Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the abstract interface that implements execution support
10
// for LLVM.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
15
#define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16
 
17
#include "llvm-c/ExecutionEngine.h"
18
#include "llvm/ADT/ArrayRef.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/StringMap.h"
21
#include "llvm/ADT/StringRef.h"
22
#include "llvm/ExecutionEngine/JITSymbol.h"
23
#include "llvm/IR/DataLayout.h"
24
#include "llvm/IR/Module.h"
25
#include "llvm/Object/Binary.h"
26
#include "llvm/Support/CBindingWrapping.h"
27
#include "llvm/Support/CodeGen.h"
28
#include "llvm/Support/ErrorHandling.h"
29
#include "llvm/Support/Mutex.h"
30
#include "llvm/Target/TargetMachine.h"
31
#include "llvm/Target/TargetOptions.h"
32
#include <algorithm>
33
#include <cstdint>
34
#include <functional>
35
#include <map>
36
#include <memory>
37
#include <optional>
38
#include <string>
39
#include <vector>
40
 
41
namespace llvm {
42
 
43
class Constant;
44
class Function;
45
struct GenericValue;
46
class GlobalValue;
47
class GlobalVariable;
48
class JITEventListener;
49
class MCJITMemoryManager;
50
class ObjectCache;
51
class RTDyldMemoryManager;
52
class Triple;
53
class Type;
54
 
55
namespace object {
56
 
57
class Archive;
58
class ObjectFile;
59
 
60
} // end namespace object
61
 
62
/// Helper class for helping synchronize access to the global address map
63
/// table.  Access to this class should be serialized under a mutex.
64
class ExecutionEngineState {
65
public:
66
  using GlobalAddressMapTy = StringMap<uint64_t>;
67
 
68
private:
69
  /// GlobalAddressMap - A mapping between LLVM global symbol names values and
70
  /// their actualized version...
71
  GlobalAddressMapTy GlobalAddressMap;
72
 
73
  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
74
  /// used to convert raw addresses into the LLVM global value that is emitted
75
  /// at the address.  This map is not computed unless getGlobalValueAtAddress
76
  /// is called at some point.
77
  std::map<uint64_t, std::string> GlobalAddressReverseMap;
78
 
79
public:
80
  GlobalAddressMapTy &getGlobalAddressMap() {
81
    return GlobalAddressMap;
82
  }
83
 
84
  std::map<uint64_t, std::string> &getGlobalAddressReverseMap() {
85
    return GlobalAddressReverseMap;
86
  }
87
 
88
  /// Erase an entry from the mapping table.
89
  ///
90
  /// \returns The address that \p ToUnmap was happed to.
91
  uint64_t RemoveMapping(StringRef Name);
92
};
93
 
94
using FunctionCreator = std::function<void *(const std::string &)>;
95
 
96
/// Abstract interface for implementation execution of LLVM modules,
97
/// designed to support both interpreter and just-in-time (JIT) compiler
98
/// implementations.
99
class ExecutionEngine {
100
  /// The state object holding the global address mapping, which must be
101
  /// accessed synchronously.
102
  //
103
  // FIXME: There is no particular need the entire map needs to be
104
  // synchronized.  Wouldn't a reader-writer design be better here?
105
  ExecutionEngineState EEState;
106
 
107
  /// The target data for the platform for which execution is being performed.
108
  ///
109
  /// Note: the DataLayout is LLVMContext specific because it has an
110
  /// internal cache based on type pointers. It makes unsafe to reuse the
111
  /// ExecutionEngine across context, we don't enforce this rule but undefined
112
  /// behavior can occurs if the user tries to do it.
113
  const DataLayout DL;
114
 
115
  /// Whether lazy JIT compilation is enabled.
116
  bool CompilingLazily;
117
 
118
  /// Whether JIT compilation of external global variables is allowed.
119
  bool GVCompilationDisabled;
120
 
