Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/CodeGen/TargetSchedule.h - Sched Machine Model ------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines a wrapper around MCSchedModel that allows the interface to |
||
10 | // benefit from information currently only available in TargetInstrInfo. |
||
11 | // Ideally, the scheduling interface would be fully defined in the MC layer. |
||
12 | // |
||
13 | //===----------------------------------------------------------------------===// |
||
14 | |||
15 | #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H |
||
16 | #define LLVM_CODEGEN_TARGETSCHEDULE_H |
||
17 | |||
18 | #include "llvm/ADT/SmallVector.h" |
||
19 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
||
20 | #include "llvm/Config/llvm-config.h" |
||
21 | #include "llvm/MC/MCInstrItineraries.h" |
||
22 | #include "llvm/MC/MCSchedule.h" |
||
23 | |||
24 | namespace llvm { |
||
25 | |||
26 | class MachineInstr; |
||
27 | class TargetInstrInfo; |
||
28 | |||
29 | /// Provide an instruction scheduling machine model to CodeGen passes. |
||
30 | class TargetSchedModel { |
||
31 | // For efficiency, hold a copy of the statically defined MCSchedModel for this |
||
32 | // processor. |
||
33 | MCSchedModel SchedModel; |
||
34 | InstrItineraryData InstrItins; |
||
35 | const TargetSubtargetInfo *STI = nullptr; |
||
36 | const TargetInstrInfo *TII = nullptr; |
||
37 | |||
38 | SmallVector<unsigned, 16> ResourceFactors; |
||
39 | |||
40 | // Multiply to normalize microops to resource units. |
||
41 | unsigned MicroOpFactor = 0; |
||
42 | |||
43 | // Resource units per cycle. Latency normalization factor. |
||
44 | unsigned ResourceLCM = 0; |
||
45 | |||
46 | unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const; |
||
47 | |||
48 | public: |
||
49 | TargetSchedModel() : SchedModel(MCSchedModel::GetDefaultSchedModel()) {} |
||
50 | |||
51 | /// Initialize the machine model for instruction scheduling. |
||
52 | /// |
||
53 | /// The machine model API keeps a copy of the top-level MCSchedModel table |
||
54 | /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve |
||
55 | /// dynamic properties. |
||
56 | void init(const TargetSubtargetInfo *TSInfo); |
||
57 | |||
58 | /// Return the MCSchedClassDesc for this instruction. |
||
59 | const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const; |
||
60 | |||
61 | /// TargetSubtargetInfo getter. |
||
62 | const TargetSubtargetInfo *getSubtargetInfo() const { return STI; } |
||
63 | |||
64 | /// TargetInstrInfo getter. |
||
65 | const TargetInstrInfo *getInstrInfo() const { return TII; } |
||
66 | |||
67 | /// Return true if this machine model includes an instruction-level |
||
68 | /// scheduling model. |
||
69 | /// |
||
70 | /// This is more detailed than the course grain IssueWidth and default |
||
71 | /// latency properties, but separate from the per-cycle itinerary data. |
||
72 | bool hasInstrSchedModel() const; |
||
73 | |||
74 | const MCSchedModel *getMCSchedModel() const { return &SchedModel; } |
||
75 | |||
76 | /// Return true if this machine model includes cycle-to-cycle itinerary |
||
77 | /// data. |
||
78 | /// |
||
79 | /// This models scheduling at each stage in the processor pipeline. |
||
80 | bool hasInstrItineraries() const; |
||
81 | |||
82 | const InstrItineraryData *getInstrItineraries() const { |
||
83 | if (hasInstrItineraries()) |
||
84 | return &InstrItins; |
||
85 | return nullptr; |
||
86 | } |
||
87 | |||
88 | /// Return true if this machine model includes an instruction-level |
||
89 | /// scheduling model or cycle-to-cycle itinerary data. |
||
90 | bool hasInstrSchedModelOrItineraries() const { |
||
91 | return hasInstrSchedModel() || hasInstrItineraries(); |
||
92 | } |
||
93 | |||
94 | /// Identify the processor corresponding to the current subtarget. |
||
95 | unsigned getProcessorID() const { return SchedModel.getProcessorID(); } |
||
96 | |||
97 | /// Maximum number of micro-ops that may be scheduled per cycle. |
||
98 | unsigned getIssueWidth() const { return SchedModel.IssueWidth; } |
||
99 | |||
100 | /// Return true if new group must begin. |
||
101 | bool mustBeginGroup(const MachineInstr *MI, |
||
102 | const MCSchedClassDesc *SC = nullptr) const; |
||
103 | /// Return true if current group must end. |
||
104 | bool mustEndGroup(const MachineInstr *MI, |
||
105 | const MCSchedClassDesc *SC = nullptr) const; |
||
106 | |||
107 | /// Return the number of issue slots required for this MI. |
||
108 | unsigned getNumMicroOps(const MachineInstr *MI, |
||
