Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file describes the target machine instruction set to the code generator.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14
#define LLVM_CODEGEN_TARGETINSTRINFO_H
15
 
16
#include "llvm/ADT/ArrayRef.h"
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/DenseMapInfo.h"
19
#include "llvm/ADT/Uniformity.h"
20
#include "llvm/CodeGen/MIRFormatter.h"
21
#include "llvm/CodeGen/MachineBasicBlock.h"
22
#include "llvm/CodeGen/MachineFunction.h"
23
#include "llvm/CodeGen/MachineInstr.h"
24
#include "llvm/CodeGen/MachineInstrBuilder.h"
25
#include "llvm/CodeGen/MachineOperand.h"
26
#include "llvm/CodeGen/MachineOutliner.h"
27
#include "llvm/CodeGen/RegisterClassInfo.h"
28
#include "llvm/CodeGen/VirtRegMap.h"
29
#include "llvm/MC/MCInstrInfo.h"
30
#include "llvm/Support/BranchProbability.h"
31
#include "llvm/Support/ErrorHandling.h"
32
#include <cassert>
33
#include <cstddef>
34
#include <cstdint>
35
#include <utility>
36
#include <vector>
37
 
38
namespace llvm {
39
 
40
class DFAPacketizer;
41
class InstrItineraryData;
42
class LiveIntervals;
43
class LiveVariables;
44
class MachineLoop;
45
class MachineMemOperand;
46
class MachineRegisterInfo;
47
class MCAsmInfo;
48
class MCInst;
49
struct MCSchedModel;
50
class Module;
51
class ScheduleDAG;
52
class ScheduleDAGMI;
53
class ScheduleHazardRecognizer;
54
class SDNode;
55
class SelectionDAG;
56
class SMSchedule;
57
class SwingSchedulerDAG;
58
class RegScavenger;
59
class TargetRegisterClass;
60
class TargetRegisterInfo;
61
class TargetSchedModel;
62
class TargetSubtargetInfo;
63
enum class MachineCombinerPattern;
64
 
65
template <class T> class SmallVectorImpl;
66
 
67
using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
68
 
69
struct DestSourcePair {
70
  const MachineOperand *Destination;
71
  const MachineOperand *Source;
72
 
73
  DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
74
      : Destination(&Dest), Source(&Src) {}
75
};
76
 
77
/// Used to describe a register and immediate addition.
78
struct RegImmPair {
79
  Register Reg;
80
  int64_t Imm;
81
 
82
  RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
83
};
84
 
85
/// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
86
/// It holds the register values, the scale value and the displacement.
87
struct ExtAddrMode {
88
  Register BaseReg;
89
  Register ScaledReg;
90
  int64_t Scale;
91
  int64_t Displacement;
92
};
93
 
94
//---------------------------------------------------------------------------
95
///
96
/// TargetInstrInfo - Interface to description of machine instruction set
97
///
98
class TargetInstrInfo : public MCInstrInfo {
99
public:
100
  TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
101
                  unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
102
      : CallFrameSetupOpcode(CFSetupOpcode),
103
        CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
104
        ReturnOpcode(ReturnOpcode) {}
105
  TargetInstrInfo(const TargetInstrInfo &) = delete;
106
  TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
107
  virtual ~TargetInstrInfo();
108
 
109
  static bool isGenericOpcode(unsigned Opc) {
110
    return Opc <= TargetOpcode::GENERIC_OP_END;
111
  }
112
 
113
  static bool isGenericAtomicRMWOpcode(unsigned Opc) {
114
    return Opc >= TargetOpcode::GENERIC_ATOMICRMW_OP_START &&
115
           Opc <= TargetOpcode::GENERIC_ATOMICRMW_OP_END;
116
  }
117
 
118
  /// Given a machine instruction descriptor, returns the register
119
  /// class constraint for OpNum, or NULL.
120
  virtual
121
  const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
122
                                         const TargetRegisterInfo *TRI,
123
                                         const MachineFunction &MF) const;
124
 
125
  /// Return true if the instruction is trivially rematerializable, meaning it
126
  /// has no side effects and requires no operands that aren't always available.
127
  /// This means the only allowed uses are constants and unallocatable physical
128
  /// registers so that the instructions result is independent of the place
129
  /// in the function.
130
  bool isTriviallyReMaterializable(const MachineInstr &MI) const {
131
    return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
132
           (MI.getDesc().isRematerializable() &&
133
            (isReallyTriviallyReMaterializable(MI) ||
134
             isReallyTriviallyReMaterializableGeneric(MI)));
135
  }
136
 
137
  /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
138
  /// of instruction rematerialization or sinking.
139
  virtual bool isIgnorableUse(const MachineOperand &MO) const {
140
    return false;
141
  }
142
 
143
protected:
144
  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
145
  /// set, this hook lets the target specify whether the instruction is actually
146
  /// trivially rematerializable, taking into consideration its operands. This
147
  /// predicate must return false if the instruction has any side effects other
148
  /// than producing a value, or if it requres any address registers that are
149
  /// not always available.
150
  /// Requirements must be check as stated in isTriviallyReMaterializable() .
151
  virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const {
152
    return false;
153
  }
154
 
155
  /// This method commutes the operands of the given machine instruction MI.
156
  /// The operands to be commuted are specified by their indices OpIdx1 and
157
  /// OpIdx2.
158
  ///
159
  /// If a target has any instructions that are commutable but require
160
  /// converting to different instructions or making non-trivial changes
161
  /// to commute them, this method can be overloaded to do that.
162
  /// The default implementation simply swaps the commutable operands.
163
  ///
164
  /// If NewMI is false, MI is modified in place and returned; otherwise, a
165
  /// new machine instruction is created and returned.
166
  ///
167
  /// Do not call this method for a non-commutable instruction.
168
  /// Even though the instruction is commutable, the method may still
169
  /// fail to commute the operands, null pointer is returned in such cases.
170
  virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
171
                                               unsigned OpIdx1,
172
                                               unsigned OpIdx2) const;
173
 
