Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Represent a range of possible values that may occur when the program is run
10
// for an integral value.  This keeps track of a lower and upper bound for the
11
// constant, which MAY wrap around the end of the numeric range.  To do this, it
12
// keeps track of a [lower, upper) bound, which specifies an interval just like
13
// STL iterators.  When used with boolean values, the following are important
14
// ranges: :
15
//
16
//  [F, F) = {}     = Empty set
17
//  [T, F) = {T}
18
//  [F, T) = {F}
19
//  [T, T) = {F, T} = Full set
20
//
21
// The other integral ranges use min/max values for special range values. For
22
// example, for 8-bit types, it uses:
23
// [0, 0)     = {}       = Empty set
24
// [255, 255) = {0..255} = Full Set
25
//
26
// Note that ConstantRange can be used to represent either signed or
27
// unsigned ranges.
28
//
29
//===----------------------------------------------------------------------===//
30
 
31
#ifndef LLVM_IR_CONSTANTRANGE_H
32
#define LLVM_IR_CONSTANTRANGE_H
33
 
34
#include "llvm/ADT/APInt.h"
35
#include "llvm/IR/InstrTypes.h"
36
#include "llvm/IR/Instruction.h"
37
#include "llvm/Support/Compiler.h"
38
#include <cstdint>
39
 
40
namespace llvm {
41
 
42
class MDNode;
43
class raw_ostream;
44
struct KnownBits;
45
 
46
/// This class represents a range of values.
47
class [[nodiscard]] ConstantRange {
48
  APInt Lower, Upper;
49
 
50
  /// Create empty constant range with same bitwidth.
51
  ConstantRange getEmpty() const {
52
    return ConstantRange(getBitWidth(), false);
53
  }
54
 
55
  /// Create full constant range with same bitwidth.
56
  ConstantRange getFull() const {
57
    return ConstantRange(getBitWidth(), true);
58
  }
59
 
60
public:
61
  /// Initialize a full or empty set for the specified bit width.
62
  explicit ConstantRange(uint32_t BitWidth, bool isFullSet);
63
 
64
  /// Initialize a range to hold the single specified value.
65
  ConstantRange(APInt Value);
66
 
67
  /// Initialize a range of values explicitly. This will assert out if
68
  /// Lower==Upper and Lower != Min or Max value for its type. It will also
69
  /// assert out if the two APInt's are not the same bit width.
70
  ConstantRange(APInt Lower, APInt Upper);
71
 
72
  /// Create empty constant range with the given bit width.
73
  static ConstantRange getEmpty(uint32_t BitWidth) {
74
    return ConstantRange(BitWidth, false);
75
  }
76
 
77
  /// Create full constant range with the given bit width.
78
  static ConstantRange getFull(uint32_t BitWidth) {
79
    return ConstantRange(BitWidth, true);
80
  }
81
 
82
  /// Create non-empty constant range with the given bounds. If Lower and
83
  /// Upper are the same, a full range is returned.
84
  static ConstantRange getNonEmpty(APInt Lower, APInt Upper) {
85
    if (Lower == Upper)
86
      return getFull(Lower.getBitWidth());
87
    return ConstantRange(std::move(Lower), std::move(Upper));
88
  }
89
 
90
  /// Initialize a range based on a known bits constraint. The IsSigned flag
91
  /// indicates whether the constant range should not wrap in the signed or
92
  /// unsigned domain.
93
  static ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned);
94
 
95
  /// Produce the smallest range such that all values that may satisfy the given
96
  /// predicate with any value contained within Other is contained in the
97
  /// returned range.  Formally, this returns a superset of
98
  /// 'union over all y in Other . { x : icmp op x y is true }'.  If the exact
99
  /// answer is not representable as a ConstantRange, the return value will be a
100
  /// proper superset of the above.
101
  ///
102
  /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
103
  static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
104
                                             const ConstantRange &Other);
105
 
106
  /// Produce the largest range such that all values in the returned range
107
  /// satisfy the given predicate with all values contained within Other.
108
  /// Formally, this returns a subset of
109
  /// 'intersection over all y in Other . { x : icmp op x y is true }'.  If the
110
  /// exact answer is not representable as a ConstantRange, the return value
111
  /// will be a proper subset of the above.
112
  ///
113
  /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
114
  static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
115
                                                const ConstantRange &Other);
116
 
