Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file describes an abstract interface used to get information about a
10
// target machines register file.  This information is used for a variety of
11
// purposed, especially register allocation.
12
//
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16
#define LLVM_CODEGEN_TARGETREGISTERINFO_H
17
 
18
#include "llvm/ADT/ArrayRef.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/StringRef.h"
21
#include "llvm/ADT/iterator_range.h"
22
#include "llvm/CodeGen/MachineBasicBlock.h"
23
#include "llvm/IR/CallingConv.h"
24
#include "llvm/MC/LaneBitmask.h"
25
#include "llvm/MC/MCRegisterInfo.h"
26
#include "llvm/Support/ErrorHandling.h"
27
#include "llvm/Support/MachineValueType.h"
28
#include "llvm/Support/MathExtras.h"
29
#include "llvm/Support/Printable.h"
30
#include <cassert>
31
#include <cstdint>
32
 
33
namespace llvm {
34
 
35
class BitVector;
36
class DIExpression;
37
class LiveRegMatrix;
38
class MachineFunction;
39
class MachineInstr;
40
class RegScavenger;
41
class VirtRegMap;
42
class LiveIntervals;
43
class LiveInterval;
44
 
45
class TargetRegisterClass {
46
public:
47
  using iterator = const MCPhysReg *;
48
  using const_iterator = const MCPhysReg *;
49
  using sc_iterator = const TargetRegisterClass* const *;
50
 
51
  // Instance variables filled by tablegen, do not use!
52
  const MCRegisterClass *MC;
53
  const uint32_t *SubClassMask;
54
  const uint16_t *SuperRegIndices;
55
  const LaneBitmask LaneMask;
56
  /// Classes with a higher priority value are assigned first by register
57
  /// allocators using a greedy heuristic. The value is in the range [0,31].
58
  const uint8_t AllocationPriority;
59
 
60
  // Change allocation priority heuristic used by greedy.
61
  const bool GlobalPriority;
62
 
63
  /// Configurable target specific flags.
64
  const uint8_t TSFlags;
65
  /// Whether the class supports two (or more) disjunct subregister indices.
66
  const bool HasDisjunctSubRegs;
67
  /// Whether a combination of subregisters can cover every register in the
68
  /// class. See also the CoveredBySubRegs description in Target.td.
69
  const bool CoveredBySubRegs;
70
  const sc_iterator SuperClasses;
71
  ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
72
 
73
  /// Return the register class ID number.
74
  unsigned getID() const { return MC->getID(); }
75
 
76
  /// begin/end - Return all of the registers in this class.
77
  ///
78
  iterator       begin() const { return MC->begin(); }
79
  iterator         end() const { return MC->end(); }
80
 
81
  /// Return the number of registers in this class.
82
  unsigned getNumRegs() const { return MC->getNumRegs(); }
83
 
84
  iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
85
  getRegisters() const {
86
    return make_range(MC->begin(), MC->end());
87
  }
88
 
89
  /// Return the specified register in the class.
90
  MCRegister getRegister(unsigned i) const {
91
    return MC->getRegister(i);
92
  }
93
 
94
  /// Return true if the specified register is included in this register class.
95
  /// This does not include virtual registers.
96
  bool contains(Register Reg) const {
97
    /// FIXME: Historically this function has returned false when given vregs
98
    ///        but it should probably only receive physical registers
99
    if (!Reg.isPhysical())
100
      return false;
101
    return MC->contains(Reg.asMCReg());
102
  }
103
 
104
  /// Return true if both registers are in this class.
105
  bool contains(Register Reg1, Register Reg2) const {
106
    /// FIXME: Historically this function has returned false when given a vregs
107
    ///        but it should probably only receive physical registers
108
    if (!Reg1.isPhysical() || !Reg2.isPhysical())
109
      return false;
110
    return MC->contains(Reg1.asMCReg(), Reg2.asMCReg());
111
  }
112
 
113
  /// Return the cost of copying a value between two registers in this class.
114
  /// A negative number means the register class is very expensive
115
  /// to copy e.g. status flag register classes.
116
  int getCopyCost() const { return MC->getCopyCost(); }
117
 
118
  /// Return true if this register class may be used to create virtual
119
  /// registers.
120
  bool isAllocatable() const { return MC->isAllocatable(); }
121
 
122
  /// Return true if the specified TargetRegisterClass
123
  /// is a proper sub-class of this TargetRegisterClass.
124
  bool hasSubClass(const TargetRegisterClass *RC) const {
125
    return RC != this && hasSubClassEq(RC);
126
  }
127
 
128
  /// Returns true if RC is a sub-class of or equal to this class.
129
  bool hasSubClassEq(const TargetRegisterClass *RC) const {
130
    unsigned ID = RC->getID();
131
    return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
132
  }
133
 
134
  /// Return true if the specified TargetRegisterClass is a
135
  /// proper super-class of this TargetRegisterClass.
136
  bool hasSuperClass(const TargetRegisterClass *RC) const {
137
    return RC->hasSubClass(this);
138
  }
139
 
140
  /// Returns true if RC is a super-class of or equal to this class.
141
  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
142
    return RC->hasSubClassEq(this);
143
  }
144
 
145
  /// Returns a bit vector of subclasses, including this one.
146
  /// The vector is indexed by class IDs.
147
  ///
148
  /// To use it, consider the returned array as a chunk of memory that
149
  /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
150
  /// contains a bitset of the ID of the subclasses in big-endian style.
151
 
152
  /// I.e., the representation of the memory from left to right at the
153
  /// bit level looks like:
154
  /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
155
  ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
156
  /// Where the number represents the class ID and XXX bits that
157
  /// should be ignored.
158
  ///
159
  /// See the implementation of hasSubClassEq for an example of how it
160
  /// can be used.
161
  const uint32_t *getSubClassMask() const {
162
    return SubClassMask;
163
  }
164
 
165
  /// Returns a 0-terminated list of sub-register indices that project some
166
  /// super-register class into this register class. The list has an entry for
167
  /// each Idx such that:
168
  ///
169
  ///   There exists SuperRC where:
170
  ///     For all Reg in SuperRC:
171
  ///       this->contains(Reg:Idx)
172
  const uint16_t *getSuperRegIndices() const {
173
    return SuperRegIndices;
174
  }
175
 
176
  /// Returns a NULL-terminated list of super-classes.  The
177
  /// classes are ordered by ID which is also a topological ordering from large
178
  /// to small classes.  The list does NOT include the current class.
179
  sc_iterator getSuperClasses() const {
180
    return SuperClasses;
181
  }
182
 