121
  /// Whether the JIT should perform lookups of external symbols (e.g.,
122
  /// using dlsym).
123
  bool SymbolSearchingDisabled;
124
 
125
  /// Whether the JIT should verify IR modules during compilation.
126
  bool VerifyModules;
127
 
128
  friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
129
 
130
protected:
131
  /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
132
  /// optimize for the case where there is only one module.
133
  SmallVector<std::unique_ptr<Module>, 1> Modules;
134
 
135
  /// getMemoryforGV - Allocate memory for a global variable.
136
  virtual char *getMemoryForGV(const GlobalVariable *GV);
137
 
138
  static ExecutionEngine *(*MCJITCtor)(
139
      std::unique_ptr<Module> M, std::string *ErrorStr,
140
      std::shared_ptr<MCJITMemoryManager> MM,
141
      std::shared_ptr<LegacyJITSymbolResolver> SR,
142
      std::unique_ptr<TargetMachine> TM);
143
 
144
  static ExecutionEngine *(*InterpCtor)(std::unique_ptr<Module> M,
145
                                        std::string *ErrorStr);
146
 
147
  /// LazyFunctionCreator - If an unknown function is needed, this function
148
  /// pointer is invoked to create it.  If this returns null, the JIT will
149
  /// abort.
150
  FunctionCreator LazyFunctionCreator;
151
 
152
  /// getMangledName - Get mangled name.
153
  std::string getMangledName(const GlobalValue *GV);
154
 
155
  std::string ErrMsg;
156
 
157
public:
158
  /// lock - This lock protects the ExecutionEngine and MCJIT classes. It must
159
  /// be held while changing the internal state of any of those classes.
160
  sys::Mutex lock;
161
 
162
  //===--------------------------------------------------------------------===//
163
  //  ExecutionEngine Startup
164
  //===--------------------------------------------------------------------===//
165
 
166
  virtual ~ExecutionEngine();
167
 
168
  /// Add a Module to the list of modules that we can JIT from.
169
  virtual void addModule(std::unique_ptr<Module> M) {
170
    Modules.push_back(std::move(M));
171
  }
172
 
173
  /// addObjectFile - Add an ObjectFile to the execution engine.
174
  ///
175
  /// This method is only supported by MCJIT.  MCJIT will immediately load the
176
  /// object into memory and adds its symbols to the list used to resolve
177
  /// external symbols while preparing other objects for execution.
178
  ///
179
  /// Objects added using this function will not be made executable until
180
  /// needed by another object.
181
  ///
182
  /// MCJIT will take ownership of the ObjectFile.
183
  virtual void addObjectFile(std::unique_ptr<object::ObjectFile> O);
184
  virtual void addObjectFile(object::OwningBinary<object::ObjectFile> O);
185
 
186
  /// addArchive - Add an Archive to the execution engine.
187
  ///
188
  /// This method is only supported by MCJIT.  MCJIT will use the archive to
189
  /// resolve external symbols in objects it is loading.  If a symbol is found
190
  /// in the Archive the contained object file will be extracted (in memory)
191
  /// and loaded for possible execution.
192
  virtual void addArchive(object::OwningBinary<object::Archive> A);
193
 
194
  //===--------------------------------------------------------------------===//
195
 
196
  const DataLayout &getDataLayout() const { return DL; }
197
 
198
  /// removeModule - Removes a Module from the list of modules, but does not
199
  /// free the module's memory. Returns true if M is found, in which case the
200
  /// caller assumes responsibility for deleting the module.
201
  //
202
  // FIXME: This stealth ownership transfer is horrible. This will probably be
203
  //        fixed by deleting ExecutionEngine.
204
  virtual bool removeModule(Module *M);
205
 
206
  /// FindFunctionNamed - Search all of the active modules to find the function that
207
  /// defines FnName.  This is very slow operation and shouldn't be used for
208
  /// general code.
209
  virtual Function *FindFunctionNamed(StringRef FnName);
210
 