117
  /// Produce the exact range such that all values in the returned range satisfy
118
  /// the given predicate with any value contained within Other. Formally, this
119
  /// returns the exact answer when the superset of 'union over all y in Other
120
  /// is exactly same as the subset of intersection over all y in Other.
121
  /// { x : icmp op x y is true}'.
122
  ///
123
  /// Example: Pred = ult and Other = i8 3 returns [0, 3)
124
  static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
125
                                           const APInt &Other);
126
 
127
  /// Does the predicate \p Pred hold between ranges this and \p Other?
128
  /// NOTE: false does not mean that inverse predicate holds!
129
  bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const;
130
 
131
  /// Return true iff CR1 ult CR2 is equivalent to CR1 slt CR2.
132
  /// Does not depend on strictness/direction of the predicate.
133
  static bool
134
  areInsensitiveToSignednessOfICmpPredicate(const ConstantRange &CR1,
135
                                            const ConstantRange &CR2);
136
 
137
  /// Return true iff CR1 ult CR2 is equivalent to CR1 sge CR2.
138
  /// Does not depend on strictness/direction of the predicate.
139
  static bool
140
  areInsensitiveToSignednessOfInvertedICmpPredicate(const ConstantRange &CR1,
141
                                                    const ConstantRange &CR2);
142
 
143
  /// If the comparison between constant ranges this and Other
144
  /// is insensitive to the signedness of the comparison predicate,
145
  /// return a predicate equivalent to \p Pred, with flipped signedness
146
  /// (i.e. unsigned instead of signed or vice versa), and maybe inverted,
147
  /// otherwise returns CmpInst::Predicate::BAD_ICMP_PREDICATE.
148
  static CmpInst::Predicate
149
  getEquivalentPredWithFlippedSignedness(CmpInst::Predicate Pred,
150
                                         const ConstantRange &CR1,
151
                                         const ConstantRange &CR2);
152
 
153
  /// Produce the largest range containing all X such that "X BinOp Y" is
154
  /// guaranteed not to wrap (overflow) for *all* Y in Other. However, there may
155
  /// be *some* Y in Other for which additional X not contained in the result
156
  /// also do not overflow.
157
  ///
158
  /// NoWrapKind must be one of OBO::NoUnsignedWrap or OBO::NoSignedWrap.
159
  ///
160
  /// Examples:
161
  ///  typedef OverflowingBinaryOperator OBO;
162
  ///  #define MGNR makeGuaranteedNoWrapRegion
163
  ///  MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
164
  ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
165
  ///  MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
166
  ///  MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
167
  ///  MGNR(Sub, [i8 1, 2), OBO::NoSignedWrap) == [-127, 128)
168
  ///  MGNR(Sub, [i8 1, 2), OBO::NoUnsignedWrap) == [1, 0)
169
  static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
170
                                                  const ConstantRange &Other,
171
                                                  unsigned NoWrapKind);
172
 
173
  /// Produce the range that contains X if and only if "X BinOp Other" does
174
  /// not wrap.
175
  static ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
176
                                             const APInt &Other,
177
                                             unsigned NoWrapKind);
178
 
179
  /// Returns true if ConstantRange calculations are supported for intrinsic
180
  /// with \p IntrinsicID.
181
  static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID);
182
 
183
  /// Compute range of intrinsic result for the given operand ranges.
184
  static ConstantRange intrinsic(Intrinsic::ID IntrinsicID,
185
                                 ArrayRef<ConstantRange> Ops);
186
 
187
  /// Set up \p Pred and \p RHS such that
188
  /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.  Return true if
189
  /// successful.
190
  bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
191
 
192
  /// Set up \p Pred, \p RHS and \p Offset such that (V + Offset) Pred RHS
193
  /// is true iff V is in the range. Prefers using Offset == 0 if possible.
194
  void
195
  getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS, APInt &Offset) const;
196
 
197
  /// Return the lower value for this range.
198
  const APInt &getLower() const { return Lower; }
199
 
200
  /// Return the upper value for this range.
201
  const APInt &getUpper() const { return Upper; }
202
 
203
  /// Get the bit width of this ConstantRange.
204
  uint32_t getBitWidth() const { return Lower.getBitWidth(); }
205
 