183
  /// Return true if this TargetRegisterClass is a subset
184
  /// class of at least one other TargetRegisterClass.
185
  bool isASubClass() const {
186
    return SuperClasses[0] != nullptr;
187
  }
188
 
189
  /// Returns the preferred order for allocating registers from this register
190
  /// class in MF. The raw order comes directly from the .td file and may
191
  /// include reserved registers that are not allocatable.
192
  /// Register allocators should also make sure to allocate
193
  /// callee-saved registers only after all the volatiles are used. The
194
  /// RegisterClassInfo class provides filtered allocation orders with
195
  /// callee-saved registers moved to the end.
196
  ///
197
  /// The MachineFunction argument can be used to tune the allocatable
198
  /// registers based on the characteristics of the function, subtarget, or
199
  /// other criteria.
200
  ///
201
  /// By default, this method returns all registers in the class.
202
  ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
203
    return OrderFunc ? OrderFunc(MF) : ArrayRef(begin(), getNumRegs());
204
  }
205
 
206
  /// Returns the combination of all lane masks of register in this class.
207
  /// The lane masks of the registers are the combination of all lane masks
208
  /// of their subregisters. Returns 1 if there are no subregisters.
209
  LaneBitmask getLaneMask() const {
210
    return LaneMask;
211
  }
212
};
213
 
214
/// Extra information, not in MCRegisterDesc, about registers.
215
/// These are used by codegen, not by MC.
216
struct TargetRegisterInfoDesc {
217
  const uint8_t *CostPerUse; // Extra cost of instructions using register.
218
  unsigned NumCosts; // Number of cost values associated with each register.
219
  const bool
220
      *InAllocatableClass; // Register belongs to an allocatable regclass.
221
};
222
 
223
/// Each TargetRegisterClass has a per register weight, and weight
224
/// limit which must be less than the limits of its pressure sets.
225
struct RegClassWeight {
226
  unsigned RegWeight;
227
  unsigned WeightLimit;
228
};
229
 
230
/// TargetRegisterInfo base class - We assume that the target defines a static
231
/// array of TargetRegisterDesc objects that represent all of the machine
232
/// registers that the target has.  As such, we simply have to track a pointer
233
/// to this array so that we can turn register number into a register
234
/// descriptor.
235
///
236
class TargetRegisterInfo : public MCRegisterInfo {
237
public:
238
  using regclass_iterator = const TargetRegisterClass * const *;
239
  using vt_iterator = const MVT::SimpleValueType *;
240
  struct RegClassInfo {
241
    unsigned RegSize, SpillSize, SpillAlignment;
242
    vt_iterator VTList;
243
  };
244
private:
245
  const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
246
  const char *const *SubRegIndexNames;        // Names of subreg indexes.
247
  // Pointer to array of lane masks, one per sub-reg index.
248
  const LaneBitmask *SubRegIndexLaneMasks;
249
 
250
  regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
251
  LaneBitmask CoveringLanes;
252
  const RegClassInfo *const RCInfos;
253
  unsigned HwMode;
254
 
255
protected:
256
  TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
257
                     regclass_iterator RCB,
258
                     regclass_iterator RCE,
259
                     const char *const *SRINames,
260
                     const LaneBitmask *SRILaneMasks,
261
                     LaneBitmask CoveringLanes,
262
                     const RegClassInfo *const RCIs,
263
                     unsigned Mode = 0);
264
  virtual ~TargetRegisterInfo();
265
 
266
public:
267
  // Register numbers can represent physical registers, virtual registers, and
268
  // sometimes stack slots. The unsigned values are divided into these ranges:
269
  //
270
  //   0           Not a register, can be used as a sentinel.
271
  //   [1;2^30)    Physical registers assigned by TableGen.
272
  //   [2^30;2^31) Stack slots. (Rarely used.)
273
  //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
274
  //
275
  // Further sentinels can be allocated from the small negative integers.
276
  // DenseMapInfo<unsigned> uses -1u and -2u.
277
 
278
  /// Return the size in bits of a register from class RC.
279
  unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
280
    return getRegClassInfo(RC).RegSize;
281
  }
282
 
283
  /// Return the size in bytes of the stack slot allocated to hold a spilled
284
  /// copy of a register from class RC.
285
  unsigned getSpillSize(const TargetRegisterClass &RC) const {
286
    return getRegClassInfo(RC).SpillSize / 8;
287
  }
288
 
289
  /// Return the minimum required alignment in bytes for a spill slot for
290
  /// a register of this class.
291
  Align getSpillAlign(const TargetRegisterClass &RC) const {
292
    return Align(getRegClassInfo(RC).SpillAlignment / 8);
293
  }
294
 
295
  /// Return true if the given TargetRegisterClass has the ValueType T.
296
  bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
297
    for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
298
      if (MVT(*I) == T)
299
        return true;
300
    return false;
301
  }
302
 
303
  /// Return true if the given TargetRegisterClass is compatible with LLT T.
304
  bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const {
305
    for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) {
306
      MVT VT(*I);
307
      if (VT == MVT::Untyped)
308
        return true;
309
 
310
      if (LLT(VT) == T)
311
        return true;
312
    }
313
    return false;
314
  }
315
 
316
  /// Loop over all of the value types that can be represented by values
317
  /// in the given register class.
318
  vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
319
    return getRegClassInfo(RC).VTList;
320
  }
321
 
322
  vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
323
    vt_iterator I = legalclasstypes_begin(RC);
324
    while (*I != MVT::Other)
325
      ++I;
326
    return I;
327
  }
328
 
329
  /// Returns the Register Class of a physical register of the given type,
330
  /// picking the most sub register class of the right type that contains this
331
  /// physreg.
332
  const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg,
333
                                                    MVT VT = MVT::Other) const;
334
 
335
  /// Returns the Register Class of a physical register of the given type,
336
  /// picking the most sub register class of the right type that contains this
337
  /// physreg. If there is no register class compatible with the given type,
338
  /// returns nullptr.
339
  const TargetRegisterClass *getMinimalPhysRegClassLLT(MCRegister Reg,
340
                                                       LLT Ty = LLT()) const;
341
 
342
  /// Return the maximal subclass of the given register class that is
343
  /// allocatable or NULL.
344
  const TargetRegisterClass *
345
    getAllocatableClass(const TargetRegisterClass *RC) const;
346
 
347
  /// Returns a bitset indexed by register number indicating if a register is
348
  /// allocatable or not. If a register class is specified, returns the subset
349
  /// for the class.
350
  BitVector getAllocatableSet(const MachineFunction &MF,
351
                              const TargetRegisterClass *RC = nullptr) const;
352
 
