Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- CFG.h ----------------------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
/// \file
9
///
10
/// This file provides various utilities for inspecting and working with the
11
/// control flow graph in LLVM IR. This includes generic facilities for
12
/// iterating successors and predecessors of basic blocks, the successors of
13
/// specific terminator instructions, etc. It also defines specializations of
14
/// GraphTraits that allow Function and BasicBlock graphs to be treated as
15
/// proper graphs for generic algorithms.
16
///
17
//===----------------------------------------------------------------------===//
18
 
19
#ifndef LLVM_IR_CFG_H
20
#define LLVM_IR_CFG_H
21
 
22
#include "llvm/ADT/GraphTraits.h"
23
#include "llvm/ADT/iterator.h"
24
#include "llvm/ADT/iterator_range.h"
25
#include "llvm/IR/BasicBlock.h"
26
#include "llvm/IR/Function.h"
27
#include "llvm/IR/Value.h"
28
#include <cassert>
29
#include <cstddef>
30
#include <iterator>
31
 
32
namespace llvm {
33
 
34
class Instruction;
35
class Use;
36
 
37
//===----------------------------------------------------------------------===//
38
// BasicBlock pred_iterator definition
39
//===----------------------------------------------------------------------===//
40
 
41
template <class Ptr, class USE_iterator> // Predecessor Iterator
42
class PredIterator {
43
public:
44
  using iterator_category = std::forward_iterator_tag;
45
  using value_type = Ptr;
46
  using difference_type = std::ptrdiff_t;
47
  using pointer = Ptr *;
48
  using reference = Ptr *;
49
 
50
protected:
51
  using Self = PredIterator<Ptr, USE_iterator>;
52
  USE_iterator It;
53
 
54
  inline void advancePastNonTerminators() {
55
    // Loop to ignore non-terminator uses (for example BlockAddresses).
56
    while (!It.atEnd()) {
57
      if (auto *Inst = dyn_cast<Instruction>(*It))
58
        if (Inst->isTerminator())
59
          break;
60
 
61
      ++It;
62
    }
63
  }
64
 
65
public:
66
  PredIterator() = default;
67
  explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
68
    advancePastNonTerminators();
69
  }
70
  inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
71
 
72
  inline bool operator==(const Self& x) const { return It == x.It; }
73
  inline bool operator!=(const Self& x) const { return !operator==(x); }
74
 
75
  inline reference operator*() const {
76
    assert(!It.atEnd() && "pred_iterator out of range!");
77
    return cast<Instruction>(*It)->getParent();
78
  }
79
  inline pointer *operator->() const { return &operator*(); }
80
 
81
  inline Self& operator++() {   // Preincrement
82
    assert(!It.atEnd() && "pred_iterator out of range!");
83
    ++It; advancePastNonTerminators();
84
    return *this;
85
  }
86
 
87
  inline Self operator++(int) { // Postincrement
88
    Self tmp = *this; ++*this; return tmp;
89
  }
90
 
91
  /// getOperandNo - Return the operand number in the predecessor's
92
  /// terminator of the successor.
93
  unsigned getOperandNo() const {
94
    return It.getOperandNo();
95
  }
96
 
97
  /// getUse - Return the operand Use in the predecessor's terminator
98
  /// of the successor.
99
  Use &getUse() const {
100
    return It.getUse();
101
  }
102
};
103
 
104
using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>;
105
using const_pred_iterator =
106
    PredIterator<const BasicBlock, Value::const_user_iterator>;
107
using pred_range = iterator_range<pred_iterator>;
108
using const_pred_range = iterator_range<const_pred_iterator>;
109
 
110
inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
111
inline const_pred_iterator pred_begin(const BasicBlock *BB) {
112
  return const_pred_iterator(BB);
113
}
114
inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
115
inline const_pred_iterator pred_end(const BasicBlock *BB) {
116
  return const_pred_iterator(BB, true);
117
}
118
inline bool pred_empty(const BasicBlock *BB) {
119
  return pred_begin(BB) == pred_end(BB);
120
}
121
/// Get the number of predecessors of \p BB. This is a linear time operation.
122
/// Use \ref BasicBlock::hasNPredecessors() or hasNPredecessorsOrMore if able.
123
inline unsigned pred_size(const BasicBlock *BB) {
124
  return std::distance(pred_begin(BB), pred_end(BB));
125
}
126
inline pred_range predecessors(BasicBlock *BB) {
127
  return pred_range(pred_begin(BB), pred_end(BB));
128
}
129
inline const_pred_range predecessors(const BasicBlock *BB) {
130
  return const_pred_range(pred_begin(BB), pred_end(BB));
131
}
132
 
133
//===----------------------------------------------------------------------===//
134
// Instruction and BasicBlock succ_iterator helpers
135
//===----------------------------------------------------------------------===//
136
 
