||
| 541 | Align getABIIntegerTypeAlignment(unsigned BitWidth) const { |
||
| 542 | return getIntegerAlignment(BitWidth, /* abi_or_pref */ true); |
||
| 543 | } |
||
| 544 | |||
| 545 | /// Returns the preferred stack/global alignment for the specified |
||
| 546 | /// type. |
||
| 547 | /// |
||
| 548 | /// This is always at least as good as the ABI alignment. |
||
| 549 | /// FIXME: Deprecate this function once migration to Align is over. |
||
| 550 | LLVM_DEPRECATED("use getPrefTypeAlign instead", "getPrefTypeAlign") |
||
| 551 | uint64_t getPrefTypeAlignment(Type *Ty) const; |
||
| 552 | |||
| 553 | /// Returns the preferred stack/global alignment for the specified |
||
| 554 | /// type. |
||
| 555 | /// |
||
| 556 | /// This is always at least as good as the ABI alignment. |
||
| 557 | Align getPrefTypeAlign(Type *Ty) const; |
||
| 558 | |||
| 559 | /// Returns an integer type with size at least as big as that of a |
||
| 560 | /// pointer in the given address space. |
||
| 561 | IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const; |
||
| 562 | |||
| 563 | /// Returns an integer (vector of integer) type with size at least as |
||
| 564 | /// big as that of a pointer of the given pointer (vector of pointer) type. |
||
| 565 | Type *getIntPtrType(Type *) const; |
||
| 566 | |||
| 567 | /// Returns the smallest integer type with size at least as big as |
||
| 568 | /// Width bits. |
||
| 569 | Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const; |
||
| 570 | |||
| 571 | /// Returns the largest legal integer type, or null if none are set. |
||
| 572 | Type *getLargestLegalIntType(LLVMContext &C) const { |
||
| 573 | unsigned LargestSize = getLargestLegalIntTypeSizeInBits(); |
||
| 574 | return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize); |
||
| 575 | } |
||
| 576 | |||
| 577 | /// Returns the size of largest legal integer type size, or 0 if none |
||
| 578 | /// are set. |
||
| 579 | unsigned getLargestLegalIntTypeSizeInBits() const; |
||
| 580 | |||
| 581 | /// Returns the type of a GEP index. |
||
| 582 | /// If it was not specified explicitly, it will be the integer type of the |
||
| 583 | /// pointer width - IntPtrType. |
||
| 584 | Type *getIndexType(Type *PtrTy) const; |
||
| 585 | |||
| 586 | /// Returns the offset from the beginning of the type for the specified |
||
| 587 | /// indices. |
||
| 588 | /// |
||
| 589 | /// Note that this takes the element type, not the pointer type. |
||
| 590 | /// This is used to implement getelementptr. |
||
| 591 | int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const; |
||
| 592 | |||
| 593 | /// Get GEP indices to access Offset inside ElemTy. ElemTy is updated to be |
||
| 594 | /// the result element type and Offset to be the residual offset. |
||
| 595 | SmallVector<APInt> getGEPIndicesForOffset(Type *&ElemTy, APInt &Offset) const; |
||
| 596 | |||
| 597 | /// Get single GEP index to access Offset inside ElemTy. Returns std::nullopt |
||
| 598 | /// if index cannot be computed, e.g. because the type is not an aggregate. |
||
| 599 | /// ElemTy is updated to be the result element type and Offset to be the |
||
| 600 | /// residual offset. |
||
| 601 | std::optional<APInt> getGEPIndexForOffset(Type *&ElemTy, APInt &Offset) const; |
||
| 602 | |||
| 603 | /// Returns a StructLayout object, indicating the alignment of the |
||
| 604 | /// struct, its size, and the offsets of its fields. |
||
| 605 | /// |
||
| 606 | /// Note that this information is lazily cached. |
||
| 607 | const StructLayout *getStructLayout(StructType *Ty) const; |
||
| 608 | |||
| 609 | /// Returns the preferred alignment of the specified global. |
||
| 610 | /// |
||
| 611 | /// This includes an explicitly requested alignment (if the global has one). |
||
| 612 | Align getPreferredAlign(const GlobalVariable *GV) const; |
||
| 613 | }; |
||
| 614 | |||
| 615 | inline DataLayout *unwrap(LLVMTargetDataRef P) { |
||
| 616 | return reinterpret_cast<DataLayout *>(P); |
||
| 617 | } |
||
| 618 | |||
| 619 | inline LLVMTargetDataRef wrap(const DataLayout *P) { |
||
| 620 | return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P)); |
||
| 621 | } |
||
| 622 | |||
| 623 | /// Used to lazily calculate structure layout information for a target machine, |
||
| 624 | /// based on the DataLayout structure. |
||
| 625 | class StructLayout final : public TrailingObjects<StructLayout, uint64_t> { |
||
| 626 | uint64_t StructSize; |
||