353
  /// Get a list of cost values for all registers that correspond to the index
354
  /// returned by RegisterCostTableIndex.
355
  ArrayRef<uint8_t> getRegisterCosts(const MachineFunction &MF) const {
356
    unsigned Idx = getRegisterCostTableIndex(MF);
357
    unsigned NumRegs = getNumRegs();
358
    assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds");
359
 
360
    return ArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs);
361
  }
362
 
363
  /// Return true if the register is in the allocation of any register class.
364
  bool isInAllocatableClass(MCRegister RegNo) const {
365
    return InfoDesc->InAllocatableClass[RegNo];
366
  }
367
 
368
  /// Return the human-readable symbolic target-specific
369
  /// name for the specified SubRegIndex.
370
  const char *getSubRegIndexName(unsigned SubIdx) const {
371
    assert(SubIdx && SubIdx < getNumSubRegIndices() &&
372
           "This is not a subregister index");
373
    return SubRegIndexNames[SubIdx-1];
374
  }
375
 
376
  /// Return a bitmask representing the parts of a register that are covered by
377
  /// SubIdx \see LaneBitmask.
378
  ///
379
  /// SubIdx == 0 is allowed, it has the lane mask ~0u.
380
  LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
381
    assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
382
    return SubRegIndexLaneMasks[SubIdx];
383
  }
384
 
385
  /// Try to find one or more subregister indexes to cover \p LaneMask.
386
  ///
387
  /// If this is possible, returns true and appends the best matching set of
388
  /// indexes to \p Indexes. If this is not possible, returns false.
389
  bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI,
390
                                const TargetRegisterClass *RC,
391
                                LaneBitmask LaneMask,
392
                                SmallVectorImpl<unsigned> &Indexes) const;
393
 
394
  /// The lane masks returned by getSubRegIndexLaneMask() above can only be
395
  /// used to determine if sub-registers overlap - they can't be used to
396
  /// determine if a set of sub-registers completely cover another
397
  /// sub-register.
398
  ///
399
  /// The X86 general purpose registers have two lanes corresponding to the
400
  /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
401
  /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
402
  /// sub_32bit sub-register.
403
  ///
404
  /// On the other hand, the ARM NEON lanes fully cover their registers: The
405
  /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
406
  /// This is related to the CoveredBySubRegs property on register definitions.
407
  ///
408
  /// This function returns a bit mask of lanes that completely cover their
409
  /// sub-registers. More precisely, given:
410
  ///
411
  ///   Covering = getCoveringLanes();
412
  ///   MaskA = getSubRegIndexLaneMask(SubA);
413
  ///   MaskB = getSubRegIndexLaneMask(SubB);
414
  ///
415
  /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
416
  /// SubB.
417
  LaneBitmask getCoveringLanes() const { return CoveringLanes; }
418
 
419
  /// Returns true if the two registers are equal or alias each other.
420
  /// The registers may be virtual registers.
421
  bool regsOverlap(Register RegA, Register RegB) const {
422
    if (RegA == RegB)
423
      return true;
424
    if (RegA.isPhysical() && RegB.isPhysical())
425
      return MCRegisterInfo::regsOverlap(RegA.asMCReg(), RegB.asMCReg());
426
    return false;
427
  }
428
 
429
  /// Returns true if Reg contains RegUnit.
430
  bool hasRegUnit(MCRegister Reg, Register RegUnit) const {
431
    for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
432
      if (Register(*Units) == RegUnit)
433
        return true;
434
    return false;
435
  }
436
 
437
  /// Returns the original SrcReg unless it is the target of a copy-like
438
  /// operation, in which case we chain backwards through all such operations
439
  /// to the ultimate source register.  If a physical register is encountered,
440
  /// we stop the search.
441
  virtual Register lookThruCopyLike(Register SrcReg,
442
                                    const MachineRegisterInfo *MRI) const;
443
 
444
  /// Find the original SrcReg unless it is the target of a copy-like operation,
445
  /// in which case we chain backwards through all such operations to the
446
  /// ultimate source register. If a physical register is encountered, we stop
447
  /// the search.
448
  /// Return the original SrcReg if all the definitions in the chain only have
449
  /// one user and not a physical register.
450
  virtual Register
451
  lookThruSingleUseCopyChain(Register SrcReg,
452
                             const MachineRegisterInfo *MRI) const;
453
 
454
  /// Return a null-terminated list of all of the callee-saved registers on
455
  /// this target. The register should be in the order of desired callee-save
456
  /// stack frame offset. The first register is closest to the incoming stack
457
  /// pointer if stack grows down, and vice versa.
458
  /// Notice: This function does not take into account disabled CSRs.
459
  ///         In most cases you will want to use instead the function
460
  ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
461
  virtual const MCPhysReg*
462
  getCalleeSavedRegs(const MachineFunction *MF) const = 0;
463
 
464
  /// Return a mask of call-preserved registers for the given calling convention
465
  /// on the current function. The mask should include all call-preserved
466
  /// aliases. This is used by the register allocator to determine which
467
  /// registers can be live across a call.
468
  ///
469
  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
470
  /// A set bit indicates that all bits of the corresponding register are
471
  /// preserved across the function call.  The bit mask is expected to be
472
  /// sub-register complete, i.e. if A is preserved, so are all its
473
  /// sub-registers.
474
  ///
475
  /// Bits are numbered from the LSB, so the bit for physical register Reg can
476
  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
477
  ///
478
  /// A NULL pointer means that no register mask will be used, and call
479
  /// instructions should use implicit-def operands to indicate call clobbered
480
  /// registers.
481
  ///
482
  virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
483
                                               CallingConv::ID) const {
484
    // The default mask clobbers everything.  All targets should override.
485
    return nullptr;
486
  }
487
 
488
  /// Return a register mask for the registers preserved by the unwinder,
489
  /// or nullptr if no custom mask is needed.
490
  virtual const uint32_t *
491
  getCustomEHPadPreservedMask(const MachineFunction &MF) const {
492
    return nullptr;
493
  }
494
 
495
  /// Return a register mask that clobbers everything.
496
  virtual const uint32_t *getNoPreservedMask() const {
497
    llvm_unreachable("target does not provide no preserved mask");
498
  }
499
 
500
  /// Return a list of all of the registers which are clobbered "inside" a call
501
  /// to the given function. For example, these might be needed for PLT
502
  /// sequences of long-branch veneers.
503
  virtual ArrayRef<MCPhysReg>
504
  getIntraCallClobberedRegs(const MachineFunction *MF) const {
505
    return {};
506
  }
507
 
508
  /// Return true if all bits that are set in mask \p mask0 are also set in
509
  /// \p mask1.
510
  bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
511
 