211
  /// FindGlobalVariableNamed - Search all of the active modules to find the global variable
212
  /// that defines Name.  This is very slow operation and shouldn't be used for
213
  /// general code.
214
  virtual GlobalVariable *FindGlobalVariableNamed(StringRef Name, bool AllowInternal = false);
215
 
216
  /// runFunction - Execute the specified function with the specified arguments,
217
  /// and return the result.
218
  ///
219
  /// For MCJIT execution engines, clients are encouraged to use the
220
  /// "GetFunctionAddress" method (rather than runFunction) and cast the
221
  /// returned uint64_t to the desired function pointer type. However, for
222
  /// backwards compatibility MCJIT's implementation can execute 'main-like'
223
  /// function (i.e. those returning void or int, and taking either no
224
  /// arguments or (int, char*[])).
225
  virtual GenericValue runFunction(Function *F,
226
                                   ArrayRef<GenericValue> ArgValues) = 0;
227
 
228
  /// getPointerToNamedFunction - This method returns the address of the
229
  /// specified function by using the dlsym function call.  As such it is only
230
  /// useful for resolving library symbols, not code generated symbols.
231
  ///
232
  /// If AbortOnFailure is false and no function with the given name is
233
  /// found, this function silently returns a null pointer. Otherwise,
234
  /// it prints a message to stderr and aborts.
235
  ///
236
  /// This function is deprecated for the MCJIT execution engine.
237
  virtual void *getPointerToNamedFunction(StringRef Name,
238
                                          bool AbortOnFailure = true) = 0;
239
 
240
  /// mapSectionAddress - map a section to its target address space value.
241
  /// Map the address of a JIT section as returned from the memory manager
242
  /// to the address in the target process as the running code will see it.
243
  /// This is the address which will be used for relocation resolution.
244
  virtual void mapSectionAddress(const void *LocalAddress,
245
                                 uint64_t TargetAddress) {
246
    llvm_unreachable("Re-mapping of section addresses not supported with this "
247
                     "EE!");
248
  }
249
 
250
  /// generateCodeForModule - Run code generation for the specified module and
251
  /// load it into memory.
252
  ///
253
  /// When this function has completed, all code and data for the specified
254
  /// module, and any module on which this module depends, will be generated
255
  /// and loaded into memory, but relocations will not yet have been applied
256
  /// and all memory will be readable and writable but not executable.
257
  ///
258
  /// This function is primarily useful when generating code for an external
259
  /// target, allowing the client an opportunity to remap section addresses
260
  /// before relocations are applied.  Clients that intend to execute code
261
  /// locally can use the getFunctionAddress call, which will generate code
262
  /// and apply final preparations all in one step.
263
  ///
264
  /// This method has no effect for the interpeter.
265
  virtual void generateCodeForModule(Module *M) {}
266
 
267
  /// finalizeObject - ensure the module is fully processed and is usable.
268
  ///
269
  /// It is the user-level function for completing the process of making the
270
  /// object usable for execution.  It should be called after sections within an
271
  /// object have been relocated using mapSectionAddress.  When this method is
272
  /// called the MCJIT execution engine will reapply relocations for a loaded
273
  /// object.  This method has no effect for the interpeter.
274
  ///
275
  /// Returns true on success, false on failure. Error messages can be retrieved
276
  /// by calling getError();
277
  virtual void finalizeObject() {}
278
 
279
  /// Returns true if an error has been recorded.
280
  bool hasError() const { return !ErrMsg.empty(); }
281
 
282
  /// Clear the error message.
283
  void clearErrorMessage() { ErrMsg.clear(); }
284
 
285
  /// Returns the most recent error message.
286
  const std::string &getErrorMessage() const { return ErrMsg; }
287
 
288
  /// runStaticConstructorsDestructors - This method is used to execute all of
289
  /// the static constructors or destructors for a program.
290
  ///
291
  /// \param isDtors - Run the destructors instead of constructors.
292
  virtual void runStaticConstructorsDestructors(bool isDtors);
293
 