206
  /// Return true if this set contains all of the elements possible
207
  /// for this data-type.
208
  bool isFullSet() const;
209
 
210
  /// Return true if this set contains no members.
211
  bool isEmptySet() const;
212
 
213
  /// Return true if this set wraps around the unsigned domain. Special cases:
214
  ///  * Empty set: Not wrapped.
215
  ///  * Full set: Not wrapped.
216
  ///  * [X, 0) == [X, Max]: Not wrapped.
217
  bool isWrappedSet() const;
218
 
219
  /// Return true if the exclusive upper bound wraps around the unsigned
220
  /// domain. Special cases:
221
  ///  * Empty set: Not wrapped.
222
  ///  * Full set: Not wrapped.
223
  ///  * [X, 0): Wrapped.
224
  bool isUpperWrapped() const;
225
 
226
  /// Return true if this set wraps around the signed domain. Special cases:
227
  ///  * Empty set: Not wrapped.
228
  ///  * Full set: Not wrapped.
229
  ///  * [X, SignedMin) == [X, SignedMax]: Not wrapped.
230
  bool isSignWrappedSet() const;
231
 
232
  /// Return true if the (exclusive) upper bound wraps around the signed
233
  /// domain. Special cases:
234
  ///  * Empty set: Not wrapped.
235
  ///  * Full set: Not wrapped.
236
  ///  * [X, SignedMin): Wrapped.
237
  bool isUpperSignWrapped() const;
238
 
239
  /// Return true if the specified value is in the set.
240
  bool contains(const APInt &Val) const;
241
 
242
  /// Return true if the other range is a subset of this one.
243
  bool contains(const ConstantRange &CR) const;
244
 
245
  /// If this set contains a single element, return it, otherwise return null.
246
  const APInt *getSingleElement() const {
247
    if (Upper == Lower + 1)
248
      return &Lower;
249
    return nullptr;
250
  }
251
 
252
  /// If this set contains all but a single element, return it, otherwise return
253
  /// null.
254
  const APInt *getSingleMissingElement() const {
255
    if (Lower == Upper + 1)
256
      return &Upper;
257
    return nullptr;
258
  }
259
 
260
  /// Return true if this set contains exactly one member.
261
  bool isSingleElement() const { return getSingleElement() != nullptr; }
262
 
263
  /// Compare set size of this range with the range CR.
264
  bool isSizeStrictlySmallerThan(const ConstantRange &CR) const;
265
 
266
  /// Compare set size of this range with Value.
267
  bool isSizeLargerThan(uint64_t MaxSize) const;
268
 
269
  /// Return true if all values in this range are negative.
270
  bool isAllNegative() const;
271
 
272
  /// Return true if all values in this range are non-negative.
273
  bool isAllNonNegative() const;
274
 
275
  /// Return the largest unsigned value contained in the ConstantRange.
276
  APInt getUnsignedMax() const;
277
 
278
  /// Return the smallest unsigned value contained in the ConstantRange.
279
  APInt getUnsignedMin() const;
280
 
281
  /// Return the largest signed value contained in the ConstantRange.
282
  APInt getSignedMax() const;
283
 
284
  /// Return the smallest signed value contained in the ConstantRange.
285
  APInt getSignedMin() const;
286
 
287
  /// Return true if this range is equal to another range.
288
  bool operator==(const ConstantRange &CR) const {
289
    return Lower == CR.Lower && Upper == CR.Upper;
290
  }
291
  bool operator!=(const ConstantRange &CR) const {
292
    return !operator==(CR);
293
  }
294
 
295
  /// Compute the maximal number of active bits needed to represent every value
296
  /// in this range.
297
  unsigned getActiveBits() const;
298
 
299
  /// Compute the maximal number of bits needed to represent every value
300
  /// in this signed range.
301
  unsigned getMinSignedBits() const;
302
 
303
  /// Subtract the specified constant from the endpoints of this constant range.
304
  ConstantRange subtract(const APInt &CI) const;
305
 
306
  /// Subtract the specified range from this range (aka relative complement of
307
  /// the sets).
308
  ConstantRange difference(const ConstantRange &CR) const;
309
 