512
  /// Return all the call-preserved register masks defined for this target.
513
  virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
514
  virtual ArrayRef<const char *> getRegMaskNames() const = 0;
515
 
516
  /// Returns a bitset indexed by physical register number indicating if a
517
  /// register is a special register that has particular uses and should be
518
  /// considered unavailable at all times, e.g. stack pointer, return address.
519
  /// A reserved register:
520
  /// - is not allocatable
521
  /// - is considered always live
522
  /// - is ignored by liveness tracking
523
  /// It is often necessary to reserve the super registers of a reserved
524
  /// register as well, to avoid them getting allocated indirectly. You may use
525
  /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
526
  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
527
 
528
  /// Returns either a string explaining why the given register is reserved for
529
  /// this function, or an empty optional if no explanation has been written.
530
  /// The absence of an explanation does not mean that the register is not
531
  /// reserved (meaning, you should check that PhysReg is in fact reserved
532
  /// before calling this).
533
  virtual std::optional<std::string>
534
  explainReservedReg(const MachineFunction &MF, MCRegister PhysReg) const {
535
    return {};
536
  }
537
 
538
  /// Returns false if we can't guarantee that Physreg, specified as an IR asm
539
  /// clobber constraint, will be preserved across the statement.
540
  virtual bool isAsmClobberable(const MachineFunction &MF,
541
                                MCRegister PhysReg) const {
542
    return true;
543
  }
544
 
545
  /// Returns true if PhysReg cannot be written to in inline asm statements.
546
  virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF,
547
                                      unsigned PhysReg) const {
548
    return false;
549
  }
550
 
551
  /// Returns true if PhysReg is unallocatable and constant throughout the
552
  /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
553
  virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; }
554
 
555
  /// Returns true if the register class is considered divergent.
556
  virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
557
    return false;
558
  }
559
 
560
  /// Physical registers that may be modified within a function but are
561
  /// guaranteed to be restored before any uses. This is useful for targets that
562
  /// have call sequences where a GOT register may be updated by the caller
563
  /// prior to a call and is guaranteed to be restored (also by the caller)
564
  /// after the call.
565
  virtual bool isCallerPreservedPhysReg(MCRegister PhysReg,
566
                                        const MachineFunction &MF) const {
567
    return false;
568
  }
569
 
570
  /// This is a wrapper around getCallPreservedMask().
571
  /// Return true if the register is preserved after the call.
572
  virtual bool isCalleeSavedPhysReg(MCRegister PhysReg,
573
                                    const MachineFunction &MF) const;
574
 
575
  /// Returns true if PhysReg can be used as an argument to a function.
576
  virtual bool isArgumentRegister(const MachineFunction &MF,
577
                                  MCRegister PhysReg) const {
578
    return false;
579
  }
580
 
581
  /// Returns true if PhysReg is a fixed register.
582
  virtual bool isFixedRegister(const MachineFunction &MF,
583
                               MCRegister PhysReg) const {
584
    return false;
585
  }
586
 
587
  /// Returns true if PhysReg is a general purpose register.
588
  virtual bool isGeneralPurposeRegister(const MachineFunction &MF,
589
                                        MCRegister PhysReg) const {
590
    return false;
591
  }
592
 
593
  /// Prior to adding the live-out mask to a stackmap or patchpoint
594
  /// instruction, provide the target the opportunity to adjust it (mainly to
595
  /// remove pseudo-registers that should be ignored).
596
  virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
597
 
598
  /// Return a super-register of the specified register
599
  /// Reg so its sub-register of index SubIdx is Reg.
600
  MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx,
601
                                 const TargetRegisterClass *RC) const {
602
    return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
603
  }
604
 
605
  /// Return a subclass of the specified register
606
  /// class A so that each register in it has a sub-register of the
607
  /// specified sub-register index which is in the specified register class B.
608
  ///
609
  /// TableGen will synthesize missing A sub-classes.
610
  virtual const TargetRegisterClass *
611
  getMatchingSuperRegClass(const TargetRegisterClass *A,
612
                           const TargetRegisterClass *B, unsigned Idx) const;
613
 
614
  // For a copy-like instruction that defines a register of class DefRC with
615
  // subreg index DefSubReg, reading from another source with class SrcRC and
616
  // subregister SrcSubReg return true if this is a preferable copy
617
  // instruction or an earlier use should be used.
618
  virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
619
                                    unsigned DefSubReg,
620
                                    const TargetRegisterClass *SrcRC,
621
                                    unsigned SrcSubReg) const;
622
 
623
  /// Returns the largest legal sub-class of RC that
624
  /// supports the sub-register index Idx.
625
  /// If no such sub-class exists, return NULL.
626
  /// If all registers in RC already have an Idx sub-register, return RC.
627
  ///
628
  /// TableGen generates a version of this function that is good enough in most
629
  /// cases.  Targets can override if they have constraints that TableGen
630
  /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
631
  /// supported by the full GR32 register class in 64-bit mode, but only by the
632
  /// GR32_ABCD regiister class in 32-bit mode.
633
  ///
634
  /// TableGen will synthesize missing RC sub-classes.
635
  virtual const TargetRegisterClass *
636
  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
637
    assert(Idx == 0 && "Target has no sub-registers");
638
    return RC;
639
  }
640
 
641
  /// Return a register class that can be used for a subregister copy from/into
642
  /// \p SuperRC at \p SubRegIdx.
643
  virtual const TargetRegisterClass *
644
  getSubRegisterClass(const TargetRegisterClass *SuperRC,
645
                      unsigned SubRegIdx) const {
646
    return nullptr;
647
  }
648
 
649
  /// Return the subregister index you get from composing
650
  /// two subregister indices.
651
  ///
652
  /// The special null sub-register index composes as the identity.
653
  ///
654
  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
655
  /// returns c. Note that composeSubRegIndices does not tell you about illegal
656
  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
657
  /// b, composeSubRegIndices doesn't tell you.
658
  ///
659
  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
660
  /// ssub_0:S0 - ssub_3:S3 subregs.
661
  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
662
  unsigned composeSubRegIndices(unsigned a, unsigned b) const {
663
    if (!a) return b;
664
    if (!b) return a;
665
    return composeSubRegIndicesImpl(a, b);
666
  }
667
 
668
  /// Transforms a LaneMask computed for one subregister to the lanemask that
669
  /// would have been computed when composing the subsubregisters with IdxA
670
  /// first. @sa composeSubRegIndices()
671
  LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
672
                                         LaneBitmask Mask) const {
673
    if (!IdxA)
674
      return Mask;
675
    return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
676
  }
677
 
