Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- CFG.h ----------------------------------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | /// \file |
||
9 | /// |
||
10 | /// This file provides various utilities for inspecting and working with the |
||
11 | /// control flow graph in LLVM IR. This includes generic facilities for |
||
12 | /// iterating successors and predecessors of basic blocks, the successors of |
||
13 | /// specific terminator instructions, etc. It also defines specializations of |
||
14 | /// GraphTraits that allow Function and BasicBlock graphs to be treated as |
||
15 | /// proper graphs for generic algorithms. |
||
16 | /// |
||
17 | //===----------------------------------------------------------------------===// |
||
18 | |||
19 | #ifndef LLVM_IR_CFG_H |
||
20 | #define LLVM_IR_CFG_H |
||
21 | |||
22 | #include "llvm/ADT/GraphTraits.h" |
||
23 | #include "llvm/ADT/iterator.h" |
||
24 | #include "llvm/ADT/iterator_range.h" |
||
25 | #include "llvm/IR/BasicBlock.h" |
||
26 | #include "llvm/IR/Function.h" |
||
27 | #include "llvm/IR/Value.h" |
||
28 | #include <cassert> |
||
29 | #include <cstddef> |
||
30 | #include <iterator> |
||
31 | |||
32 | namespace llvm { |
||
33 | |||
34 | class Instruction; |
||
35 | class Use; |
||
36 | |||
37 | //===----------------------------------------------------------------------===// |
||
38 | // BasicBlock pred_iterator definition |
||
39 | //===----------------------------------------------------------------------===// |
||
40 | |||
41 | template <class Ptr, class USE_iterator> // Predecessor Iterator |
||
42 | class PredIterator { |
||
43 | public: |
||
44 | using iterator_category = std::forward_iterator_tag; |
||
45 | using value_type = Ptr; |
||
46 | using difference_type = std::ptrdiff_t; |
||
47 | using pointer = Ptr *; |
||
48 | using reference = Ptr *; |
||
49 | |||
50 | protected: |
||
51 | using Self = PredIterator<Ptr, USE_iterator>; |
||
52 | USE_iterator It; |
||
53 | |||
54 | inline void advancePastNonTerminators() { |
||
55 | // Loop to ignore non-terminator uses (for example BlockAddresses). |
||
56 | while (!It.atEnd()) { |
||
57 | if (auto *Inst = dyn_cast<Instruction>(*It)) |
||
58 | if (Inst->isTerminator()) |
||
59 | break; |
||
60 | |||
61 | ++It; |
||
62 | } |
||
63 | } |
||
64 | |||
65 | public: |
||
66 | PredIterator() = default; |
||
67 | explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) { |
||
68 | advancePastNonTerminators(); |
||
69 | } |
||
70 | inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {} |
||
71 | |||
72 | inline bool operator==(const Self& x) const { return It == x.It; } |
||
73 | inline bool operator!=(const Self& x) const { return !operator==(x); } |
||
74 | |||
75 | inline reference operator*() const { |
||
76 | assert(!It.atEnd() && "pred_iterator out of range!"); |
||
77 | return cast<Instruction>(*It)->getParent(); |
||
78 | } |
||
79 | inline pointer *operator->() const { return &operator*(); } |
||
80 | |||
81 | inline Self& operator++() { // Preincrement |
||
82 | assert(!It.atEnd() && "pred_iterator out of range!"); |
||
83 | ++It; advancePastNonTerminators(); |
||
84 | return *this; |
||
85 | } |
||
86 | |||
87 | inline Self operator++(int) { // Postincrement |
||
88 | Self tmp = *this; ++*this; return tmp; |
||
89 | } |
||
90 | |||
91 | /// getOperandNo - Return the operand number in the predecessor's |
||
92 | /// terminator of the successor. |
||
93 | unsigned getOperandNo() const { |
||
94 | return It.getOperandNo(); |
||
95 | } |
||
96 | |||
97 | /// getUse - Return the operand Use in the predecessor's terminator |
||
98 | /// of the successor. |
||
99 | Use &getUse() const { |
||
100 | return It.getUse(); |
||
101 | } |
||
102 | }; |
||
103 | |||
104 | using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>; |
||
105 | using const_pred_iterator = |
||
106 | PredIterator<const BasicBlock, Value::const_user_iterator>; |
||
107 | using pred_range = iterator_range<pred_iterator>; |
||
108 | using const_pred_range = iterator_range<const_pred_iterator>; |
||
109 | |||
110 | inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); } |
||
111 | inline const_pred_iterator pred_begin(const BasicBlock *BB) { |
||
112 | return const_pred_iterator(BB); |
||
113 | } |
||