137
template <class InstructionT, class BlockT>
138
class SuccIterator
139
    : public iterator_facade_base<SuccIterator<InstructionT, BlockT>,
140
                                  std::random_access_iterator_tag, BlockT, int,
141
                                  BlockT *, BlockT *> {
142
public:
143
  using difference_type = int;
144
  using pointer = BlockT *;
145
  using reference = BlockT *;
146
 
147
private:
148
  InstructionT *Inst;
149
  int Idx;
150
  using Self = SuccIterator<InstructionT, BlockT>;
151
 
152
  inline bool index_is_valid(int Idx) {
153
    // Note that we specially support the index of zero being valid even in the
154
    // face of a null instruction.
155
    return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors());
156
  }
157
 
158
  /// Proxy object to allow write access in operator[]
159
  class SuccessorProxy {
160
    Self It;
161
 
162
  public:
163
    explicit SuccessorProxy(const Self &It) : It(It) {}
164
 
165
    SuccessorProxy(const SuccessorProxy &) = default;
166
 
167
    SuccessorProxy &operator=(SuccessorProxy RHS) {
168
      *this = reference(RHS);
169
      return *this;
170
    }
171
 
172
    SuccessorProxy &operator=(reference RHS) {
173
      It.Inst->setSuccessor(It.Idx, RHS);
174
      return *this;
175
    }
176
 
177
    operator reference() const { return *It; }
178
  };
179
 
180
public:
181
  // begin iterator
182
  explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {}
183
  // end iterator
184
  inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) {
185
    if (Inst)
186
      Idx = Inst->getNumSuccessors();
187
    else
188
      // Inst == NULL happens, if a basic block is not fully constructed and
189
      // consequently getTerminator() returns NULL. In this case we construct
190
      // a SuccIterator which describes a basic block that has zero
191
      // successors.
192
      // Defining SuccIterator for incomplete and malformed CFGs is especially
193
      // useful for debugging.
194
      Idx = 0;
195
  }
196
 
197
  /// This is used to interface between code that wants to
198
  /// operate on terminator instructions directly.
199
  int getSuccessorIndex() const { return Idx; }
200
 
201
  inline bool operator==(const Self &x) const { return Idx == x.Idx; }
202
 
203
  inline BlockT *operator*() const { return Inst->getSuccessor(Idx); }
204
 
205
  // We use the basic block pointer directly for operator->.
206
  inline BlockT *operator->() const { return operator*(); }
207
 
208
  inline bool operator<(const Self &RHS) const {
209
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
210
    return Idx < RHS.Idx;
211
  }
212
 
213
  int operator-(const Self &RHS) const {
214
    assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!");
215
    return Idx - RHS.Idx;
216
  }
217
 
218
  inline Self &operator+=(int RHS) {
219
    int NewIdx = Idx + RHS;
220
    assert(index_is_valid(NewIdx) && "Iterator index out of bound");
221
    Idx = NewIdx;
222
    return *this;
223
  }
224
 
225
  inline Self &operator-=(int RHS) { return operator+=(-RHS); }
226
 
227
  // Specially implement the [] operation using a proxy object to support
228
  // assignment.
229
  inline SuccessorProxy operator[](int Offset) {
230
    Self TmpIt = *this;
231
    TmpIt += Offset;
232
    return SuccessorProxy(TmpIt);
233
  }
234
 
235
  /// Get the source BlockT of this iterator.
236
  inline BlockT *getSource() {
237
    assert(Inst && "Source not available, if basic block was malformed");
238
    return Inst->getParent();
239
  }
240
};
241
 
242
using succ_iterator = SuccIterator<Instruction, BasicBlock>;
243
using const_succ_iterator = SuccIterator<const Instruction, const BasicBlock>;
244
using succ_range = iterator_range<succ_iterator>;
245
using const_succ_range = iterator_range<const_succ_iterator>;
246
 
247
inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); }
248
inline const_succ_iterator succ_begin(const Instruction *I) {
249
  return const_succ_iterator(I);
250
}
251
inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); }
252
inline const_succ_iterator succ_end(const Instruction *I) {
253
  return const_succ_iterator(I, true);
254
}
255
inline bool succ_empty(const Instruction *I) {
256
  return succ_begin(I) == succ_end(I);
257
}
258
inline unsigned succ_size(const Instruction *I) {
259
  return std::distance(succ_begin(I), succ_end(I));
260
}
261
inline succ_range successors(Instruction *I) {
262
  return succ_range(succ_begin(I), succ_end(I));
263
}
264
inline const_succ_range successors(const Instruction *I) {
265
  return const_succ_range(succ_begin(I), succ_end(I));
266
}
267
 