678
  /// Transform a lanemask given for a virtual register to the corresponding
679
  /// lanemask before using subregister with index \p IdxA.
680
  /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
681
  /// valie lane mask (no invalid bits set) the following holds:
682
  /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
683
  /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
684
  /// => X1 == Mask
685
  LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
686
                                                LaneBitmask LaneMask) const {
687
    if (!IdxA)
688
      return LaneMask;
689
    return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
690
  }
691
 
692
  /// Debugging helper: dump register in human readable form to dbgs() stream.
693
  static void dumpReg(Register Reg, unsigned SubRegIndex = 0,
694
                      const TargetRegisterInfo *TRI = nullptr);
695
 
696
  /// Return target defined base register class for a physical register.
697
  /// This is the register class with the lowest BaseClassOrder containing the
698
  /// register.
699
  /// Will be nullptr if the register is not in any base register class.
700
  virtual const TargetRegisterClass *getPhysRegBaseClass(MCRegister Reg) const {
701
    return nullptr;
702
  }
703
 
704
protected:
705
  /// Overridden by TableGen in targets that have sub-registers.
706
  virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
707
    llvm_unreachable("Target has no sub-registers");
708
  }
709
 
710
  /// Overridden by TableGen in targets that have sub-registers.
711
  virtual LaneBitmask
712
  composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
713
    llvm_unreachable("Target has no sub-registers");
714
  }
715
 
716
  virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
717
                                                            LaneBitmask) const {
718
    llvm_unreachable("Target has no sub-registers");
719
  }
720
 
721
  /// Return the register cost table index. This implementation is sufficient
722
  /// for most architectures and can be overriden by targets in case there are
723
  /// multiple cost values associated with each register.
724
  virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const {
725
    return 0;
726
  }
727
 
728
public:
729
  /// Find a common super-register class if it exists.
730
  ///
731
  /// Find a register class, SuperRC and two sub-register indices, PreA and
732
  /// PreB, such that:
733
  ///
734
  ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
735
  ///
736
  ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
737
  ///
738
  ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
739
  ///
740
  /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
741
  /// requirements, and there is no register class with a smaller spill size
742
  /// that satisfies the requirements.
743
  ///
744
  /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
745
  ///
746
  /// Either of the PreA and PreB sub-register indices may be returned as 0. In
747
  /// that case, the returned register class will be a sub-class of the
748
  /// corresponding argument register class.
749
  ///
750
  /// The function returns NULL if no register class can be found.
751
  const TargetRegisterClass*
752
  getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
753
                         const TargetRegisterClass *RCB, unsigned SubB,
754
                         unsigned &PreA, unsigned &PreB) const;
755
 
756
  //===--------------------------------------------------------------------===//
757
  // Register Class Information
758
  //
759
protected:
760
  const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
761
    return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
762
  }
763
 
764
public:
765
  /// Register class iterators
766
  regclass_iterator regclass_begin() const { return RegClassBegin; }
767
  regclass_iterator regclass_end() const { return RegClassEnd; }
768
  iterator_range<regclass_iterator> regclasses() const {
769
    return make_range(regclass_begin(), regclass_end());
770
  }
771
 
772
  unsigned getNumRegClasses() const {
773
    return (unsigned)(regclass_end()-regclass_begin());
774
  }
775
 
776
  /// Returns the register class associated with the enumeration value.
777
  /// See class MCOperandInfo.
778
  const TargetRegisterClass *getRegClass(unsigned i) const {
779
    assert(i < getNumRegClasses() && "Register Class ID out of range");
780
    return RegClassBegin[i];
781
  }
782
 
783
  /// Returns the name of the register class.
784
  const char *getRegClassName(const TargetRegisterClass *Class) const {
785
    return MCRegisterInfo::getRegClassName(Class->MC);
786
  }
787
 
788
  /// Find the largest common subclass of A and B.
789
  /// Return NULL if there is no common subclass.
790
  const TargetRegisterClass *
791
  getCommonSubClass(const TargetRegisterClass *A,
792
                    const TargetRegisterClass *B) const;
793
 
794
  /// Returns a TargetRegisterClass used for pointer values.
795
  /// If a target supports multiple different pointer register classes,
796
  /// kind specifies which one is indicated.
797
  virtual const TargetRegisterClass *
798
  getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
799
    llvm_unreachable("Target didn't implement getPointerRegClass!");
800
  }
801
 
802
  /// Returns a legal register class to copy a register in the specified class
803
  /// to or from. If it is possible to copy the register directly without using
804
  /// a cross register class copy, return the specified RC. Returns NULL if it
805
  /// is not possible to copy between two registers of the specified class.
806
  virtual const TargetRegisterClass *
807
  getCrossCopyRegClass(const TargetRegisterClass *RC) const {
808
    return RC;
809
  }
810
 
811
  /// Returns the largest super class of RC that is legal to use in the current
812
  /// sub-target and has the same spill size.
813
  /// The returned register class can be used to create virtual registers which
814
  /// means that all its registers can be copied and spilled.
815
  virtual const TargetRegisterClass *
816
  getLargestLegalSuperClass(const TargetRegisterClass *RC,
817
                            const MachineFunction &) const {
818
    /// The default implementation is very conservative and doesn't allow the
819
    /// register allocator to inflate register classes.
820
    return RC;
821
  }
822
 
823
  /// Return the register pressure "high water mark" for the specific register
824
  /// class. The scheduler is in high register pressure mode (for the specific
825
  /// register class) if it goes over the limit.
826
  ///
827
  /// Note: this is the old register pressure model that relies on a manually
828
  /// specified representative register class per value type.
829
  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
830
                                       MachineFunction &MF) const {
831
    return 0;
832
  }
833
 
834
  /// Return a heuristic for the machine scheduler to compare the profitability
835
  /// of increasing one register pressure set versus another.  The scheduler
836
  /// will prefer increasing the register pressure of the set which returns
837
  /// the largest value for this function.
838
  virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
839
                                          unsigned PSetID) const {
840
    return PSetID;
841
  }
842
 
843
  /// Get the weight in units of pressure for this register class.
844
  virtual const RegClassWeight &getRegClassWeight(
845
    const TargetRegisterClass *RC) const = 0;
846
 
847
  /// Returns size in bits of a phys/virtual/generic register.
848
  unsigned getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const;
849
 
850
  /// Get the weight in units of pressure for this register unit.
851
  virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
852
 
853
  /// Get the number of dimensions of register pressure.
854
  virtual unsigned getNumRegPressureSets() const = 0;
855
 
856
  /// Get the name of this register unit pressure set.
857
  virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
858
 
859
  /// Get the register unit pressure limit for this dimension.
860
  /// This limit must be adjusted dynamically for reserved registers.
861
  virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
862
                                          unsigned Idx) const = 0;
863
 