310
  /// If represented precisely, the result of some range operations may consist
311
  /// of multiple disjoint ranges. As only a single range may be returned, any
312
  /// range covering these disjoint ranges constitutes a valid result, but some
313
  /// may be more useful than others depending on context. The preferred range
314
  /// type specifies whether a range that is non-wrapping in the unsigned or
315
  /// signed domain, or has the smallest size, is preferred. If a signedness is
316
  /// preferred but all ranges are non-wrapping or all wrapping, then the
317
  /// smallest set size is preferred. If there are multiple smallest sets, any
318
  /// one of them may be returned.
319
  enum PreferredRangeType { Smallest, Unsigned, Signed };
320
 
321
  /// Return the range that results from the intersection of this range with
322
  /// another range. If the intersection is disjoint, such that two results
323
  /// are possible, the preferred range is determined by the PreferredRangeType.
324
  ConstantRange intersectWith(const ConstantRange &CR,
325
                              PreferredRangeType Type = Smallest) const;
326
 
327
  /// Return the range that results from the union of this range
328
  /// with another range.  The resultant range is guaranteed to include the
329
  /// elements of both sets, but may contain more.  For example, [3, 9) union
330
  /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
331
  /// in either set before.
332
  ConstantRange unionWith(const ConstantRange &CR,
333
                          PreferredRangeType Type = Smallest) const;
334
 
335
  /// Intersect the two ranges and return the result if it can be represented
336
  /// exactly, otherwise return std::nullopt.
337
  std::optional<ConstantRange>
338
  exactIntersectWith(const ConstantRange &CR) const;
339
 
340
  /// Union the two ranges and return the result if it can be represented
341
  /// exactly, otherwise return std::nullopt.
342
  std::optional<ConstantRange> exactUnionWith(const ConstantRange &CR) const;
343
 
344
  /// Return a new range representing the possible values resulting
345
  /// from an application of the specified cast operator to this range. \p
346
  /// BitWidth is the target bitwidth of the cast.  For casts which don't
347
  /// change bitwidth, it must be the same as the source bitwidth.  For casts
348
  /// which do change bitwidth, the bitwidth must be consistent with the
349
  /// requested cast and source bitwidth.
350
  ConstantRange castOp(Instruction::CastOps CastOp,
351
                       uint32_t BitWidth) const;
352
 
353
  /// Return a new range in the specified integer type, which must
354
  /// be strictly larger than the current type.  The returned range will
355
  /// correspond to the possible range of values if the source range had been
356
  /// zero extended to BitWidth.
357
  ConstantRange zeroExtend(uint32_t BitWidth) const;
358
 
359
  /// Return a new range in the specified integer type, which must
360
  /// be strictly larger than the current type.  The returned range will
361
  /// correspond to the possible range of values if the source range had been
362
  /// sign extended to BitWidth.
363
  ConstantRange signExtend(uint32_t BitWidth) const;
364
 
365
  /// Return a new range in the specified integer type, which must be
366
  /// strictly smaller than the current type.  The returned range will
367
  /// correspond to the possible range of values if the source range had been
368
  /// truncated to the specified type.
369
  ConstantRange truncate(uint32_t BitWidth) const;
370
 
371
  /// Make this range have the bit width given by \p BitWidth. The
372
  /// value is zero extended, truncated, or left alone to make it that width.
373
  ConstantRange zextOrTrunc(uint32_t BitWidth) const;
374
 
375
  /// Make this range have the bit width given by \p BitWidth. The
376
  /// value is sign extended, truncated, or left alone to make it that width.
377
  ConstantRange sextOrTrunc(uint32_t BitWidth) const;
378
 
379
  /// Return a new range representing the possible values resulting
380
  /// from an application of the specified binary operator to an left hand side
381
  /// of this range and a right hand side of \p Other.
382
  ConstantRange binaryOp(Instruction::BinaryOps BinOp,
383
                         const ConstantRange &Other) const;
384
 
385
  /// Return a new range representing the possible values resulting
386
  /// from an application of the specified overflowing binary operator to a
387
  /// left hand side of this range and a right hand side of \p Other given
388
  /// the provided knowledge about lack of wrapping \p NoWrapKind.
389
  ConstantRange overflowingBinaryOp(Instruction::BinaryOps BinOp,
390
                                    const ConstantRange &Other,
391
                                    unsigned NoWrapKind) const;
392
 