109 | const MCSchedClassDesc *SC = nullptr) const; |
||
110 | |||
111 | /// Get the number of kinds of resources for this target. |
||
112 | unsigned getNumProcResourceKinds() const { |
||
113 | return SchedModel.getNumProcResourceKinds(); |
||
114 | } |
||
115 | |||
116 | /// Get a processor resource by ID for convenience. |
||
117 | const MCProcResourceDesc *getProcResource(unsigned PIdx) const { |
||
118 | return SchedModel.getProcResource(PIdx); |
||
119 | } |
||
120 | |||
121 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
122 | const char *getResourceName(unsigned PIdx) const { |
||
123 | if (!PIdx) |
||
124 | return "MOps"; |
||
125 | return SchedModel.getProcResource(PIdx)->Name; |
||
126 | } |
||
127 | #endif |
||
128 | |||
129 | using ProcResIter = const MCWriteProcResEntry *; |
||
130 | |||
131 | // Get an iterator into the processor resources consumed by this |
||
132 | // scheduling class. |
||
133 | ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const { |
||
134 | // The subtarget holds a single resource table for all processors. |
||
135 | return STI->getWriteProcResBegin(SC); |
||
136 | } |
||
137 | ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const { |
||
138 | return STI->getWriteProcResEnd(SC); |
||
139 | } |
||
140 | |||
141 | /// Multiply the number of units consumed for a resource by this factor |
||
142 | /// to normalize it relative to other resources. |
||
143 | unsigned getResourceFactor(unsigned ResIdx) const { |
||
144 | return ResourceFactors[ResIdx]; |
||
145 | } |
||
146 | |||
147 | /// Multiply number of micro-ops by this factor to normalize it |
||
148 | /// relative to other resources. |
||
149 | unsigned getMicroOpFactor() const { |
||
150 | return MicroOpFactor; |
||
151 | } |
||
152 | |||
153 | /// Multiply cycle count by this factor to normalize it relative to |
||
154 | /// other resources. This is the number of resource units per cycle. |
||
155 | unsigned getLatencyFactor() const { |
||
156 | return ResourceLCM; |
||
157 | } |
||
158 | |||
159 | /// Number of micro-ops that may be buffered for OOO execution. |
||
160 | unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; } |
||
161 | |||
162 | /// Number of resource units that may be buffered for OOO execution. |
||
163 | /// \return The buffer size in resource units or -1 for unlimited. |
||
164 | int getResourceBufferSize(unsigned PIdx) const { |
||
165 | return SchedModel.getProcResource(PIdx)->BufferSize; |
||
166 | } |
||
167 | |||
168 | /// Compute operand latency based on the available machine model. |
||
169 | /// |
||
170 | /// Compute and return the latency of the given data dependent def and use |
||
171 | /// when the operand indices are already known. UseMI may be NULL for an |
||
172 | /// unknown user. |
||
173 | unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx, |
||
174 | const MachineInstr *UseMI, unsigned UseOperIdx) |
||
175 | const; |
||
176 | |||
177 | /// Compute the instruction latency based on the available machine |
||
178 | /// model. |
||
179 | /// |
||
180 | /// Compute and return the expected latency of this instruction independent of |
||
181 | /// a particular use. computeOperandLatency is the preferred API, but this is |
||
182 | /// occasionally useful to help estimate instruction cost. |
||
183 | /// |
||
184 | /// If UseDefaultDefLatency is false and no new machine sched model is |
||
185 | /// present this method falls back to TII->getInstrLatency with an empty |
||
186 | /// instruction itinerary (this is so we preserve the previous behavior of the |
||
187 | /// if converter after moving it to TargetSchedModel). |
||
188 | unsigned computeInstrLatency(const MachineInstr *MI, |
||
189 | bool UseDefaultDefLatency = true) const; |
||
190 | unsigned computeInstrLatency(const MCInst &Inst) const; |
||
191 | unsigned computeInstrLatency(unsigned Opcode) const; |
||
192 | |||
193 | |||
194 | /// Output dependency latency of a pair of defs of the same register. |
||
195 | /// |
||
196 | /// This is typically one cycle. |
||
197 | unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, |
||
198 | const MachineInstr *DepMI) const; |
||
199 | |||
200 | /// Compute the reciprocal throughput of the given instruction. |
||
201 | double computeReciprocalThroughput(const MachineInstr *MI) const; |
||
202 | double computeReciprocalThroughput(const MCInst &MI) const; |
||
203 | double computeReciprocalThroughput(unsigned Opcode) const; |
||
204 | }; |
||
205 | |||
206 | } // end namespace llvm |
||
207 | |||
208 | #endif // LLVM_CODEGEN_TARGETSCHEDULE_H |