114 | inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);} |
||
115 | inline const_pred_iterator pred_end(const BasicBlock *BB) { |
||
116 | return const_pred_iterator(BB, true); |
||
117 | } |
||
118 | inline bool pred_empty(const BasicBlock *BB) { |
||
119 | return pred_begin(BB) == pred_end(BB); |
||
120 | } |
||
121 | /// Get the number of predecessors of \p BB. This is a linear time operation. |
||
122 | /// Use \ref BasicBlock::hasNPredecessors() or hasNPredecessorsOrMore if able. |
||
123 | inline unsigned pred_size(const BasicBlock *BB) { |
||
124 | return std::distance(pred_begin(BB), pred_end(BB)); |
||
125 | } |
||
126 | inline pred_range predecessors(BasicBlock *BB) { |
||
127 | return pred_range(pred_begin(BB), pred_end(BB)); |
||
128 | } |
||
129 | inline const_pred_range predecessors(const BasicBlock *BB) { |
||
130 | return const_pred_range(pred_begin(BB), pred_end(BB)); |
||
131 | } |
||
132 | |||
133 | //===----------------------------------------------------------------------===// |
||
134 | // Instruction and BasicBlock succ_iterator helpers |
||
135 | //===----------------------------------------------------------------------===// |
||
136 | |||
137 | template <class InstructionT, class BlockT> |
||
138 | class SuccIterator |
||
139 | : public iterator_facade_base<SuccIterator<InstructionT, BlockT>, |
||
140 | std::random_access_iterator_tag, BlockT, int, |
||
141 | BlockT *, BlockT *> { |
||
142 | public: |
||
143 | using difference_type = int; |
||
144 | using pointer = BlockT *; |
||
145 | using reference = BlockT *; |
||
146 | |||
147 | private: |
||
148 | InstructionT *Inst; |
||
149 | int Idx; |
||
150 | using Self = SuccIterator<InstructionT, BlockT>; |
||
151 | |||
152 | inline bool index_is_valid(int Idx) { |
||
153 | // Note that we specially support the index of zero being valid even in the |
||
154 | // face of a null instruction. |
||
155 | return Idx >= 0 && (Idx == 0 || Idx <= (int)Inst->getNumSuccessors()); |
||
156 | } |
||
157 | |||
158 | /// Proxy object to allow write access in operator[] |
||
159 | class SuccessorProxy { |
||
160 | Self It; |
||
161 | |||
162 | public: |
||
163 | explicit SuccessorProxy(const Self &It) : It(It) {} |
||
164 | |||
165 | SuccessorProxy(const SuccessorProxy &) = default; |
||
166 | |||
167 | SuccessorProxy &operator=(SuccessorProxy RHS) { |
||
168 | *this = reference(RHS); |
||
169 | return *this; |
||
170 | } |
||
171 | |||
172 | SuccessorProxy &operator=(reference RHS) { |
||
173 | It.Inst->setSuccessor(It.Idx, RHS); |
||
174 | return *this; |
||
175 | } |
||
176 | |||
177 | operator reference() const { return *It; } |
||
178 | }; |
||
179 | |||
180 | public: |
||
181 | // begin iterator |
||
182 | explicit inline SuccIterator(InstructionT *Inst) : Inst(Inst), Idx(0) {} |
||
183 | // end iterator |
||
184 | inline SuccIterator(InstructionT *Inst, bool) : Inst(Inst) { |
||
185 | if (Inst) |
||
186 | Idx = Inst->getNumSuccessors(); |
||
187 | else |
||
188 | // Inst == NULL happens, if a basic block is not fully constructed and |
||
189 | // consequently getTerminator() returns NULL. In this case we construct |
||
190 | // a SuccIterator which describes a basic block that has zero |
||
191 | // successors. |
||
192 | // Defining SuccIterator for incomplete and malformed CFGs is especially |
||
193 | // useful for debugging. |
||
194 | Idx = 0; |
||
195 | } |
||
196 | |||
197 | /// This is used to interface between code that wants to |
||
198 | /// operate on terminator instructions directly. |
||
199 | int getSuccessorIndex() const { return Idx; } |
||
200 | |||
201 | inline bool operator==(const Self &x) const { return Idx == x.Idx; } |
||
202 | |||
203 | inline BlockT *operator*() const { return Inst->getSuccessor(Idx); } |
||
204 | |||
205 | // We use the basic block pointer directly for operator->. |
||
206 | inline BlockT *operator->() const { return operator*(); } |
||
207 | |||
208 | inline bool operator<(const Self &RHS) const { |
||
209 | assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!"); |
||
210 | return Idx < RHS.Idx; |
||
211 | } |
||
212 | |||
213 | int operator-(const Self &RHS) const { |
||
214 | assert(Inst == RHS.Inst && "Cannot compare iterators of different blocks!"); |
||
215 | return Idx - RHS.Idx; |
||
216 | } |