174
  /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
175
  /// operand indices to (ResultIdx1, ResultIdx2).
176
  /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
177
  /// predefined to some indices or be undefined (designated by the special
178
  /// value 'CommuteAnyOperandIndex').
179
  /// The predefined result indices cannot be re-defined.
180
  /// The function returns true iff after the result pair redefinition
181
  /// the fixed result pair is equal to or equivalent to the source pair of
182
  /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
183
  /// the pairs (x,y) and (y,x) are equivalent.
184
  static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
185
                                   unsigned CommutableOpIdx1,
186
                                   unsigned CommutableOpIdx2);
187
 
188
private:
189
  /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
190
  /// set and the target hook isReallyTriviallyReMaterializable returns false,
191
  /// this function does target-independent tests to determine if the
192
  /// instruction is really trivially rematerializable.
193
  bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI) const;
194
 
195
public:
196
  /// These methods return the opcode of the frame setup/destroy instructions
197
  /// if they exist (-1 otherwise).  Some targets use pseudo instructions in
198
  /// order to abstract away the difference between operating with a frame
199
  /// pointer and operating without, through the use of these two instructions.
200
  ///
201
  unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
202
  unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
203
 
204
  /// Returns true if the argument is a frame pseudo instruction.
205
  bool isFrameInstr(const MachineInstr &I) const {
206
    return I.getOpcode() == getCallFrameSetupOpcode() ||
207
           I.getOpcode() == getCallFrameDestroyOpcode();
208
  }
209
 
210
  /// Returns true if the argument is a frame setup pseudo instruction.
211
  bool isFrameSetup(const MachineInstr &I) const {
212
    return I.getOpcode() == getCallFrameSetupOpcode();
213
  }
214
 
215
  /// Returns size of the frame associated with the given frame instruction.
216
  /// For frame setup instruction this is frame that is set up space set up
217
  /// after the instruction. For frame destroy instruction this is the frame
218
  /// freed by the caller.
219
  /// Note, in some cases a call frame (or a part of it) may be prepared prior
220
  /// to the frame setup instruction. It occurs in the calls that involve
221
  /// inalloca arguments. This function reports only the size of the frame part
222
  /// that is set up between the frame setup and destroy pseudo instructions.
223
  int64_t getFrameSize(const MachineInstr &I) const {
224
    assert(isFrameInstr(I) && "Not a frame instruction");
225
    assert(I.getOperand(0).getImm() >= 0);
226
    return I.getOperand(0).getImm();
227
  }
228
 
229
  /// Returns the total frame size, which is made up of the space set up inside
230
  /// the pair of frame start-stop instructions and the space that is set up
231
  /// prior to the pair.
232
  int64_t getFrameTotalSize(const MachineInstr &I) const {
233
    if (isFrameSetup(I)) {
234
      assert(I.getOperand(1).getImm() >= 0 &&
235
             "Frame size must not be negative");
236
      return getFrameSize(I) + I.getOperand(1).getImm();
237
    }
238
    return getFrameSize(I);
239
  }
240
 
241
  unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
242
  unsigned getReturnOpcode() const { return ReturnOpcode; }
243
 
244
  /// Returns the actual stack pointer adjustment made by an instruction
245
  /// as part of a call sequence. By default, only call frame setup/destroy
246
  /// instructions adjust the stack, but targets may want to override this
247
  /// to enable more fine-grained adjustment, or adjust by a different value.
248
  virtual int getSPAdjust(const MachineInstr &MI) const;
249
 
250
  /// Return true if the instruction is a "coalescable" extension instruction.
251
  /// That is, it's like a copy where it's legal for the source to overlap the
252
  /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
253
  /// expected the pre-extension value is available as a subreg of the result
254
  /// register. This also returns the sub-register index in SubIdx.
255
  virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
256
                                     Register &DstReg, unsigned &SubIdx) const {
257
    return false;
258
  }
259
 
260
  /// If the specified machine instruction is a direct
261
  /// load from a stack slot, return the virtual or physical register number of
262
  /// the destination along with the FrameIndex of the loaded stack slot.  If
263
  /// not, return 0.  This predicate must return 0 if the instruction has
264
  /// any side effects other than loading from the stack slot.
265
  virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
266
                                       int &FrameIndex) const {
267
    return 0;
268
  }
269
 
270
  /// Optional extension of isLoadFromStackSlot that returns the number of
271
  /// bytes loaded from the stack. This must be implemented if a backend
272
  /// supports partial stack slot spills/loads to further disambiguate
273
  /// what the load does.
274
  virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
275
                                       int &FrameIndex,
276
                                       unsigned &MemBytes) const {
277
    MemBytes = 0;
278
    return isLoadFromStackSlot(MI, FrameIndex);
279
  }
280
 
281
  /// Check for post-frame ptr elimination stack locations as well.
282
  /// This uses a heuristic so it isn't reliable for correctness.
283
  virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
284
                                             int &FrameIndex) const {
285
    return 0;
286
  }
287
 
288
  /// If the specified machine instruction has a load from a stack slot,
289
  /// return true along with the FrameIndices of the loaded stack slot and the
290
  /// machine mem operands containing the reference.
291
  /// If not, return false.  Unlike isLoadFromStackSlot, this returns true for
292
  /// any instructions that loads from the stack.  This is just a hint, as some
293
  /// cases may be missed.
294
  virtual bool hasLoadFromStackSlot(
295
      const MachineInstr &MI,
296
      SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
297
 