393
  /// Return a new range representing the possible values resulting
394
  /// from an addition of a value in this range and a value in \p Other.
395
  ConstantRange add(const ConstantRange &Other) const;
396
 
397
  /// Return a new range representing the possible values resulting
398
  /// from an addition with wrap type \p NoWrapKind of a value in this
399
  /// range and a value in \p Other.
400
  /// If the result range is disjoint, the preferred range is determined by the
401
  /// \p PreferredRangeType.
402
  ConstantRange addWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
403
                              PreferredRangeType RangeType = Smallest) const;
404
 
405
  /// Return a new range representing the possible values resulting
406
  /// from a subtraction of a value in this range and a value in \p Other.
407
  ConstantRange sub(const ConstantRange &Other) const;
408
 
409
  /// Return a new range representing the possible values resulting
410
  /// from an subtraction with wrap type \p NoWrapKind of a value in this
411
  /// range and a value in \p Other.
412
  /// If the result range is disjoint, the preferred range is determined by the
413
  /// \p PreferredRangeType.
414
  ConstantRange subWithNoWrap(const ConstantRange &Other, unsigned NoWrapKind,
415
                              PreferredRangeType RangeType = Smallest) const;
416
 
417
  /// Return a new range representing the possible values resulting
418
  /// from a multiplication of a value in this range and a value in \p Other,
419
  /// treating both this and \p Other as unsigned ranges.
420
  ConstantRange multiply(const ConstantRange &Other) const;
421
 
422
  /// Return range of possible values for a signed multiplication of this and
423
  /// \p Other. However, if overflow is possible always return a full range
424
  /// rather than trying to determine a more precise result.
425
  ConstantRange smul_fast(const ConstantRange &Other) const;
426
 
427
  /// Return a new range representing the possible values resulting
428
  /// from a signed maximum of a value in this range and a value in \p Other.
429
  ConstantRange smax(const ConstantRange &Other) const;
430
 
431
  /// Return a new range representing the possible values resulting
432
  /// from an unsigned maximum of a value in this range and a value in \p Other.
433
  ConstantRange umax(const ConstantRange &Other) const;
434
 
435
  /// Return a new range representing the possible values resulting
436
  /// from a signed minimum of a value in this range and a value in \p Other.
437
  ConstantRange smin(const ConstantRange &Other) const;
438
 
439
  /// Return a new range representing the possible values resulting
440
  /// from an unsigned minimum of a value in this range and a value in \p Other.
441
  ConstantRange umin(const ConstantRange &Other) const;
442
 
443
  /// Return a new range representing the possible values resulting
444
  /// from an unsigned division of a value in this range and a value in
445
  /// \p Other.
446
  ConstantRange udiv(const ConstantRange &Other) const;
447
 
448
  /// Return a new range representing the possible values resulting
449
  /// from a signed division of a value in this range and a value in
450
  /// \p Other. Division by zero and division of SignedMin by -1 are considered
451
  /// undefined behavior, in line with IR, and do not contribute towards the
452
  /// result.
453
  ConstantRange sdiv(const ConstantRange &Other) const;
454
 
455
  /// Return a new range representing the possible values resulting
456
  /// from an unsigned remainder operation of a value in this range and a
457
  /// value in \p Other.
458
  ConstantRange urem(const ConstantRange &Other) const;
459
 
460
  /// Return a new range representing the possible values resulting
461
  /// from a signed remainder operation of a value in this range and a
462
  /// value in \p Other.
463
  ConstantRange srem(const ConstantRange &Other) const;
464
 
465
  /// Return a new range representing the possible values resulting from
466
  /// a binary-xor of a value in this range by an all-one value,
467
  /// aka bitwise complement operation.
468
  ConstantRange binaryNot() const;
469
 
470
  /// Return a new range representing the possible values resulting
471
  /// from a binary-and of a value in this range by a value in \p Other.
472
  ConstantRange binaryAnd(const ConstantRange &Other) const;
473
 
474
  /// Return a new range representing the possible values resulting
475
  /// from a binary-or of a value in this range by a value in \p Other.
476
  ConstantRange binaryOr(const ConstantRange &Other) const;
477
 