||
217 | |||
218 | inline Self &operator+=(int RHS) { |
||
219 | int NewIdx = Idx + RHS; |
||
220 | assert(index_is_valid(NewIdx) && "Iterator index out of bound"); |
||
221 | Idx = NewIdx; |
||
222 | return *this; |
||
223 | } |
||
224 | |||
225 | inline Self &operator-=(int RHS) { return operator+=(-RHS); } |
||
226 | |||
227 | // Specially implement the [] operation using a proxy object to support |
||
228 | // assignment. |
||
229 | inline SuccessorProxy operator[](int Offset) { |
||
230 | Self TmpIt = *this; |
||
231 | TmpIt += Offset; |
||
232 | return SuccessorProxy(TmpIt); |
||
233 | } |
||
234 | |||
235 | /// Get the source BlockT of this iterator. |
||
236 | inline BlockT *getSource() { |
||
237 | assert(Inst && "Source not available, if basic block was malformed"); |
||
238 | return Inst->getParent(); |
||
239 | } |
||
240 | }; |
||
241 | |||
242 | using succ_iterator = SuccIterator<Instruction, BasicBlock>; |
||
243 | using const_succ_iterator = SuccIterator<const Instruction, const BasicBlock>; |
||
244 | using succ_range = iterator_range<succ_iterator>; |
||
245 | using const_succ_range = iterator_range<const_succ_iterator>; |
||
246 | |||
247 | inline succ_iterator succ_begin(Instruction *I) { return succ_iterator(I); } |
||
248 | inline const_succ_iterator succ_begin(const Instruction *I) { |
||
249 | return const_succ_iterator(I); |
||
250 | } |
||
251 | inline succ_iterator succ_end(Instruction *I) { return succ_iterator(I, true); } |
||
252 | inline const_succ_iterator succ_end(const Instruction *I) { |
||
253 | return const_succ_iterator(I, true); |
||
254 | } |
||
255 | inline bool succ_empty(const Instruction *I) { |
||
256 | return succ_begin(I) == succ_end(I); |
||
257 | } |
||
258 | inline unsigned succ_size(const Instruction *I) { |
||
259 | return std::distance(succ_begin(I), succ_end(I)); |
||
260 | } |
||
261 | inline succ_range successors(Instruction *I) { |
||
262 | return succ_range(succ_begin(I), succ_end(I)); |
||
263 | } |
||
264 | inline const_succ_range successors(const Instruction *I) { |
||
265 | return const_succ_range(succ_begin(I), succ_end(I)); |
||
266 | } |
||
267 | |||
268 | inline succ_iterator succ_begin(BasicBlock *BB) { |
||
269 | return succ_iterator(BB->getTerminator()); |
||
270 | } |
||
271 | inline const_succ_iterator succ_begin(const BasicBlock *BB) { |
||
272 | return const_succ_iterator(BB->getTerminator()); |
||
273 | } |
||
274 | inline succ_iterator succ_end(BasicBlock *BB) { |
||
275 | return succ_iterator(BB->getTerminator(), true); |
||
276 | } |
||
277 | inline const_succ_iterator succ_end(const BasicBlock *BB) { |
||
278 | return const_succ_iterator(BB->getTerminator(), true); |
||
279 | } |
||
280 | inline bool succ_empty(const BasicBlock *BB) { |
||
281 | return succ_begin(BB) == succ_end(BB); |
||
282 | } |
||
283 | inline unsigned succ_size(const BasicBlock *BB) { |
||
284 | return std::distance(succ_begin(BB), succ_end(BB)); |
||
285 | } |
||
286 | inline succ_range successors(BasicBlock *BB) { |
||
287 | return succ_range(succ_begin(BB), succ_end(BB)); |
||
288 | } |
||
289 | inline const_succ_range successors(const BasicBlock *BB) { |
||
290 | return const_succ_range(succ_begin(BB), succ_end(BB)); |
||
291 | } |
||
292 | |||
293 | //===--------------------------------------------------------------------===// |
||
294 | // GraphTraits specializations for basic block graphs (CFGs) |
||
295 | //===--------------------------------------------------------------------===// |
||
296 | |||
297 | // Provide specializations of GraphTraits to be able to treat a function as a |
||
298 | // graph of basic blocks... |
||
299 | |||
300 | template <> struct GraphTraits<BasicBlock*> { |
||
301 | using NodeRef = BasicBlock *; |
||
302 | using ChildIteratorType = succ_iterator; |
||
303 | |||
304 | static NodeRef getEntryNode(BasicBlock *BB) { return BB; } |
||
305 | static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); } |
||
306 | static ChildIteratorType child_end(NodeRef N) { return succ_end(N); } |
||
307 | }; |
||
308 | |||
309 | template <> struct GraphTraits<const BasicBlock*> { |
||
310 | using NodeRef = const BasicBlock *; |
||
311 | using ChildIteratorType = const_succ_iterator; |
||
312 | |||
313 | static NodeRef getEntryNode(const BasicBlock *BB) { return BB; } |