298
  /// If the specified machine instruction is a direct
299
  /// store to a stack slot, return the virtual or physical register number of
300
  /// the source reg along with the FrameIndex of the loaded stack slot.  If
301
  /// not, return 0.  This predicate must return 0 if the instruction has
302
  /// any side effects other than storing to the stack slot.
303
  virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
304
                                      int &FrameIndex) const {
305
    return 0;
306
  }
307
 
308
  /// Optional extension of isStoreToStackSlot that returns the number of
309
  /// bytes stored to the stack. This must be implemented if a backend
310
  /// supports partial stack slot spills/loads to further disambiguate
311
  /// what the store does.
312
  virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
313
                                      int &FrameIndex,
314
                                      unsigned &MemBytes) const {
315
    MemBytes = 0;
316
    return isStoreToStackSlot(MI, FrameIndex);
317
  }
318
 
319
  /// Check for post-frame ptr elimination stack locations as well.
320
  /// This uses a heuristic, so it isn't reliable for correctness.
321
  virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
322
                                            int &FrameIndex) const {
323
    return 0;
324
  }
325
 
326
  /// If the specified machine instruction has a store to a stack slot,
327
  /// return true along with the FrameIndices of the loaded stack slot and the
328
  /// machine mem operands containing the reference.
329
  /// If not, return false.  Unlike isStoreToStackSlot,
330
  /// this returns true for any instructions that stores to the
331
  /// stack.  This is just a hint, as some cases may be missed.
332
  virtual bool hasStoreToStackSlot(
333
      const MachineInstr &MI,
334
      SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
335
 
336
  /// Return true if the specified machine instruction
337
  /// is a copy of one stack slot to another and has no other effect.
338
  /// Provide the identity of the two frame indices.
339
  virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
340
                               int &SrcFrameIndex) const {
341
    return false;
342
  }
343
 
344
  /// Compute the size in bytes and offset within a stack slot of a spilled
345
  /// register or subregister.
346
  ///
347
  /// \param [out] Size in bytes of the spilled value.
348
  /// \param [out] Offset in bytes within the stack slot.
349
  /// \returns true if both Size and Offset are successfully computed.
350
  ///
351
  /// Not all subregisters have computable spill slots. For example,
352
  /// subregisters registers may not be byte-sized, and a pair of discontiguous
353
  /// subregisters has no single offset.
354
  ///
355
  /// Targets with nontrivial bigendian implementations may need to override
356
  /// this, particularly to support spilled vector registers.
357
  virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
358
                                 unsigned &Size, unsigned &Offset,
359
                                 const MachineFunction &MF) const;
360
 
361
  /// Return true if the given instruction is terminator that is unspillable,
362
  /// according to isUnspillableTerminatorImpl.
363
  bool isUnspillableTerminator(const MachineInstr *MI) const {
364
    return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
365
  }
366
 
367
  /// Returns the size in bytes of the specified MachineInstr, or ~0U
368
  /// when this function is not implemented by a target.
369
  virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
370
    return ~0U;
371
  }
372
 
373
  /// Return true if the instruction is as cheap as a move instruction.
374
  ///
375
  /// Targets for different archs need to override this, and different
376
  /// micro-architectures can also be finely tuned inside.
377
  virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
378
    return MI.isAsCheapAsAMove();
379
  }
380
 
381
  /// Return true if the instruction should be sunk by MachineSink.
382
  ///
383
  /// MachineSink determines on its own whether the instruction is safe to sink;
384
  /// this gives the target a hook to override the default behavior with regards
385
  /// to which instructions should be sunk.
386
  virtual bool shouldSink(const MachineInstr &MI) const { return true; }
387
 
388
  /// Return false if the instruction should not be hoisted by MachineLICM.
389
  ///
390
  /// MachineLICM determines on its own whether the instruction is safe to
391
  /// hoist; this gives the target a hook to extend this assessment and prevent
392
  /// an instruction being hoisted from a given loop for target specific
393
  /// reasons.
394
  virtual bool shouldHoist(const MachineInstr &MI,
395
                           const MachineLoop *FromLoop) const {
396
    return true;
397
  }
398
 
399
  /// Re-issue the specified 'original' instruction at the
400
  /// specific location targeting a new destination register.
401
  /// The register in Orig->getOperand(0).getReg() will be substituted by
402
  /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
403
  /// SubIdx.
404
  virtual void reMaterialize(MachineBasicBlock &MBB,
405
                             MachineBasicBlock::iterator MI, Register DestReg,
406
                             unsigned SubIdx, const MachineInstr &Orig,
407
                             const TargetRegisterInfo &TRI) const;
408
 
409
  /// Clones instruction or the whole instruction bundle \p Orig and
410
  /// insert into \p MBB before \p InsertBefore. The target may update operands
411
  /// that are required to be unique.
412
  ///
413
  /// \p Orig must not return true for MachineInstr::isNotDuplicable().
414
  virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
415
                                  MachineBasicBlock::iterator InsertBefore,
416
                                  const MachineInstr &Orig) const;
417
 
418
  /// This method must be implemented by targets that
419
  /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
420
  /// may be able to convert a two-address instruction into one or more true
421
  /// three-address instructions on demand.  This allows the X86 target (for
422
  /// example) to convert ADD and SHL instructions into LEA instructions if they
423
  /// would require register copies due to two-addressness.
424
  ///
425
  /// This method returns a null pointer if the transformation cannot be
426
  /// performed, otherwise it returns the last new instruction.
427
  ///
428
  /// If \p LIS is not nullptr, the LiveIntervals info should be updated for
429
  /// replacing \p MI with new instructions, even though this function does not
430
  /// remove MI.
431
  virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
432
                                              LiveVariables *LV,
433
                                              LiveIntervals *LIS) const {
434
    return nullptr;
435
  }
436
 