864
  /// Get the dimensions of register pressure impacted by this register class.
865
  /// Returns a -1 terminated array of pressure set IDs.
866
  virtual const int *getRegClassPressureSets(
867
    const TargetRegisterClass *RC) const = 0;
868
 
869
  /// Get the dimensions of register pressure impacted by this register unit.
870
  /// Returns a -1 terminated array of pressure set IDs.
871
  virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
872
 
873
  /// Get a list of 'hint' registers that the register allocator should try
874
  /// first when allocating a physical register for the virtual register
875
  /// VirtReg. These registers are effectively moved to the front of the
876
  /// allocation order. If true is returned, regalloc will try to only use
877
  /// hints to the greatest extent possible even if it means spilling.
878
  ///
879
  /// The Order argument is the allocation order for VirtReg's register class
880
  /// as returned from RegisterClassInfo::getOrder(). The hint registers must
881
  /// come from Order, and they must not be reserved.
882
  ///
883
  /// The default implementation of this function will only add target
884
  /// independent register allocation hints. Targets that override this
885
  /// function should typically call this default implementation as well and
886
  /// expect to see generic copy hints added.
887
  virtual bool
888
  getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order,
889
                        SmallVectorImpl<MCPhysReg> &Hints,
890
                        const MachineFunction &MF,
891
                        const VirtRegMap *VRM = nullptr,
892
                        const LiveRegMatrix *Matrix = nullptr) const;
893
 
894
  /// A callback to allow target a chance to update register allocation hints
895
  /// when a register is "changed" (e.g. coalesced) to another register.
896
  /// e.g. On ARM, some virtual registers should target register pairs,
897
  /// if one of pair is coalesced to another register, the allocation hint of
898
  /// the other half of the pair should be changed to point to the new register.
899
  virtual void updateRegAllocHint(Register Reg, Register NewReg,
900
                                  MachineFunction &MF) const {
901
    // Do nothing.
902
  }
903
 
904
  /// Allow the target to reverse allocation order of local live ranges. This
905
  /// will generally allocate shorter local live ranges first. For targets with
906
  /// many registers, this could reduce regalloc compile time by a large
907
  /// factor. It is disabled by default for three reasons:
908
  /// (1) Top-down allocation is simpler and easier to debug for targets that
909
  /// don't benefit from reversing the order.
910
  /// (2) Bottom-up allocation could result in poor evicition decisions on some
911
  /// targets affecting the performance of compiled code.
912
  /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
913
  virtual bool reverseLocalAssignment() const { return false; }
914
 
915
  /// Allow the target to override the cost of using a callee-saved register for
916
  /// the first time. Default value of 0 means we will use a callee-saved
917
  /// register if it is available.
918
  virtual unsigned getCSRFirstUseCost() const { return 0; }
919
 
920
  /// Returns true if the target requires (and can make use of) the register
921
  /// scavenger.
922
  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
923
    return false;
924
  }
925
 
926
  /// Returns true if the target wants to use frame pointer based accesses to
927
  /// spill to the scavenger emergency spill slot.
928
  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
929
    return true;
930
  }
931
 
932
  /// Returns true if the target requires post PEI scavenging of registers for
933
  /// materializing frame index constants.
934
  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
935
    return false;
936
  }
937
 
938
  /// Returns true if the target requires using the RegScavenger directly for
939
  /// frame elimination despite using requiresFrameIndexScavenging.
940
  virtual bool requiresFrameIndexReplacementScavenging(
941
      const MachineFunction &MF) const {
942
    return false;
943
  }
944
 
945
  /// Returns true if the target wants the LocalStackAllocation pass to be run
946
  /// and virtual base registers used for more efficient stack access.
947
  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
948
    return false;
949
  }
950
 
951
  /// Return true if target has reserved a spill slot in the stack frame of
952
  /// the given function for the specified register. e.g. On x86, if the frame
953
  /// register is required, the first fixed stack object is reserved as its
954
  /// spill slot. This tells PEI not to create a new stack frame
955
  /// object for the given register. It should be called only after
956
  /// determineCalleeSaves().
957
  virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg,
958
                                    int &FrameIdx) const {
959
    return false;
960
  }
961
 
962
  /// Returns true if the live-ins should be tracked after register allocation.
963
  virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
964
    return true;
965
  }
966
 
967
  /// True if the stack can be realigned for the target.
968
  virtual bool canRealignStack(const MachineFunction &MF) const;
969
 
970
  /// True if storage within the function requires the stack pointer to be
971
  /// aligned more than the normal calling convention calls for.
972
  virtual bool shouldRealignStack(const MachineFunction &MF) const;
973
 
974
  /// True if stack realignment is required and still possible.
975
  bool hasStackRealignment(const MachineFunction &MF) const {
976
    return shouldRealignStack(MF) && canRealignStack(MF);
977
  }
978
 
979
  /// Get the offset from the referenced frame index in the instruction,
980
  /// if there is one.
981
  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
982
                                           int Idx) const {
983
    return 0;
984
  }
985
 
986
  /// Returns true if the instruction's frame index reference would be better
987
  /// served by a base register other than FP or SP.
988
  /// Used by LocalStackFrameAllocation to determine which frame index
989
  /// references it should create new base registers for.
990
  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
991
    return false;
992
  }
993
 
994
  /// Insert defining instruction(s) for a pointer to FrameIdx before
995
  /// insertion point I. Return materialized frame pointer.
996
  virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB,
997
                                                int FrameIdx,
998
                                                int64_t Offset) const {
999
    llvm_unreachable("materializeFrameBaseRegister does not exist on this "
1000
                     "target");
1001
  }
1002
 
1003
  /// Resolve a frame index operand of an instruction
1004
  /// to reference the indicated base register plus offset instead.
1005
  virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1006
                                 int64_t Offset) const {
1007
    llvm_unreachable("resolveFrameIndex does not exist on this target");
1008
  }
1009
 
1010
  /// Determine whether a given base register plus offset immediate is
1011
  /// encodable to resolve a frame index.
1012
  virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg,
1013
                                  int64_t Offset) const {
1014
    llvm_unreachable("isFrameOffsetLegal does not exist on this target");
1015
  }
1016
 
1017
  /// Gets the DWARF expression opcodes for \p Offset.
1018
  virtual void getOffsetOpcodes(const StackOffset &Offset,
1019
                                SmallVectorImpl<uint64_t> &Ops) const;
1020
 
1021
  /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr.
1022
  DIExpression *
1023
  prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags,
1024
                          const StackOffset &Offset) const;
1025
 