294
  /// This method is used to execute all of the static constructors or
295
  /// destructors for a particular module.
296
  ///
297
  /// \param isDtors - Run the destructors instead of constructors.
298
  void runStaticConstructorsDestructors(Module &module, bool isDtors);
299
 
300
 
301
  /// runFunctionAsMain - This is a helper function which wraps runFunction to
302
  /// handle the common task of starting up main with the specified argc, argv,
303
  /// and envp parameters.
304
  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
305
                        const char * const * envp);
306
 
307
 
308
  /// addGlobalMapping - Tell the execution engine that the specified global is
309
  /// at the specified location.  This is used internally as functions are JIT'd
310
  /// and as global variables are laid out in memory.  It can and should also be
311
  /// used by clients of the EE that want to have an LLVM global overlay
312
  /// existing data in memory. Values to be mapped should be named, and have
313
  /// external or weak linkage. Mappings are automatically removed when their
314
  /// GlobalValue is destroyed.
315
  void addGlobalMapping(const GlobalValue *GV, void *Addr);
316
  void addGlobalMapping(StringRef Name, uint64_t Addr);
317
 
318
  /// clearAllGlobalMappings - Clear all global mappings and start over again,
319
  /// for use in dynamic compilation scenarios to move globals.
320
  void clearAllGlobalMappings();
321
 
322
  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
323
  /// particular module, because it has been removed from the JIT.
324
  void clearGlobalMappingsFromModule(Module *M);
325
 
326
  /// updateGlobalMapping - Replace an existing mapping for GV with a new
327
  /// address.  This updates both maps as required.  If "Addr" is null, the
328
  /// entry for the global is removed from the mappings.  This returns the old
329
  /// value of the pointer, or null if it was not in the map.
330
  uint64_t updateGlobalMapping(const GlobalValue *GV, void *Addr);
331
  uint64_t updateGlobalMapping(StringRef Name, uint64_t Addr);
332
 
333
  /// getAddressToGlobalIfAvailable - This returns the address of the specified
334
  /// global symbol.
335
  uint64_t getAddressToGlobalIfAvailable(StringRef S);
336
 
337
  /// getPointerToGlobalIfAvailable - This returns the address of the specified
338
  /// global value if it is has already been codegen'd, otherwise it returns
339
  /// null.
340
  void *getPointerToGlobalIfAvailable(StringRef S);
341
  void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
342
 
343
  /// getPointerToGlobal - This returns the address of the specified global
344
  /// value. This may involve code generation if it's a function.
345
  ///
346
  /// This function is deprecated for the MCJIT execution engine.  Use
347
  /// getGlobalValueAddress instead.
348
  void *getPointerToGlobal(const GlobalValue *GV);
349
 
350
  /// getPointerToFunction - The different EE's represent function bodies in
351
  /// different ways.  They should each implement this to say what a function
352
  /// pointer should look like.  When F is destroyed, the ExecutionEngine will
353
  /// remove its global mapping and free any machine code.  Be sure no threads
354
  /// are running inside F when that happens.
355
  ///
356
  /// This function is deprecated for the MCJIT execution engine.  Use
357
  /// getFunctionAddress instead.
358
  virtual void *getPointerToFunction(Function *F) = 0;
359
 
360
  /// getPointerToFunctionOrStub - If the specified function has been
361
  /// code-gen'd, return a pointer to the function.  If not, compile it, or use
362
  /// a stub to implement lazy compilation if available.  See
363
  /// getPointerToFunction for the requirements on destroying F.
364
  ///
365
  /// This function is deprecated for the MCJIT execution engine.  Use
366
  /// getFunctionAddress instead.
367
  virtual void *getPointerToFunctionOrStub(Function *F) {
368
    // Default implementation, just codegen the function.
369
    return getPointerToFunction(F);
370
  }
371
 
