Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- RuntimeDyld.h - Run-time dynamic linker for MC-JIT -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Interface for the runtime dynamic linker facilities of the MC-JIT.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
14
#define LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
15
 
16
#include "llvm/ADT/FunctionExtras.h"
17
#include "llvm/ADT/STLExtras.h"
18
#include "llvm/ADT/StringRef.h"
19
#include "llvm/DebugInfo/DIContext.h"
20
#include "llvm/ExecutionEngine/JITSymbol.h"
21
#include "llvm/Object/ObjectFile.h"
22
#include "llvm/Support/Error.h"
23
#include <algorithm>
24
#include <cassert>
25
#include <cstddef>
26
#include <cstdint>
27
#include <map>
28
#include <memory>
29
#include <string>
30
#include <system_error>
31
 
32
namespace llvm {
33
 
34
namespace object {
35
 
36
template <typename T> class OwningBinary;
37
 
38
} // end namespace object
39
 
40
/// Base class for errors originating in RuntimeDyld, e.g. missing relocation
41
/// support.
42
class RuntimeDyldError : public ErrorInfo<RuntimeDyldError> {
43
public:
44
  static char ID;
45
 
46
  RuntimeDyldError(std::string ErrMsg) : ErrMsg(std::move(ErrMsg)) {}
47
 
48
  void log(raw_ostream &OS) const override;
49
  const std::string &getErrorMessage() const { return ErrMsg; }
50
  std::error_code convertToErrorCode() const override;
51
 
52
private:
53
  std::string ErrMsg;
54
};
55
 
56
class RuntimeDyldImpl;
57
 
58
class RuntimeDyld {
59
public:
60
  // Change the address associated with a section when resolving relocations.
61
  // Any relocations already associated with the symbol will be re-resolved.
62
  void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
63
 
64
  using NotifyStubEmittedFunction = std::function<void(
65
      StringRef FileName, StringRef SectionName, StringRef SymbolName,
66
      unsigned SectionID, uint32_t StubOffset)>;
67
 
68
  /// Information about the loaded object.
69
  class LoadedObjectInfo : public llvm::LoadedObjectInfo {
70
    friend class RuntimeDyldImpl;
71
 
72
  public:
73
    using ObjSectionToIDMap = std::map<object::SectionRef, unsigned>;
74
 
75
    LoadedObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
76
        : RTDyld(RTDyld), ObjSecToIDMap(std::move(ObjSecToIDMap)) {}
77
 
78
    virtual object::OwningBinary<object::ObjectFile>
79
    getObjectForDebug(const object::ObjectFile &Obj) const = 0;
80
 
81
    uint64_t
82
    getSectionLoadAddress(const object::SectionRef &Sec) const override;
83
 
84
  protected:
85
    virtual void anchor();
86
 
87
    RuntimeDyldImpl &RTDyld;
88
    ObjSectionToIDMap ObjSecToIDMap;
89
  };
90
 
91
  /// Memory Management.
92
  class MemoryManager {
93
    friend class RuntimeDyld;
94
 
95
  public:
96
    MemoryManager() = default;
97
    virtual ~MemoryManager() = default;
98
 
99
    /// Allocate a memory block of (at least) the given size suitable for
100
    /// executable code. The SectionID is a unique identifier assigned by the
101
    /// RuntimeDyld instance, and optionally recorded by the memory manager to
102
    /// access a loaded section.
103
    virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
104
                                         unsigned SectionID,
105
                                         StringRef SectionName) = 0;
106
 
107
    /// Allocate a memory block of (at least) the given size suitable for data.
108
    /// The SectionID is a unique identifier assigned by the JIT engine, and
109
    /// optionally recorded by the memory manager to access a loaded section.
110
    virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
111
                                         unsigned SectionID,
112
                                         StringRef SectionName,
113
                                         bool IsReadOnly) = 0;
114
 
115
    /// An allocated TLS section
116
    struct TLSSection {
117
      /// The pointer to the initialization image
118
      uint8_t *InitializationImage;
119
      /// The TLS offset
120
      intptr_t Offset;
121
    };
122
 
123
    /// Allocate a memory block of (at least) the given size to be used for
124
    /// thread-local storage (TLS).
125
    virtual TLSSection allocateTLSSection(uintptr_t Size, unsigned Alignment,
126
                                          unsigned SectionID,
127
                                          StringRef SectionName);
128
 