||
314 | |||
315 | static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); } |
||
316 | static ChildIteratorType child_end(NodeRef N) { return succ_end(N); } |
||
317 | }; |
||
318 | |||
319 | // Provide specializations of GraphTraits to be able to treat a function as a |
||
320 | // graph of basic blocks... and to walk it in inverse order. Inverse order for |
||
321 | // a function is considered to be when traversing the predecessor edges of a BB |
||
322 | // instead of the successor edges. |
||
323 | // |
||
324 | template <> struct GraphTraits<Inverse<BasicBlock*>> { |
||
325 | using NodeRef = BasicBlock *; |
||
326 | using ChildIteratorType = pred_iterator; |
||
327 | |||
328 | static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; } |
||
329 | static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); } |
||
330 | static ChildIteratorType child_end(NodeRef N) { return pred_end(N); } |
||
331 | }; |
||
332 | |||
333 | template <> struct GraphTraits<Inverse<const BasicBlock*>> { |
||
334 | using NodeRef = const BasicBlock *; |
||
335 | using ChildIteratorType = const_pred_iterator; |
||
336 | |||
337 | static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; } |
||
338 | static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); } |
||
339 | static ChildIteratorType child_end(NodeRef N) { return pred_end(N); } |
||
340 | }; |
||
341 | |||
342 | //===--------------------------------------------------------------------===// |
||
343 | // GraphTraits specializations for function basic block graphs (CFGs) |
||
344 | //===--------------------------------------------------------------------===// |
||
345 | |||
346 | // Provide specializations of GraphTraits to be able to treat a function as a |
||
347 | // graph of basic blocks... these are the same as the basic block iterators, |
||
348 | // except that the root node is implicitly the first node of the function. |
||
349 | // |
||
350 | template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> { |
||
351 | static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); } |
||
352 | |||
353 | // nodes_iterator/begin/end - Allow iteration over all nodes in the graph |
||
354 | using nodes_iterator = pointer_iterator<Function::iterator>; |
||
355 | |||
356 | static nodes_iterator nodes_begin(Function *F) { |
||
357 | return nodes_iterator(F->begin()); |
||
358 | } |
||
359 | |||
360 | static nodes_iterator nodes_end(Function *F) { |
||
361 | return nodes_iterator(F->end()); |
||
362 | } |
||
363 | |||
364 | static size_t size(Function *F) { return F->size(); } |
||
365 | }; |
||
366 | template <> struct GraphTraits<const Function*> : |
||
367 | public GraphTraits<const BasicBlock*> { |
||
368 | static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); } |
||
369 | |||
370 | // nodes_iterator/begin/end - Allow iteration over all nodes in the graph |
||
371 | using nodes_iterator = pointer_iterator<Function::const_iterator>; |
||
372 | |||
373 | static nodes_iterator nodes_begin(const Function *F) { |
||
374 | return nodes_iterator(F->begin()); |
||
375 | } |
||
376 | |||
377 | static nodes_iterator nodes_end(const Function *F) { |
||
378 | return nodes_iterator(F->end()); |
||
379 | } |
||
380 | |||
381 | static size_t size(const Function *F) { return F->size(); } |
||
382 | }; |
||
383 | |||
384 | // Provide specializations of GraphTraits to be able to treat a function as a |
||
385 | // graph of basic blocks... and to walk it in inverse order. Inverse order for |
||
386 | // a function is considered to be when traversing the predecessor edges of a BB |
||
387 | // instead of the successor edges. |
||
388 | // |
||
389 | template <> struct GraphTraits<Inverse<Function*>> : |
||
390 | public GraphTraits<Inverse<BasicBlock*>> { |
||
391 | static NodeRef getEntryNode(Inverse<Function *> G) { |
||
392 | return &G.Graph->getEntryBlock(); |
||
393 | } |
||
394 | }; |
||
395 | template <> struct GraphTraits<Inverse<const Function*>> : |
||
396 | public GraphTraits<Inverse<const BasicBlock*>> { |
||
397 | static NodeRef getEntryNode(Inverse<const Function *> G) { |
||
398 | return &G.Graph->getEntryBlock(); |
||
399 | } |
||
400 | }; |
||
401 | |||
402 | } // end namespace llvm |
||
403 | |||
404 | #endif // LLVM_IR_CFG_H |