372
  /// getGlobalValueAddress - Return the address of the specified global
373
  /// value. This may involve code generation.
374
  ///
375
  /// This function should not be called with the interpreter engine.
376
  virtual uint64_t getGlobalValueAddress(const std::string &Name) {
377
    // Default implementation for the interpreter.  MCJIT will override this.
378
    // JIT and interpreter clients should use getPointerToGlobal instead.
379
    return 0;
380
  }
381
 
382
  /// getFunctionAddress - Return the address of the specified function.
383
  /// This may involve code generation.
384
  virtual uint64_t getFunctionAddress(const std::string &Name) {
385
    // Default implementation for the interpreter.  MCJIT will override this.
386
    // Interpreter clients should use getPointerToFunction instead.
387
    return 0;
388
  }
389
 
390
  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
391
  /// at the specified address.
392
  ///
393
  const GlobalValue *getGlobalValueAtAddress(void *Addr);
394
 
395
  /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
396
  /// Ptr is the address of the memory at which to store Val, cast to
397
  /// GenericValue *.  It is not a pointer to a GenericValue containing the
398
  /// address at which to store Val.
399
  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
400
                          Type *Ty);
401
 
402
  void InitializeMemory(const Constant *Init, void *Addr);
403
 
404
  /// getOrEmitGlobalVariable - Return the address of the specified global
405
  /// variable, possibly emitting it to memory if needed.  This is used by the
406
  /// Emitter.
407
  ///
408
  /// This function is deprecated for the MCJIT execution engine.  Use
409
  /// getGlobalValueAddress instead.
410
  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
411
    return getPointerToGlobal((const GlobalValue *)GV);
412
  }
413
 
414
  /// Registers a listener to be called back on various events within
415
  /// the JIT.  See JITEventListener.h for more details.  Does not
416
  /// take ownership of the argument.  The argument may be NULL, in
417
  /// which case these functions do nothing.
418
  virtual void RegisterJITEventListener(JITEventListener *) {}
419
  virtual void UnregisterJITEventListener(JITEventListener *) {}
420
 
421
  /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
422
  /// not changed.  Supported by MCJIT but not the interpreter.
423
  virtual void setObjectCache(ObjectCache *) {
424
    llvm_unreachable("No support for an object cache");
425
  }
426
 
427
  /// setProcessAllSections (MCJIT Only): By default, only sections that are
428
  /// "required for execution" are passed to the RTDyldMemoryManager, and other
429
  /// sections are discarded. Passing 'true' to this method will cause
430
  /// RuntimeDyld to pass all sections to its RTDyldMemoryManager regardless
431
  /// of whether they are "required to execute" in the usual sense.
432
  ///
433
  /// Rationale: Some MCJIT clients want to be able to inspect metadata
434
  /// sections (e.g. Dwarf, Stack-maps) to enable functionality or analyze
435
  /// performance. Passing these sections to the memory manager allows the
436
  /// client to make policy about the relevant sections, rather than having
437
  /// MCJIT do it.
438
  virtual void setProcessAllSections(bool ProcessAllSections) {
439
    llvm_unreachable("No support for ProcessAllSections option");
440
  }
441
 
442
  /// Return the target machine (if available).
443
  virtual TargetMachine *getTargetMachine() { return nullptr; }
444
 
445
  /// DisableLazyCompilation - When lazy compilation is off (the default), the
446
  /// JIT will eagerly compile every function reachable from the argument to
447
  /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
448
  /// compile the one function and emit stubs to compile the rest when they're
449
  /// first called.  If lazy compilation is turned off again while some lazy
450
  /// stubs are still around, and one of those stubs is called, the program will
451
  /// abort.
452
  ///
453
  /// In order to safely compile lazily in a threaded program, the user must
454
  /// ensure that 1) only one thread at a time can call any particular lazy
455
  /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
456
  /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
457
  /// lazy stub.  See http://llvm.org/PR5184 for details.
458
  void DisableLazyCompilation(bool Disabled = true) {
459
    CompilingLazily = !Disabled;
460
  }
461
  bool isCompilingLazily() const {
462
    return CompilingLazily;
463
  }
464
 