478
  /// Return a new range representing the possible values resulting
479
  /// from a binary-xor of a value in this range by a value in \p Other.
480
  ConstantRange binaryXor(const ConstantRange &Other) const;
481
 
482
  /// Return a new range representing the possible values resulting
483
  /// from a left shift of a value in this range by a value in \p Other.
484
  /// TODO: This isn't fully implemented yet.
485
  ConstantRange shl(const ConstantRange &Other) const;
486
 
487
  /// Return a new range representing the possible values resulting from a
488
  /// logical right shift of a value in this range and a value in \p Other.
489
  ConstantRange lshr(const ConstantRange &Other) const;
490
 
491
  /// Return a new range representing the possible values resulting from a
492
  /// arithmetic right shift of a value in this range and a value in \p Other.
493
  ConstantRange ashr(const ConstantRange &Other) const;
494
 
495
  /// Perform an unsigned saturating addition of two constant ranges.
496
  ConstantRange uadd_sat(const ConstantRange &Other) const;
497
 
498
  /// Perform a signed saturating addition of two constant ranges.
499
  ConstantRange sadd_sat(const ConstantRange &Other) const;
500
 
501
  /// Perform an unsigned saturating subtraction of two constant ranges.
502
  ConstantRange usub_sat(const ConstantRange &Other) const;
503
 
504
  /// Perform a signed saturating subtraction of two constant ranges.
505
  ConstantRange ssub_sat(const ConstantRange &Other) const;
506
 
507
  /// Perform an unsigned saturating multiplication of two constant ranges.
508
  ConstantRange umul_sat(const ConstantRange &Other) const;
509
 
510
  /// Perform a signed saturating multiplication of two constant ranges.
511
  ConstantRange smul_sat(const ConstantRange &Other) const;
512
 
513
  /// Perform an unsigned saturating left shift of this constant range by a
514
  /// value in \p Other.
515
  ConstantRange ushl_sat(const ConstantRange &Other) const;
516
 
517
  /// Perform a signed saturating left shift of this constant range by a
518
  /// value in \p Other.
519
  ConstantRange sshl_sat(const ConstantRange &Other) const;
520
 
521
  /// Return a new range that is the logical not of the current set.
522
  ConstantRange inverse() const;
523
 
524
  /// Calculate absolute value range. If the original range contains signed
525
  /// min, then the resulting range will contain signed min if and only if
526
  /// \p IntMinIsPoison is false.
527
  ConstantRange abs(bool IntMinIsPoison = false) const;
528
 
529
  /// Represents whether an operation on the given constant range is known to
530
  /// always or never overflow.
531
  enum class OverflowResult {
532
    /// Always overflows in the direction of signed/unsigned min value.
533
    AlwaysOverflowsLow,
534
    /// Always overflows in the direction of signed/unsigned max value.
535
    AlwaysOverflowsHigh,
536
    /// May or may not overflow.
537
    MayOverflow,
538
    /// Never overflows.
539
    NeverOverflows,
540
  };
541
 
542
  /// Return whether unsigned add of the two ranges always/never overflows.
543
  OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const;
544
 
545
  /// Return whether signed add of the two ranges always/never overflows.
546
  OverflowResult signedAddMayOverflow(const ConstantRange &Other) const;
547
 
548
  /// Return whether unsigned sub of the two ranges always/never overflows.
549
  OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const;
550
 
551
  /// Return whether signed sub of the two ranges always/never overflows.
552
  OverflowResult signedSubMayOverflow(const ConstantRange &Other) const;
553
 
554
  /// Return whether unsigned mul of the two ranges always/never overflows.
555
  OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const;
556
 
557
  /// Return known bits for values in this range.
558
  KnownBits toKnownBits() const;
559
 
560
  /// Print out the bounds to a stream.
561
  void print(raw_ostream &OS) const;
562
 
563
  /// Allow printing from a debugger easily.
564
  void dump() const;
565
};
566
 
567
inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
568
  CR.print(OS);
569
  return OS;
570
}
571
 
572
/// Parse out a conservative ConstantRange from !range metadata.
573
///
574
/// E.g. if RangeMD is !{i32 0, i32 10, i32 15, i32 20} then return [0, 20).
575
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD);
576
 
577
} // end namespace llvm
578
 
579
#endif // LLVM_IR_CONSTANTRANGE_H