437
  // This constant can be used as an input value of operand index passed to
438
  // the method findCommutedOpIndices() to tell the method that the
439
  // corresponding operand index is not pre-defined and that the method
440
  // can pick any commutable operand.
441
  static const unsigned CommuteAnyOperandIndex = ~0U;
442
 
443
  /// This method commutes the operands of the given machine instruction MI.
444
  ///
445
  /// The operands to be commuted are specified by their indices OpIdx1 and
446
  /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
447
  /// 'CommuteAnyOperandIndex', which means that the method is free to choose
448
  /// any arbitrarily chosen commutable operand. If both arguments are set to
449
  /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
450
  /// operands; then commutes them if such operands could be found.
451
  ///
452
  /// If NewMI is false, MI is modified in place and returned; otherwise, a
453
  /// new machine instruction is created and returned.
454
  ///
455
  /// Do not call this method for a non-commutable instruction or
456
  /// for non-commuable operands.
457
  /// Even though the instruction is commutable, the method may still
458
  /// fail to commute the operands, null pointer is returned in such cases.
459
  MachineInstr *
460
  commuteInstruction(MachineInstr &MI, bool NewMI = false,
461
                     unsigned OpIdx1 = CommuteAnyOperandIndex,
462
                     unsigned OpIdx2 = CommuteAnyOperandIndex) const;
463
 
464
  /// Returns true iff the routine could find two commutable operands in the
465
  /// given machine instruction.
466
  /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
467
  /// If any of the INPUT values is set to the special value
468
  /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
469
  /// operand, then returns its index in the corresponding argument.
470
  /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
471
  /// looks for 2 commutable operands.
472
  /// If INPUT values refer to some operands of MI, then the method simply
473
  /// returns true if the corresponding operands are commutable and returns
474
  /// false otherwise.
475
  ///
476
  /// For example, calling this method this way:
477
  ///     unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
478
  ///     findCommutedOpIndices(MI, Op1, Op2);
479
  /// can be interpreted as a query asking to find an operand that would be
480
  /// commutable with the operand#1.
481
  virtual bool findCommutedOpIndices(const MachineInstr &MI,
482
                                     unsigned &SrcOpIdx1,
483
                                     unsigned &SrcOpIdx2) const;
484
 
485
  /// Returns true if the target has a preference on the operands order of
486
  /// the given machine instruction. And specify if \p Commute is required to
487
  /// get the desired operands order.
488
  virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
489
    return false;
490
  }
491
 
492
  /// A pair composed of a register and a sub-register index.
493
  /// Used to give some type checking when modeling Reg:SubReg.
494
  struct RegSubRegPair {
495
    Register Reg;
496
    unsigned SubReg;
497
 
498
    RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
499
        : Reg(Reg), SubReg(SubReg) {}
500
 
501
    bool operator==(const RegSubRegPair& P) const {
502
      return Reg == P.Reg && SubReg == P.SubReg;
503
    }
504
    bool operator!=(const RegSubRegPair& P) const {
505
      return !(*this == P);
506
    }
507
  };
508
 
509
  /// A pair composed of a pair of a register and a sub-register index,
510
  /// and another sub-register index.
511
  /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
512
  struct RegSubRegPairAndIdx : RegSubRegPair {
513
    unsigned SubIdx;
514
 
515
    RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
516
                        unsigned SubIdx = 0)
517
        : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
518
  };
519
 
520
  /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
521
  /// and \p DefIdx.
522
  /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
523
  /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
524
  /// flag are not added to this list.
525
  /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
526
  /// two elements:
527
  /// - %1:sub1, sub0
528
  /// - %2<:0>, sub1
529
  ///
530
  /// \returns true if it is possible to build such an input sequence
531
  /// with the pair \p MI, \p DefIdx. False otherwise.
532
  ///
533
  /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
534
  ///
535
  /// \note The generic implementation does not provide any support for
536
  /// MI.isRegSequenceLike(). In other words, one has to override
537
  /// getRegSequenceLikeInputs for target specific instructions.
538
  bool
539
  getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
540
                       SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
541
 
542
  /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
543
  /// and \p DefIdx.
544
  /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
545
  /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
546
  /// - %1:sub1, sub0
547
  ///
548
  /// \returns true if it is possible to build such an input sequence
549
  /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
550
  /// False otherwise.
551
  ///
552
  /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
553
  ///
554
  /// \note The generic implementation does not provide any support for
555
  /// MI.isExtractSubregLike(). In other words, one has to override
556
  /// getExtractSubregLikeInputs for target specific instructions.
557
  bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
558
                              RegSubRegPairAndIdx &InputReg) const;
559
 
560
  /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
561
  /// and \p DefIdx.
562
  /// \p [out] BaseReg and \p [out] InsertedReg contain
563
  /// the equivalent inputs of INSERT_SUBREG.
564
  /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
565
  /// - BaseReg: %0:sub0
566
  /// - InsertedReg: %1:sub1, sub3
567
  ///
568
  /// \returns true if it is possible to build such an input sequence
569
  /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
570
  /// False otherwise.
571
  ///
572
  /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
573
  ///
574
  /// \note The generic implementation does not provide any support for
575
  /// MI.isInsertSubregLike(). In other words, one has to override
576
  /// getInsertSubregLikeInputs for target specific instructions.
577
  bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
578
                             RegSubRegPair &BaseReg,
579
                             RegSubRegPairAndIdx &InsertedReg) const;
580
 
581
  /// Return true if two machine instructions would produce identical values.
582
  /// By default, this is only true when the two instructions
583
  /// are deemed identical except for defs. If this function is called when the
584
  /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
585
  /// aggressive checks.
586
  virtual bool produceSameValue(const MachineInstr &MI0,
587
                                const MachineInstr &MI1,
588
                                const MachineRegisterInfo *MRI = nullptr) const;
589
 