129
    /// Inform the memory manager about the total amount of memory required to
130
    /// allocate all sections to be loaded:
131
    /// \p CodeSize - the total size of all code sections
132
    /// \p DataSizeRO - the total size of all read-only data sections
133
    /// \p DataSizeRW - the total size of all read-write data sections
134
    ///
135
    /// Note that by default the callback is disabled. To enable it
136
    /// redefine the method needsToReserveAllocationSpace to return true.
137
    virtual void reserveAllocationSpace(uintptr_t CodeSize, Align CodeAlign,
138
                                        uintptr_t RODataSize, Align RODataAlign,
139
                                        uintptr_t RWDataSize,
140
                                        Align RWDataAlign) {}
141
 
142
    /// Override to return true to enable the reserveAllocationSpace callback.
143
    virtual bool needsToReserveAllocationSpace() { return false; }
144
 
145
    /// Override to return false to tell LLVM no stub space will be needed.
146
    /// This requires some guarantees depending on architecuture, but when
147
    /// you know what you are doing it saves allocated space.
148
    virtual bool allowStubAllocation() const { return true; }
149
 
150
    /// Register the EH frames with the runtime so that c++ exceptions work.
151
    ///
152
    /// \p Addr parameter provides the local address of the EH frame section
153
    /// data, while \p LoadAddr provides the address of the data in the target
154
    /// address space.  If the section has not been remapped (which will usually
155
    /// be the case for local execution) these two values will be the same.
156
    virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
157
                                  size_t Size) = 0;
158
    virtual void deregisterEHFrames() = 0;
159
 
160
    /// This method is called when object loading is complete and section page
161
    /// permissions can be applied.  It is up to the memory manager implementation
162
    /// to decide whether or not to act on this method.  The memory manager will
163
    /// typically allocate all sections as read-write and then apply specific
164
    /// permissions when this method is called.  Code sections cannot be executed
165
    /// until this function has been called.  In addition, any cache coherency
166
    /// operations needed to reliably use the memory are also performed.
167
    ///
168
    /// Returns true if an error occurred, false otherwise.
169
    virtual bool finalizeMemory(std::string *ErrMsg = nullptr) = 0;
170
 
171
    /// This method is called after an object has been loaded into memory but
172
    /// before relocations are applied to the loaded sections.
173
    ///
174
    /// Memory managers which are preparing code for execution in an external
175
    /// address space can use this call to remap the section addresses for the
176
    /// newly loaded object.
177
    ///
178
    /// For clients that do not need access to an ExecutionEngine instance this
179
    /// method should be preferred to its cousin
180
    /// MCJITMemoryManager::notifyObjectLoaded as this method is compatible with
181
    /// ORC JIT stacks.
182
    virtual void notifyObjectLoaded(RuntimeDyld &RTDyld,
183
                                    const object::ObjectFile &Obj) {}
184
 
185
  private:
186
    virtual void anchor();
187
 
188
    bool FinalizationLocked = false;
189
  };
190
 
191
  /// Construct a RuntimeDyld instance.
192
  RuntimeDyld(MemoryManager &MemMgr, JITSymbolResolver &Resolver);
193
  RuntimeDyld(const RuntimeDyld &) = delete;
194
  RuntimeDyld &operator=(const RuntimeDyld &) = delete;
195
  ~RuntimeDyld();
196
 
197
  /// Add the referenced object file to the list of objects to be loaded and
198
  /// relocated.
199
  std::unique_ptr<LoadedObjectInfo> loadObject(const object::ObjectFile &O);
200
 
201
  /// Get the address of our local copy of the symbol. This may or may not
202
  /// be the address used for relocation (clients can copy the data around
203
  /// and resolve relocatons based on where they put it).
204
  void *getSymbolLocalAddress(StringRef Name) const;
205
 
206
  /// Get the section ID for the section containing the given symbol.
207
  unsigned getSymbolSectionID(StringRef Name) const;
208
 
209
  /// Get the target address and flags for the named symbol.
210
  /// This address is the one used for relocation.
211
  JITEvaluatedSymbol getSymbol(StringRef Name) const;
212
 
213
  /// Returns a copy of the symbol table. This can be used by on-finalized
214
  /// callbacks to extract the symbol table before throwing away the
215
  /// RuntimeDyld instance. Because the map keys (StringRefs) are backed by
216
  /// strings inside the RuntimeDyld instance, the map should be processed
217
  /// before the RuntimeDyld instance is discarded.
218
  std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const;
219
 
220
  /// Resolve the relocations for all symbols we currently know about.
221
  void resolveRelocations();
222
 
223
  /// Map a section to its target address space value.
224
  /// Map the address of a JIT section as returned from the memory manager
225
  /// to the address in the target process as the running code will see it.
226
  /// This is the address which will be used for relocation resolution.
227
  void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
228
 