268
inline succ_iterator succ_begin(BasicBlock *BB) {
269
  return succ_iterator(BB->getTerminator());
270
}
271
inline const_succ_iterator succ_begin(const BasicBlock *BB) {
272
  return const_succ_iterator(BB->getTerminator());
273
}
274
inline succ_iterator succ_end(BasicBlock *BB) {
275
  return succ_iterator(BB->getTerminator(), true);
276
}
277
inline const_succ_iterator succ_end(const BasicBlock *BB) {
278
  return const_succ_iterator(BB->getTerminator(), true);
279
}
280
inline bool succ_empty(const BasicBlock *BB) {
281
  return succ_begin(BB) == succ_end(BB);
282
}
283
inline unsigned succ_size(const BasicBlock *BB) {
284
  return std::distance(succ_begin(BB), succ_end(BB));
285
}
286
inline succ_range successors(BasicBlock *BB) {
287
  return succ_range(succ_begin(BB), succ_end(BB));
288
}
289
inline const_succ_range successors(const BasicBlock *BB) {
290
  return const_succ_range(succ_begin(BB), succ_end(BB));
291
}
292
 
293
//===--------------------------------------------------------------------===//
294
// GraphTraits specializations for basic block graphs (CFGs)
295
//===--------------------------------------------------------------------===//
296
 
297
// Provide specializations of GraphTraits to be able to treat a function as a
298
// graph of basic blocks...
299
 
300
template <> struct GraphTraits<BasicBlock*> {
301
  using NodeRef = BasicBlock *;
302
  using ChildIteratorType = succ_iterator;
303
 
304
  static NodeRef getEntryNode(BasicBlock *BB) { return BB; }
305
  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
306
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
307
};
308
 
309
template <> struct GraphTraits<const BasicBlock*> {
310
  using NodeRef = const BasicBlock *;
311
  using ChildIteratorType = const_succ_iterator;
312
 
313
  static NodeRef getEntryNode(const BasicBlock *BB) { return BB; }
314
 
315
  static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); }
316
  static ChildIteratorType child_end(NodeRef N) { return succ_end(N); }
317
};
318
 
319
// Provide specializations of GraphTraits to be able to treat a function as a
320
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
321
// a function is considered to be when traversing the predecessor edges of a BB
322
// instead of the successor edges.
323
//
324
template <> struct GraphTraits<Inverse<BasicBlock*>> {
325
  using NodeRef = BasicBlock *;
326
  using ChildIteratorType = pred_iterator;
327
 
328
  static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
329
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
330
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
331
};
332
 
333
template <> struct GraphTraits<Inverse<const BasicBlock*>> {
334
  using NodeRef = const BasicBlock *;
335
  using ChildIteratorType = const_pred_iterator;
336
 
337
  static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; }
338
  static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); }
339
  static ChildIteratorType child_end(NodeRef N) { return pred_end(N); }
340
};
341
 
342
//===--------------------------------------------------------------------===//
343
// GraphTraits specializations for function basic block graphs (CFGs)
344
//===--------------------------------------------------------------------===//
345
 
346
// Provide specializations of GraphTraits to be able to treat a function as a
347
// graph of basic blocks... these are the same as the basic block iterators,
348
// except that the root node is implicitly the first node of the function.
349
//
350
template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
351
  static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); }
352
 
353
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
354
  using nodes_iterator = pointer_iterator<Function::iterator>;
355
 
356
  static nodes_iterator nodes_begin(Function *F) {
357
    return nodes_iterator(F->begin());
358
  }
359
 
360
  static nodes_iterator nodes_end(Function *F) {
361
    return nodes_iterator(F->end());
362
  }
363
 
364
  static size_t size(Function *F) { return F->size(); }
365
};
366
template <> struct GraphTraits<const Function*> :
367
  public GraphTraits<const BasicBlock*> {
368
  static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); }
369
 
370
  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
371
  using nodes_iterator = pointer_iterator<Function::const_iterator>;
372
 
373
  static nodes_iterator nodes_begin(const Function *F) {
374
    return nodes_iterator(F->begin());
375
  }
376
 
377
  static nodes_iterator nodes_end(const Function *F) {
378
    return nodes_iterator(F->end());
379
  }
380
 
381
  static size_t size(const Function *F) { return F->size(); }
382
};
383
 
384
// Provide specializations of GraphTraits to be able to treat a function as a
385
// graph of basic blocks... and to walk it in inverse order.  Inverse order for
386
// a function is considered to be when traversing the predecessor edges of a BB
387
// instead of the successor edges.
388
//
389
template <> struct GraphTraits<Inverse<Function*>> :
390
  public GraphTraits<Inverse<BasicBlock*>> {
391
  static NodeRef getEntryNode(Inverse<Function *> G) {
392
    return &G.Graph->getEntryBlock();
393
  }
394
};
395
template <> struct GraphTraits<Inverse<const Function*>> :
396
  public GraphTraits<Inverse<const BasicBlock*>> {
397
  static NodeRef getEntryNode(Inverse<const Function *> G) {
398
    return &G.Graph->getEntryBlock();
399
  }
400
};
401
 
402
} // end namespace llvm
403
 
404
#endif // LLVM_IR_CFG_H