1026
  /// Spill the register so it can be used by the register scavenger.
1027
  /// Return true if the register was spilled, false otherwise.
1028
  /// If this function does not spill the register, the scavenger
1029
  /// will instead spill it to the emergency spill slot.
1030
  virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
1031
                                     MachineBasicBlock::iterator I,
1032
                                     MachineBasicBlock::iterator &UseMI,
1033
                                     const TargetRegisterClass *RC,
1034
                                     Register Reg) const {
1035
    return false;
1036
  }
1037
 
1038
  /// Process frame indices in reverse block order. This changes the behavior of
1039
  /// the RegScavenger passed to eliminateFrameIndex. If this is true targets
1040
  /// should scavengeRegisterBackwards in eliminateFrameIndex. New targets
1041
  /// should prefer reverse scavenging behavior.
1042
  virtual bool supportsBackwardScavenger() const { return false; }
1043
 
1044
  /// This method must be overriden to eliminate abstract frame indices from
1045
  /// instructions which may use them. The instruction referenced by the
1046
  /// iterator contains an MO_FrameIndex operand which must be eliminated by
1047
  /// this method. This method may modify or replace the specified instruction,
1048
  /// as long as it keeps the iterator pointing at the finished product.
1049
  /// SPAdj is the SP adjustment due to call frame setup instruction.
1050
  /// FIOperandNum is the FI operand number.
1051
  /// Returns true if the current instruction was removed and the iterator
1052
  /// is not longer valid
1053
  virtual bool eliminateFrameIndex(MachineBasicBlock::iterator MI,
1054
                                   int SPAdj, unsigned FIOperandNum,
1055
                                   RegScavenger *RS = nullptr) const = 0;
1056
 
1057
  /// Return the assembly name for \p Reg.
1058
  virtual StringRef getRegAsmName(MCRegister Reg) const {
1059
    // FIXME: We are assuming that the assembly name is equal to the TableGen
1060
    // name converted to lower case
1061
    //
1062
    // The TableGen name is the name of the definition for this register in the
1063
    // target's tablegen files.  For example, the TableGen name of
1064
    // def EAX : Register <...>; is "EAX"
1065
    return StringRef(getName(Reg));
1066
  }
1067
 
1068
  //===--------------------------------------------------------------------===//
1069
  /// Subtarget Hooks
1070
 
1071
  /// SrcRC and DstRC will be morphed into NewRC if this returns true.
1072
  virtual bool shouldCoalesce(MachineInstr *MI,
1073
                              const TargetRegisterClass *SrcRC,
1074
                              unsigned SubReg,
1075
                              const TargetRegisterClass *DstRC,
1076
                              unsigned DstSubReg,
1077
                              const TargetRegisterClass *NewRC,
1078
                              LiveIntervals &LIS) const
1079
  { return true; }
1080
 
1081
  /// Region split has a high compile time cost especially for large live range.
1082
  /// This method is used to decide whether or not \p VirtReg should
1083
  /// go through this expensive splitting heuristic.
1084
  virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF,
1085
                                           const LiveInterval &VirtReg) const;
1086
 
1087
  /// Last chance recoloring has a high compile time cost especially for
1088
  /// targets with a lot of registers.
1089
  /// This method is used to decide whether or not \p VirtReg should
1090
  /// go through this expensive heuristic.
1091
  /// When this target hook is hit, by returning false, there is a high
1092
  /// chance that the register allocation will fail altogether (usually with
1093
  /// "ran out of registers").
1094
  /// That said, this error usually points to another problem in the
1095
  /// optimization pipeline.
1096
  virtual bool
1097
  shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF,
1098
                                          const LiveInterval &VirtReg) const {
1099
    return true;
1100
  }
1101
 
1102
  /// Deferred spilling delays the spill insertion of a virtual register
1103
  /// after every other allocation. By deferring the spilling, it is
1104
  /// sometimes possible to eliminate that spilling altogether because
1105
  /// something else could have been eliminated, thus leaving some space
1106
  /// for the virtual register.
1107
  /// However, this comes with a compile time impact because it adds one
1108
  /// more stage to the greedy register allocator.
1109
  /// This method is used to decide whether \p VirtReg should use the deferred
1110
  /// spilling stage instead of being spilled right away.
1111
  virtual bool
1112
  shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF,
1113
                                      const LiveInterval &VirtReg) const {
1114
    return false;
1115
  }
1116
 
1117
  /// When prioritizing live ranges in register allocation, if this hook returns
1118
  /// true then the AllocationPriority of the register class will be treated as
1119
  /// more important than whether the range is local to a basic block or global.
1120
  virtual bool
1121
  regClassPriorityTrumpsGlobalness(const MachineFunction &MF) const {
1122
    return false;
1123
  }
1124
 
1125
  //===--------------------------------------------------------------------===//
1126
  /// Debug information queries.
1127
 
1128
  /// getFrameRegister - This method should return the register used as a base
1129
  /// for values allocated in the current stack frame.
1130
  virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
1131
 
1132
  /// Mark a register and all its aliases as reserved in the given set.
1133
  void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const;
1134
 
1135
  /// Returns true if for every register in the set all super registers are part
1136
  /// of the set as well.
1137
  bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
1138
      ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
1139
 
1140
  virtual const TargetRegisterClass *
1141
  getConstrainedRegClassForOperand(const MachineOperand &MO,
1142
                                   const MachineRegisterInfo &MRI) const {
1143
    return nullptr;
1144
  }
1145
 
1146
  /// Returns the physical register number of sub-register "Index"
1147
  /// for physical register RegNo. Return zero if the sub-register does not
1148
  /// exist.
1149
  inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const {
1150
    return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx);
1151
  }
1152
 
1153
  /// Some targets have non-allocatable registers that aren't technically part
1154
  /// of the explicit callee saved register list, but should be handled as such
1155
  /// in certain cases.
1156
  virtual bool isNonallocatableRegisterCalleeSave(MCRegister Reg) const {
1157
    return false;
1158
  }
1159
};
1160
 
1161
//===----------------------------------------------------------------------===//
1162
//                           SuperRegClassIterator
1163
//===----------------------------------------------------------------------===//
1164
//
1165
// Iterate over the possible super-registers for a given register class. The
1166
// iterator will visit a list of pairs (Idx, Mask) corresponding to the
1167
// possible classes of super-registers.
1168
//
1169
// Each bit mask will have at least one set bit, and each set bit in Mask
1170
// corresponds to a SuperRC such that:
1171
//
1172
//   For all Reg in SuperRC: Reg:Idx is in RC.
1173
//
1174
// The iterator can include (O, RC->getSubClassMask()) as the first entry which
1175
// also satisfies the above requirement, assuming Reg:0 == Reg.
1176
//
1177
class SuperRegClassIterator {
1178
  const unsigned RCMaskWords;
1179
  unsigned SubReg = 0;
1180
  const uint16_t *Idx;
1181
  const uint32_t *Mask;
1182
 