590
  /// \returns true if a branch from an instruction with opcode \p BranchOpc
591
  ///  bytes is capable of jumping to a position \p BrOffset bytes away.
592
  virtual bool isBranchOffsetInRange(unsigned BranchOpc,
593
                                     int64_t BrOffset) const {
594
    llvm_unreachable("target did not implement");
595
  }
596
 
597
  /// \returns The block that branch instruction \p MI jumps to.
598
  virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
599
    llvm_unreachable("target did not implement");
600
  }
601
 
602
  /// Insert an unconditional indirect branch at the end of \p MBB to \p
603
  /// NewDestBB. Optionally, insert the clobbered register restoring in \p
604
  /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
605
  /// the offset of the position to insert the new branch.
606
  virtual void insertIndirectBranch(MachineBasicBlock &MBB,
607
                                    MachineBasicBlock &NewDestBB,
608
                                    MachineBasicBlock &RestoreBB,
609
                                    const DebugLoc &DL, int64_t BrOffset = 0,
610
                                    RegScavenger *RS = nullptr) const {
611
    llvm_unreachable("target did not implement");
612
  }
613
 
614
  /// Analyze the branching code at the end of MBB, returning
615
  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
616
  /// implemented for a target).  Upon success, this returns false and returns
617
  /// with the following information in various cases:
618
  ///
619
  /// 1. If this block ends with no branches (it just falls through to its succ)
620
  ///    just return false, leaving TBB/FBB null.
621
  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
622
  ///    the destination block.
623
  /// 3. If this block ends with a conditional branch and it falls through to a
624
  ///    successor block, it sets TBB to be the branch destination block and a
625
  ///    list of operands that evaluate the condition. These operands can be
626
  ///    passed to other TargetInstrInfo methods to create new branches.
627
  /// 4. If this block ends with a conditional branch followed by an
628
  ///    unconditional branch, it returns the 'true' destination in TBB, the
629
  ///    'false' destination in FBB, and a list of operands that evaluate the
630
  ///    condition.  These operands can be passed to other TargetInstrInfo
631
  ///    methods to create new branches.
632
  ///
633
  /// Note that removeBranch and insertBranch must be implemented to support
634
  /// cases where this method returns success.
635
  ///
636
  /// If AllowModify is true, then this routine is allowed to modify the basic
637
  /// block (e.g. delete instructions after the unconditional branch).
638
  ///
639
  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
640
  /// before calling this function.
641
  virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
642
                             MachineBasicBlock *&FBB,
643
                             SmallVectorImpl<MachineOperand> &Cond,
644
                             bool AllowModify = false) const {
645
    return true;
646
  }
647
 
648
  /// Represents a predicate at the MachineFunction level.  The control flow a
649
  /// MachineBranchPredicate represents is:
650
  ///
651
  ///  Reg = LHS `Predicate` RHS         == ConditionDef
652
  ///  if Reg then goto TrueDest else goto FalseDest
653
  ///
654
  struct MachineBranchPredicate {
655
    enum ComparePredicate {
656
      PRED_EQ,     // True if two values are equal
657
      PRED_NE,     // True if two values are not equal
658
      PRED_INVALID // Sentinel value
659
    };
660
 
661
    ComparePredicate Predicate = PRED_INVALID;
662
    MachineOperand LHS = MachineOperand::CreateImm(0);
663
    MachineOperand RHS = MachineOperand::CreateImm(0);
664
    MachineBasicBlock *TrueDest = nullptr;
665
    MachineBasicBlock *FalseDest = nullptr;
666
    MachineInstr *ConditionDef = nullptr;
667
 
668
    /// SingleUseCondition is true if ConditionDef is dead except for the
669
    /// branch(es) at the end of the basic block.
670
    ///
671
    bool SingleUseCondition = false;
672
 
673
    explicit MachineBranchPredicate() = default;
674
  };
675
 
676
  /// Analyze the branching code at the end of MBB and parse it into the
677
  /// MachineBranchPredicate structure if possible.  Returns false on success
678
  /// and true on failure.
679
  ///
680
  /// If AllowModify is true, then this routine is allowed to modify the basic
681
  /// block (e.g. delete instructions after the unconditional branch).
682
  ///
683
  virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
684
                                      MachineBranchPredicate &MBP,
685
                                      bool AllowModify = false) const {
686
    return true;
687
  }
688
 
689
  /// Remove the branching code at the end of the specific MBB.
690
  /// This is only invoked in cases where analyzeBranch returns success. It
691
  /// returns the number of instructions that were removed.
692
  /// If \p BytesRemoved is non-null, report the change in code size from the
693
  /// removed instructions.
694
  virtual unsigned removeBranch(MachineBasicBlock &MBB,
695
                                int *BytesRemoved = nullptr) const {
696
    llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
697
  }
698
 
699
  /// Insert branch code into the end of the specified MachineBasicBlock. The
700
  /// operands to this method are the same as those returned by analyzeBranch.
701
  /// This is only invoked in cases where analyzeBranch returns success. It
702
  /// returns the number of instructions inserted. If \p BytesAdded is non-null,
703
  /// report the change in code size from the added instructions.
704
  ///
705
  /// It is also invoked by tail merging to add unconditional branches in
706
  /// cases where analyzeBranch doesn't apply because there was no original
707
  /// branch to analyze.  At least this much must be implemented, else tail
708
  /// merging needs to be disabled.
709
  ///
710
  /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
711
  /// before calling this function.
712
  virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
713
                                MachineBasicBlock *FBB,
714
                                ArrayRef<MachineOperand> Cond,
715
                                const DebugLoc &DL,
716
                                int *BytesAdded = nullptr) const {
717
    llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
718
  }
719
 