229
  /// Returns the section's working memory.
230
  StringRef getSectionContent(unsigned SectionID) const;
231
 
232
  /// If the section was loaded, return the section's load address,
233
  /// otherwise return std::nullopt.
234
  uint64_t getSectionLoadAddress(unsigned SectionID) const;
235
 
236
  /// Set the NotifyStubEmitted callback. This is used for debugging
237
  /// purposes. A callback is made for each stub that is generated.
238
  void setNotifyStubEmitted(NotifyStubEmittedFunction NotifyStubEmitted) {
239
    this->NotifyStubEmitted = std::move(NotifyStubEmitted);
240
  }
241
 
242
  /// Register any EH frame sections that have been loaded but not previously
243
  /// registered with the memory manager.  Note, RuntimeDyld is responsible
244
  /// for identifying the EH frame and calling the memory manager with the
245
  /// EH frame section data.  However, the memory manager itself will handle
246
  /// the actual target-specific EH frame registration.
247
  void registerEHFrames();
248
 
249
  void deregisterEHFrames();
250
 
251
  bool hasError();
252
  StringRef getErrorString();
253
 
254
  /// By default, only sections that are "required for execution" are passed to
255
  /// the RTDyldMemoryManager, and other sections are discarded. Passing 'true'
256
  /// to this method will cause RuntimeDyld to pass all sections to its
257
  /// memory manager regardless of whether they are "required to execute" in the
258
  /// usual sense. This is useful for inspecting metadata sections that may not
259
  /// contain relocations, E.g. Debug info, stackmaps.
260
  ///
261
  /// Must be called before the first object file is loaded.
262
  void setProcessAllSections(bool ProcessAllSections) {
263
    assert(!Dyld && "setProcessAllSections must be called before loadObject.");
264
    this->ProcessAllSections = ProcessAllSections;
265
  }
266
 
267
  /// Perform all actions needed to make the code owned by this RuntimeDyld
268
  /// instance executable:
269
  ///
270
  /// 1) Apply relocations.
271
  /// 2) Register EH frames.
272
  /// 3) Update memory permissions*.
273
  ///
274
  /// * Finalization is potentially recursive**, and the 3rd step will only be
275
  ///   applied by the outermost call to finalize. This allows different
276
  ///   RuntimeDyld instances to share a memory manager without the innermost
277
  ///   finalization locking the memory and causing relocation fixup errors in
278
  ///   outer instances.
279
  ///
280
  /// ** Recursive finalization occurs when one RuntimeDyld instances needs the
281
  ///   address of a symbol owned by some other instance in order to apply
282
  ///   relocations.
283
  ///
284
  void finalizeWithMemoryManagerLocking();
285
 
286
private:
287
  friend void jitLinkForORC(
288
      object::OwningBinary<object::ObjectFile> O,
289
      RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
290
      bool ProcessAllSections,
291
      unique_function<Error(const object::ObjectFile &Obj, LoadedObjectInfo &,
292
                            std::map<StringRef, JITEvaluatedSymbol>)>
293
          OnLoaded,
294
      unique_function<void(object::OwningBinary<object::ObjectFile> O,
295
                           std::unique_ptr<LoadedObjectInfo>, Error)>
296
          OnEmitted);
297
 
298
  // RuntimeDyldImpl is the actual class. RuntimeDyld is just the public
299
  // interface.
300
  std::unique_ptr<RuntimeDyldImpl> Dyld;
301
  MemoryManager &MemMgr;
302
  JITSymbolResolver &Resolver;
303
  bool ProcessAllSections;
304
  NotifyStubEmittedFunction NotifyStubEmitted;
305
};
306
 
307
// Asynchronous JIT link for ORC.
308
//
309
// Warning: This API is experimental and probably should not be used by anyone
310
// but ORC's RTDyldObjectLinkingLayer2. Internally it constructs a RuntimeDyld
311
// instance and uses continuation passing to perform the fix-up and finalize
312
// steps asynchronously.
313
void jitLinkForORC(
314
    object::OwningBinary<object::ObjectFile> O,
315
    RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
316
    bool ProcessAllSections,
317
    unique_function<Error(const object::ObjectFile &Obj,
318
                          RuntimeDyld::LoadedObjectInfo &,
319
                          std::map<StringRef, JITEvaluatedSymbol>)>
320
        OnLoaded,
321
    unique_function<void(object::OwningBinary<object::ObjectFile>,
322
                         std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
323
        OnEmitted);
324
 
325
} // end namespace llvm
326
 
327
#endif // LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H