465
  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
466
  /// allocate space and populate a GlobalVariable that is not internal to
467
  /// the module.
468
  void DisableGVCompilation(bool Disabled = true) {
469
    GVCompilationDisabled = Disabled;
470
  }
471
  bool isGVCompilationDisabled() const {
472
    return GVCompilationDisabled;
473
  }
474
 
475
  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
476
  /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
477
  /// resolve symbols in a custom way.
478
  void DisableSymbolSearching(bool Disabled = true) {
479
    SymbolSearchingDisabled = Disabled;
480
  }
481
  bool isSymbolSearchingDisabled() const {
482
    return SymbolSearchingDisabled;
483
  }
484
 
485
  /// Enable/Disable IR module verification.
486
  ///
487
  /// Note: Module verification is enabled by default in Debug builds, and
488
  /// disabled by default in Release. Use this method to override the default.
489
  void setVerifyModules(bool Verify) {
490
    VerifyModules = Verify;
491
  }
492
  bool getVerifyModules() const {
493
    return VerifyModules;
494
  }
495
 
496
  /// InstallLazyFunctionCreator - If an unknown function is needed, the
497
  /// specified function pointer is invoked to create it.  If it returns null,
498
  /// the JIT will abort.
499
  void InstallLazyFunctionCreator(FunctionCreator C) {
500
    LazyFunctionCreator = std::move(C);
501
  }
502
 
503
protected:
504
  ExecutionEngine(DataLayout DL) : DL(std::move(DL)) {}
505
  explicit ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M);
506
  explicit ExecutionEngine(std::unique_ptr<Module> M);
507
 
508
  void emitGlobals();
509
 
510
  void emitGlobalVariable(const GlobalVariable *GV);
511
 
512
  GenericValue getConstantValue(const Constant *C);
513
  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
514
                           Type *Ty);
515
 
516
private:
517
  void Init(std::unique_ptr<Module> M);
518
};
519
 
520
namespace EngineKind {
521
 
522
  // These are actually bitmasks that get or-ed together.
523
  enum Kind {
524
    JIT         = 0x1,
525
    Interpreter = 0x2
526
  };
527
  const static Kind Either = (Kind)(JIT | Interpreter);
528
 
529
} // end namespace EngineKind
530
 
531
/// Builder class for ExecutionEngines. Use this by stack-allocating a builder,
532
/// chaining the various set* methods, and terminating it with a .create()
533
/// call.
534
class EngineBuilder {
535
private:
536
  std::unique_ptr<Module> M;
537
  EngineKind::Kind WhichEngine;
538
  std::string *ErrorStr;
539
  CodeGenOpt::Level OptLevel;
540
  std::shared_ptr<MCJITMemoryManager> MemMgr;
541
  std::shared_ptr<LegacyJITSymbolResolver> Resolver;
542
  TargetOptions Options;
543
  std::optional<Reloc::Model> RelocModel;
544
  std::optional<CodeModel::Model> CMModel;
545
  std::string MArch;
546
  std::string MCPU;
547
  SmallVector<std::string, 4> MAttrs;
548
  bool VerifyModules;
549
  bool EmulatedTLS = true;
550
 
551
public:
552
  /// Default constructor for EngineBuilder.
553
  EngineBuilder();
554
 
555
  /// Constructor for EngineBuilder.
556
  EngineBuilder(std::unique_ptr<Module> M);
557
 
558
  // Out-of-line since we don't have the def'n of RTDyldMemoryManager here.
559
  ~EngineBuilder();
560
 