720
  unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
721
                                     MachineBasicBlock *DestBB,
722
                                     const DebugLoc &DL,
723
                                     int *BytesAdded = nullptr) const {
724
    return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
725
                        BytesAdded);
726
  }
727
 
728
  /// Object returned by analyzeLoopForPipelining. Allows software pipelining
729
  /// implementations to query attributes of the loop being pipelined and to
730
  /// apply target-specific updates to the loop once pipelining is complete.
731
  class PipelinerLoopInfo {
732
  public:
733
    virtual ~PipelinerLoopInfo();
734
    /// Return true if the given instruction should not be pipelined and should
735
    /// be ignored. An example could be a loop comparison, or induction variable
736
    /// update with no users being pipelined.
737
    virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
738
 
739
    /// Return true if the proposed schedule should used.  Otherwise return
740
    /// false to not pipeline the loop. This function should be used to ensure
741
    /// that pipelined loops meet target-specific quality heuristics.
742
    virtual bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) {
743
      return true;
744
    }
745
 
746
    /// Create a condition to determine if the trip count of the loop is greater
747
    /// than TC, where TC is always one more than for the previous prologue or
748
    /// 0 if this is being called for the outermost prologue.
749
    ///
750
    /// If the trip count is statically known to be greater than TC, return
751
    /// true. If the trip count is statically known to be not greater than TC,
752
    /// return false. Otherwise return nullopt and fill out Cond with the test
753
    /// condition.
754
    ///
755
    /// Note: This hook is guaranteed to be called from the innermost to the
756
    /// outermost prologue of the loop being software pipelined.
757
    virtual std::optional<bool>
758
    createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
759
                                    SmallVectorImpl<MachineOperand> &Cond) = 0;
760
 
761
    /// Modify the loop such that the trip count is
762
    /// OriginalTC + TripCountAdjust.
763
    virtual void adjustTripCount(int TripCountAdjust) = 0;
764
 
765
    /// Called when the loop's preheader has been modified to NewPreheader.
766
    virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
767
 
768
    /// Called when the loop is being removed. Any instructions in the preheader
769
    /// should be removed.
770
    ///
771
    /// Once this function is called, no other functions on this object are
772
    /// valid; the loop has been removed.
773
    virtual void disposed() = 0;
774
  };
775
 
776
  /// Analyze loop L, which must be a single-basic-block loop, and if the
777
  /// conditions can be understood enough produce a PipelinerLoopInfo object.
778
  virtual std::unique_ptr<PipelinerLoopInfo>
779
  analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
780
    return nullptr;
781
  }
782
 
783
  /// Analyze the loop code, return true if it cannot be understood. Upon
784
  /// success, this function returns false and returns information about the
785
  /// induction variable and compare instruction used at the end.
786
  virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
787
                           MachineInstr *&CmpInst) const {
788
    return true;
789
  }
790
 
791
  /// Generate code to reduce the loop iteration by one and check if the loop
792
  /// is finished.  Return the value/register of the new loop count.  We need
793
  /// this function when peeling off one or more iterations of a loop. This
794
  /// function assumes the nth iteration is peeled first.
795
  virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
796
                                   MachineBasicBlock &PreHeader,
797
                                   MachineInstr *IndVar, MachineInstr &Cmp,
798
                                   SmallVectorImpl<MachineOperand> &Cond,
799
                                   SmallVectorImpl<MachineInstr *> &PrevInsts,
800
                                   unsigned Iter, unsigned MaxIter) const {
801
    llvm_unreachable("Target didn't implement ReduceLoopCount");
802
  }
803
 
804
  /// Delete the instruction OldInst and everything after it, replacing it with
805
  /// an unconditional branch to NewDest. This is used by the tail merging pass.
806
  virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
807
                                       MachineBasicBlock *NewDest) const;
808
 
809
  /// Return true if it's legal to split the given basic
810
  /// block at the specified instruction (i.e. instruction would be the start
811
  /// of a new basic block).
812
  virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
813
                                   MachineBasicBlock::iterator MBBI) const {
814
    return true;
815
  }
816
 
817
  /// Return true if it's profitable to predicate
818
  /// instructions with accumulated instruction latency of "NumCycles"
819
  /// of the specified basic block, where the probability of the instructions
820
  /// being executed is given by Probability, and Confidence is a measure
821
  /// of our confidence that it will be properly predicted.
822
  virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
823
                                   unsigned ExtraPredCycles,
824
                                   BranchProbability Probability) const {
825
    return false;
826
  }
827
 
828
  /// Second variant of isProfitableToIfCvt. This one
829
  /// checks for the case where two basic blocks from true and false path
830
  /// of a if-then-else (diamond) are predicated on mutually exclusive
831
  /// predicates, where the probability of the true path being taken is given
832
  /// by Probability, and Confidence is a measure of our confidence that it
833
  /// will be properly predicted.
834
  virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
835
                                   unsigned ExtraTCycles,
836
                                   MachineBasicBlock &FMBB, unsigned NumFCycles,
837
                                   unsigned ExtraFCycles,
838
                                   BranchProbability Probability) const {
839
    return false;
840
  }
841
 
842
  /// Return true if it's profitable for if-converter to duplicate instructions
843
  /// of specified accumulated instruction latencies in the specified MBB to
844
  /// enable if-conversion.
845
  /// The probability of the instructions being executed is given by
846
  /// Probability, and Confidence is a measure of our confidence that it
847
  /// will be properly predicted.
848
  virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
849
                                         unsigned NumCycles,
850
                                         BranchProbability Probability) const {
851
    return false;
852
  }
853
 