| 627 | Align StructAlignment; |
||
| 628 | unsigned IsPadded : 1; |
||
| 629 | unsigned NumElements : 31; |
||
| 630 | |||
| 631 | public: |
||
| 632 | uint64_t getSizeInBytes() const { return StructSize; } |
||
| 633 | |||
| 634 | uint64_t getSizeInBits() const { return 8 * StructSize; } |
||
| 635 | |||
| 636 | Align getAlignment() const { return StructAlignment; } |
||
| 637 | |||
| 638 | /// Returns whether the struct has padding or not between its fields. |
||
| 639 | /// NB: Padding in nested element is not taken into account. |
||
| 640 | bool hasPadding() const { return IsPadded; } |
||
| 641 | |||
| 642 | /// Given a valid byte offset into the structure, returns the structure |
||
| 643 | /// index that contains it. |
||
| 644 | unsigned getElementContainingOffset(uint64_t Offset) const; |
||
| 645 | |||
| 646 | MutableArrayRef<uint64_t> getMemberOffsets() { |
||
| 647 | return llvm::MutableArrayRef(getTrailingObjects<uint64_t>(), |
||
| 648 | NumElements); |
||
| 649 | } |
||
| 650 | |||
| 651 | ArrayRef<uint64_t> getMemberOffsets() const { |
||
| 652 | return llvm::ArrayRef(getTrailingObjects<uint64_t>(), NumElements); |
||
| 653 | } |
||
| 654 | |||
| 655 | uint64_t getElementOffset(unsigned Idx) const { |
||
| 656 | assert(Idx < NumElements && "Invalid element idx!"); |
||
| 657 | return getMemberOffsets()[Idx]; |
||
| 658 | } |
||
| 659 | |||
| 660 | uint64_t getElementOffsetInBits(unsigned Idx) const { |
||
| 661 | return getElementOffset(Idx) * 8; |
||
| 662 | } |
||
| 663 | |||
| 664 | private: |
||
| 665 | friend class DataLayout; // Only DataLayout can create this class |
||
| 666 | |||
| 667 | StructLayout(StructType *ST, const DataLayout &DL); |
||
| 668 | |||
| 669 | size_t numTrailingObjects(OverloadToken<uint64_t>) const { |
||
| 670 | return NumElements; |
||
| 671 | } |
||
| 672 | }; |
||
| 673 | |||
| 674 | // The implementation of this method is provided inline as it is particularly |
||
| 675 | // well suited to constant folding when called on a specific Type subclass. |
||
| 676 | inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const { |
||
| 677 | assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); |
||
| 678 | switch (Ty->getTypeID()) { |
||
| 679 | case Type::LabelTyID: |
||
| 680 | return TypeSize::Fixed(getPointerSizeInBits(0)); |
||
| 681 | case Type::PointerTyID: |
||
| 682 | return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace())); |
||
| 683 | case Type::ArrayTyID: { |
||
| 684 | ArrayType *ATy = cast<ArrayType>(Ty); |
||
| 685 | return ATy->getNumElements() * |
||
| 686 | getTypeAllocSizeInBits(ATy->getElementType()); |
||
| 687 | } |
||
| 688 | case Type::StructTyID: |
||
| 689 | // Get the layout annotation... which is lazily created on demand. |
||
| 690 | return TypeSize::Fixed( |
||
| 691 | getStructLayout(cast<StructType>(Ty))->getSizeInBits()); |
||
| 692 | case Type::IntegerTyID: |
||
| 693 | return TypeSize::Fixed(Ty->getIntegerBitWidth()); |
||
| 694 | case Type::HalfTyID: |
||
| 695 | case Type::BFloatTyID: |
||
| 696 | return TypeSize::Fixed(16); |
||
| 697 | case Type::FloatTyID: |
||
| 698 | return TypeSize::Fixed(32); |
||
| 699 | case Type::DoubleTyID: |
||
| 700 | case Type::X86_MMXTyID: |
||
| 701 | return TypeSize::Fixed(64); |
||
| 702 | case Type::PPC_FP128TyID: |
||
| 703 | case Type::FP128TyID: |
||
| 704 | return TypeSize::Fixed(128); |
||
| 705 | case Type::X86_AMXTyID: |
||
| 706 | return TypeSize::Fixed(8192); |
||
| 707 | // In memory objects this is always aligned to a higher boundary, but |
||
| 708 | // only 80 bits contain information. |
||
| 709 | case Type::X86_FP80TyID: |
||
| 710 | return TypeSize::Fixed(80); |
||
| 711 | case Type::FixedVectorTyID: |
||
| 712 | case Type::ScalableVectorTyID: { |
||
| 713 | VectorType *VTy = cast<VectorType>(Ty); |
||
| 714 | auto EltCnt = VTy->getElementCount(); |
||
| 715 | uint64_t MinBits = EltCnt.getKnownMinValue() * |
||
| 716 | getTypeSizeInBits(VTy->getElementType()).getFixedValue(); |
||
| 717 | return TypeSize(MinBits, EltCnt.isScalable()); |
||
| 718 | } |
||
| 719 | case Type::TargetExtTyID: { |
||
| 720 | Type *LayoutTy = cast<TargetExtType>(Ty)->getLayoutType(); |
||
| 721 | return getTypeSizeInBits(LayoutTy); |
||
| 722 | } |
||
| 723 | default: |
||
| 724 | llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type"); |
||
| 725 | } |
||
| 726 | } |
||
| 727 | |||
| 728 | } // end namespace llvm |
||
| 729 | |||
| 730 | #endif // LLVM_IR_DATALAYOUT_H |