561
  /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
562
  /// or whichever engine works.  This option defaults to EngineKind::Either.
563
  EngineBuilder &setEngineKind(EngineKind::Kind w) {
564
    WhichEngine = w;
565
    return *this;
566
  }
567
 
568
  /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
569
  /// clients to customize their memory allocation policies for the MCJIT. This
570
  /// is only appropriate for the MCJIT; setting this and configuring the builder
571
  /// to create anything other than MCJIT will cause a runtime error. If create()
572
  /// is called and is successful, the created engine takes ownership of the
573
  /// memory manager. This option defaults to NULL.
574
  EngineBuilder &setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
575
 
576
  EngineBuilder&
577
  setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
578
 
579
  EngineBuilder &setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR);
580
 
581
  /// setErrorStr - Set the error string to write to on error.  This option
582
  /// defaults to NULL.
583
  EngineBuilder &setErrorStr(std::string *e) {
584
    ErrorStr = e;
585
    return *this;
586
  }
587
 
588
  /// setOptLevel - Set the optimization level for the JIT.  This option
589
  /// defaults to CodeGenOpt::Default.
590
  EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
591
    OptLevel = l;
592
    return *this;
593
  }
594
 
595
  /// setTargetOptions - Set the target options that the ExecutionEngine
596
  /// target is using. Defaults to TargetOptions().
597
  EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
598
    Options = Opts;
599
    return *this;
600
  }
601
 
602
  /// setRelocationModel - Set the relocation model that the ExecutionEngine
603
  /// target is using. Defaults to target specific default "Reloc::Default".
604
  EngineBuilder &setRelocationModel(Reloc::Model RM) {
605
    RelocModel = RM;
606
    return *this;
607
  }
608
 
609
  /// setCodeModel - Set the CodeModel that the ExecutionEngine target
610
  /// data is using. Defaults to target specific default
611
  /// "CodeModel::JITDefault".
612
  EngineBuilder &setCodeModel(CodeModel::Model M) {
613
    CMModel = M;
614
    return *this;
615
  }
616
 
617
  /// setMArch - Override the architecture set by the Module's triple.
618
  EngineBuilder &setMArch(StringRef march) {
619
    MArch.assign(march.begin(), march.end());
620
    return *this;
621
  }
622
 
623
  /// setMCPU - Target a specific cpu type.
624
  EngineBuilder &setMCPU(StringRef mcpu) {
625
    MCPU.assign(mcpu.begin(), mcpu.end());
626
    return *this;
627
  }
628
 
629
  /// setVerifyModules - Set whether the JIT implementation should verify
630
  /// IR modules during compilation.
631
  EngineBuilder &setVerifyModules(bool Verify) {
632
    VerifyModules = Verify;
633
    return *this;
634
  }
635
 
636
  /// setMAttrs - Set cpu-specific attributes.
637
  template<typename StringSequence>
638
  EngineBuilder &setMAttrs(const StringSequence &mattrs) {
639
    MAttrs.clear();
640
    MAttrs.append(mattrs.begin(), mattrs.end());
641
    return *this;
642
  }
643
 
644
  void setEmulatedTLS(bool EmulatedTLS) {
645
    this->EmulatedTLS = EmulatedTLS;
646
  }
647
 
648
  TargetMachine *selectTarget();
649
 
650
  /// selectTarget - Pick a target either via -march or by guessing the native
651
  /// arch.  Add any CPU features specified via -mcpu or -mattr.
652
  TargetMachine *selectTarget(const Triple &TargetTriple,
653
                              StringRef MArch,
654
                              StringRef MCPU,
655
                              const SmallVectorImpl<std::string>& MAttrs);
656
 
657
  ExecutionEngine *create() {
658
    return create(selectTarget());
659
  }
660
 
661
  ExecutionEngine *create(TargetMachine *TM);
662
};
663
 
664
// Create wrappers for C Binding types (see CBindingWrapping.h).
665
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
666
 
667
} // end namespace llvm
668
 
669
#endif // LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H