854
  /// Return the increase in code size needed to predicate a contiguous run of
855
  /// NumInsts instructions.
856
  virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
857
                                                    unsigned NumInsts) const {
858
    return 0;
859
  }
860
 
861
  /// Return an estimate for the code size reduction (in bytes) which will be
862
  /// caused by removing the given branch instruction during if-conversion.
863
  virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
864
    return getInstSizeInBytes(MI);
865
  }
866
 
867
  /// Return true if it's profitable to unpredicate
868
  /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
869
  /// exclusive predicates.
870
  /// e.g.
871
  ///   subeq  r0, r1, #1
872
  ///   addne  r0, r1, #1
873
  /// =>
874
  ///   sub    r0, r1, #1
875
  ///   addne  r0, r1, #1
876
  ///
877
  /// This may be profitable is conditional instructions are always executed.
878
  virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
879
                                         MachineBasicBlock &FMBB) const {
880
    return false;
881
  }
882
 
883
  /// Return true if it is possible to insert a select
884
  /// instruction that chooses between TrueReg and FalseReg based on the
885
  /// condition code in Cond.
886
  ///
887
  /// When successful, also return the latency in cycles from TrueReg,
888
  /// FalseReg, and Cond to the destination register. In most cases, a select
889
  /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
890
  ///
891
  /// Some x86 implementations have 2-cycle cmov instructions.
892
  ///
893
  /// @param MBB         Block where select instruction would be inserted.
894
  /// @param Cond        Condition returned by analyzeBranch.
895
  /// @param DstReg      Virtual dest register that the result should write to.
896
  /// @param TrueReg     Virtual register to select when Cond is true.
897
  /// @param FalseReg    Virtual register to select when Cond is false.
898
  /// @param CondCycles  Latency from Cond+Branch to select output.
899
  /// @param TrueCycles  Latency from TrueReg to select output.
900
  /// @param FalseCycles Latency from FalseReg to select output.
901
  virtual bool canInsertSelect(const MachineBasicBlock &MBB,
902
                               ArrayRef<MachineOperand> Cond, Register DstReg,
903
                               Register TrueReg, Register FalseReg,
904
                               int &CondCycles, int &TrueCycles,
905
                               int &FalseCycles) const {
906
    return false;
907
  }
908
 
909
  /// Insert a select instruction into MBB before I that will copy TrueReg to
910
  /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
911
  ///
912
  /// This function can only be called after canInsertSelect() returned true.
913
  /// The condition in Cond comes from analyzeBranch, and it can be assumed
914
  /// that the same flags or registers required by Cond are available at the
915
  /// insertion point.
916
  ///
917
  /// @param MBB      Block where select instruction should be inserted.
918
  /// @param I        Insertion point.
919
  /// @param DL       Source location for debugging.
920
  /// @param DstReg   Virtual register to be defined by select instruction.
921
  /// @param Cond     Condition as computed by analyzeBranch.
922
  /// @param TrueReg  Virtual register to copy when Cond is true.
923
  /// @param FalseReg Virtual register to copy when Cons is false.
924
  virtual void insertSelect(MachineBasicBlock &MBB,
925
                            MachineBasicBlock::iterator I, const DebugLoc &DL,
926
                            Register DstReg, ArrayRef<MachineOperand> Cond,
927
                            Register TrueReg, Register FalseReg) const {
928
    llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
929
  }
930
 
931
  /// Analyze the given select instruction, returning true if
932
  /// it cannot be understood. It is assumed that MI->isSelect() is true.
933
  ///
934
  /// When successful, return the controlling condition and the operands that
935
  /// determine the true and false result values.
936
  ///
937
  ///   Result = SELECT Cond, TrueOp, FalseOp
938
  ///
939
  /// Some targets can optimize select instructions, for example by predicating
940
  /// the instruction defining one of the operands. Such targets should set
941
  /// Optimizable.
942
  ///
943
  /// @param         MI Select instruction to analyze.
944
  /// @param Cond    Condition controlling the select.
945
  /// @param TrueOp  Operand number of the value selected when Cond is true.
946
  /// @param FalseOp Operand number of the value selected when Cond is false.
947
  /// @param Optimizable Returned as true if MI is optimizable.
948
  /// @returns False on success.
949
  virtual bool analyzeSelect(const MachineInstr &MI,
950
                             SmallVectorImpl<MachineOperand> &Cond,
951
                             unsigned &TrueOp, unsigned &FalseOp,
952
                             bool &Optimizable) const {
953
    assert(MI.getDesc().isSelect() && "MI must be a select instruction");
954
    return true;
955
  }
956
 
957
  /// Given a select instruction that was understood by
958
  /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
959
  /// merging it with one of its operands. Returns NULL on failure.
960
  ///
961
  /// When successful, returns the new select instruction. The client is
962
  /// responsible for deleting MI.
963
  ///
964
  /// If both sides of the select can be optimized, PreferFalse is used to pick
965
  /// a side.
966
  ///
967
  /// @param MI          Optimizable select instruction.
968
  /// @param NewMIs     Set that record all MIs in the basic block up to \p
969
  /// MI. Has to be updated with any newly created MI or deleted ones.
970
  /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
971
  /// @returns Optimized instruction or NULL.
972
  virtual MachineInstr *optimizeSelect(MachineInstr &MI,
973
                                       SmallPtrSetImpl<MachineInstr *> &NewMIs,
974
                                       bool PreferFalse = false) const {
975
    // This function must be implemented if Optimizable is ever set.
976
    llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
977
  }
978
 