1183
public:
1184
  /// Create a SuperRegClassIterator that visits all the super-register classes
1185
  /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1186
  SuperRegClassIterator(const TargetRegisterClass *RC,
1187
                        const TargetRegisterInfo *TRI,
1188
                        bool IncludeSelf = false)
1189
    : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1190
      Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1191
    if (!IncludeSelf)
1192
      ++*this;
1193
  }
1194
 
1195
  /// Returns true if this iterator is still pointing at a valid entry.
1196
  bool isValid() const { return Idx; }
1197
 
1198
  /// Returns the current sub-register index.
1199
  unsigned getSubReg() const { return SubReg; }
1200
 
1201
  /// Returns the bit mask of register classes that getSubReg() projects into
1202
  /// RC.
1203
  /// See TargetRegisterClass::getSubClassMask() for how to use it.
1204
  const uint32_t *getMask() const { return Mask; }
1205
 
1206
  /// Advance iterator to the next entry.
1207
  void operator++() {
1208
    assert(isValid() && "Cannot move iterator past end.");
1209
    Mask += RCMaskWords;
1210
    SubReg = *Idx++;
1211
    if (!SubReg)
1212
      Idx = nullptr;
1213
  }
1214
};
1215
 
1216
//===----------------------------------------------------------------------===//
1217
//                           BitMaskClassIterator
1218
//===----------------------------------------------------------------------===//
1219
/// This class encapuslates the logic to iterate over bitmask returned by
1220
/// the various RegClass related APIs.
1221
/// E.g., this class can be used to iterate over the subclasses provided by
1222
/// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1223
class BitMaskClassIterator {
1224
  /// Total number of register classes.
1225
  const unsigned NumRegClasses;
1226
  /// Base index of CurrentChunk.
1227
  /// In other words, the number of bit we read to get at the
1228
  /// beginning of that chunck.
1229
  unsigned Base = 0;
1230
  /// Adjust base index of CurrentChunk.
1231
  /// Base index + how many bit we read within CurrentChunk.
1232
  unsigned Idx = 0;
1233
  /// Current register class ID.
1234
  unsigned ID = 0;
1235
  /// Mask we are iterating over.
1236
  const uint32_t *Mask;
1237
  /// Current chunk of the Mask we are traversing.
1238
  uint32_t CurrentChunk;
1239
 
1240
  /// Move ID to the next set bit.
1241
  void moveToNextID() {
1242
    // If the current chunk of memory is empty, move to the next one,
1243
    // while making sure we do not go pass the number of register
1244
    // classes.
1245
    while (!CurrentChunk) {
1246
      // Move to the next chunk.
1247
      Base += 32;
1248
      if (Base >= NumRegClasses) {
1249
        ID = NumRegClasses;
1250
        return;
1251
      }
1252
      CurrentChunk = *++Mask;
1253
      Idx = Base;
1254
    }
1255
    // Otherwise look for the first bit set from the right
1256
    // (representation of the class ID is big endian).
1257
    // See getSubClassMask for more details on the representation.
1258
    unsigned Offset = countTrailingZeros(CurrentChunk);
1259
    // Add the Offset to the adjusted base number of this chunk: Idx.
1260
    // This is the ID of the register class.
1261
    ID = Idx + Offset;
1262
 
1263
    // Consume the zeros, if any, and the bit we just read
1264
    // so that we are at the right spot for the next call.
1265
    // Do not do Offset + 1 because Offset may be 31 and 32
1266
    // will be UB for the shift, though in that case we could
1267
    // have make the chunk being equal to 0, but that would
1268
    // have introduced a if statement.
1269
    moveNBits(Offset);
1270
    moveNBits(1);
1271
  }
1272
 
1273
  /// Move \p NumBits Bits forward in CurrentChunk.
1274
  void moveNBits(unsigned NumBits) {
1275
    assert(NumBits < 32 && "Undefined behavior spotted!");
1276
    // Consume the bit we read for the next call.
1277
    CurrentChunk >>= NumBits;
1278
    // Adjust the base for the chunk.
1279
    Idx += NumBits;
1280
  }
1281
 
1282
public:
1283
  /// Create a BitMaskClassIterator that visits all the register classes
1284
  /// represented by \p Mask.
1285
  ///
1286
  /// \pre \p Mask != nullptr
1287
  BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1288
      : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1289
    // Move to the first ID.
1290
    moveToNextID();
1291
  }
1292
 
1293
  /// Returns true if this iterator is still pointing at a valid entry.
1294
  bool isValid() const { return getID() != NumRegClasses; }
1295
 
1296
  /// Returns the current register class ID.
1297
  unsigned getID() const { return ID; }
1298
 
1299
  /// Advance iterator to the next entry.
1300
  void operator++() {
1301
    assert(isValid() && "Cannot move iterator past end.");
1302
    moveToNextID();
1303
  }
1304
};
1305
 
1306
// This is useful when building IndexedMaps keyed on virtual registers
1307
struct VirtReg2IndexFunctor {
1308
  using argument_type = Register;
1309
  unsigned operator()(Register Reg) const {
1310
    return Register::virtReg2Index(Reg);
1311
  }
1312
};
1313
 
1314
/// Prints virtual and physical registers with or without a TRI instance.
1315
///
1316
/// The format is:
1317
///   %noreg          - NoRegister
1318
///   %5              - a virtual register.
1319
///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
1320
///   %eax            - a physical register
1321
///   %physreg17      - a physical register when no TRI instance given.
1322
///
1323
/// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1324
Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr,
1325
                   unsigned SubIdx = 0,
1326
                   const MachineRegisterInfo *MRI = nullptr);
1327
 
1328
/// Create Printable object to print register units on a \ref raw_ostream.
1329
///
1330
/// Register units are named after their root registers:
1331
///
1332
///   al      - Single root.
1333
///   fp0~st7 - Dual roots.
1334
///
1335
/// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1336
Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1337
 
1338
/// Create Printable object to print virtual registers and physical
1339
/// registers on a \ref raw_ostream.
1340
Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1341
 
1342
/// Create Printable object to print register classes or register banks
1343
/// on a \ref raw_ostream.
1344
Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
1345
                              const TargetRegisterInfo *TRI);
1346
 
1347
} // end namespace llvm
1348
 
1349
#endif // LLVM_CODEGEN_TARGETREGISTERINFO_H