979
  /// Emit instructions to copy a pair of physical registers.
980
  ///
981
  /// This function should support copies within any legal register class as
982
  /// well as any cross-class copies created during instruction selection.
983
  ///
984
  /// The source and destination registers may overlap, which may require a
985
  /// careful implementation when multiple copy instructions are required for
986
  /// large registers. See for example the ARM target.
987
  virtual void copyPhysReg(MachineBasicBlock &MBB,
988
                           MachineBasicBlock::iterator MI, const DebugLoc &DL,
989
                           MCRegister DestReg, MCRegister SrcReg,
990
                           bool KillSrc) const {
991
    llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
992
  }
993
 
994
  /// Allow targets to tell MachineVerifier whether a specific register
995
  /// MachineOperand can be used as part of PC-relative addressing.
996
  /// PC-relative addressing modes in many CISC architectures contain
997
  /// (non-PC) registers as offsets or scaling values, which inherently
998
  /// tags the corresponding MachineOperand with OPERAND_PCREL.
999
  ///
1000
  /// @param MO The MachineOperand in question. MO.isReg() should always
1001
  /// be true.
1002
  /// @return Whether this operand is allowed to be used PC-relatively.
1003
  virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
1004
    return false;
1005
  }
1006
 
1007
protected:
1008
  /// Target-dependent implementation for IsCopyInstr.
1009
  /// If the specific machine instruction is a instruction that moves/copies
1010
  /// value from one register to another register return destination and source
1011
  /// registers as machine operands.
1012
  virtual std::optional<DestSourcePair>
1013
  isCopyInstrImpl(const MachineInstr &MI) const {
1014
    return std::nullopt;
1015
  }
1016
 
1017
  /// Return true if the given terminator MI is not expected to spill. This
1018
  /// sets the live interval as not spillable and adjusts phi node lowering to
1019
  /// not introduce copies after the terminator. Use with care, these are
1020
  /// currently used for hardware loop intrinsics in very controlled situations,
1021
  /// created prior to registry allocation in loops that only have single phi
1022
  /// users for the terminators value. They may run out of registers if not used
1023
  /// carefully.
1024
  virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
1025
    return false;
1026
  }
1027
 
1028
public:
1029
  /// If the specific machine instruction is a instruction that moves/copies
1030
  /// value from one register to another register return destination and source
1031
  /// registers as machine operands.
1032
  /// For COPY-instruction the method naturally returns destination and source
1033
  /// registers as machine operands, for all other instructions the method calls
1034
  /// target-dependent implementation.
1035
  std::optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1036
    if (MI.isCopy()) {
1037
      return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1038
    }
1039
    return isCopyInstrImpl(MI);
1040
  }
1041
 
1042
  /// If the specific machine instruction is an instruction that adds an
1043
  /// immediate value and a physical register, and stores the result in
1044
  /// the given physical register \c Reg, return a pair of the source
1045
  /// register and the offset which has been added.
1046
  virtual std::optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1047
                                                   Register Reg) const {
1048
    return std::nullopt;
1049
  }
1050
 
1051
  /// Returns true if MI is an instruction that defines Reg to have a constant
1052
  /// value and the value is recorded in ImmVal. The ImmVal is a result that
1053
  /// should be interpreted as modulo size of Reg.
1054
  virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1055
                                       const Register Reg,
1056
                                       int64_t &ImmVal) const {
1057
    return false;
1058
  }
1059
 
1060
  /// Store the specified register of the given register class to the specified
1061
  /// stack frame index. The store instruction is to be added to the given
1062
  /// machine basic block before the specified machine instruction. If isKill
1063
  /// is true, the register operand is the last use and must be marked kill. If
1064
  /// \p SrcReg is being directly spilled as part of assigning a virtual
1065
  /// register, \p VReg is the register being assigned. This additional register
1066
  /// argument is needed for certain targets when invoked from RegAllocFast to
1067
  /// map the spilled physical register to its virtual register. A null register
1068
  /// can be passed elsewhere.
1069
  virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1070
                                   MachineBasicBlock::iterator MI,
1071
                                   Register SrcReg, bool isKill, int FrameIndex,
1072
                                   const TargetRegisterClass *RC,
1073
                                   const TargetRegisterInfo *TRI,
1074
                                   Register VReg) const {
1075
    llvm_unreachable("Target didn't implement "
1076
                     "TargetInstrInfo::storeRegToStackSlot!");
1077
  }
1078
 
1079
  /// Load the specified register of the given register class from the specified
1080
  /// stack frame index. The load instruction is to be added to the given
1081
  /// machine basic block before the specified machine instruction. If \p
1082
  /// DestReg is being directly reloaded as part of assigning a virtual
1083
  /// register, \p VReg is the register being assigned. This additional register
1084
  /// argument is needed for certain targets when invoked from RegAllocFast to
1085
  /// map the loaded physical register to its virtual register. A null register
1086
  /// can be passed elsewhere.
1087
  virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1088
                                    MachineBasicBlock::iterator MI,
1089
                                    Register DestReg, int FrameIndex,
1090
                                    const TargetRegisterClass *RC,
1091
                                    const TargetRegisterInfo *TRI,
1092
                                    Register VReg) const {
1093
    llvm_unreachable("Target didn't implement "
1094
                     "TargetInstrInfo::loadRegFromStackSlot!");
1095
  }
1096
 
1097
  /// This function is called for all pseudo instructions
1098
  /// that remain after register allocation. Many pseudo instructions are
1099
  /// created to help register allocation. This is the place to convert them
1100
  /// into real instructions. The target can edit MI in place, or it can insert
1101
  /// new instructions and erase MI. The function should return true if
1102
  /// anything was changed.
1103
  virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1104
 
1105
  /// Check whether the target can fold a load that feeds a subreg operand
1106
  /// (or a subreg operand that feeds a store).
1107
  /// For example, X86 may want to return true if it can fold
1108
  /// movl (%esp), %eax
1109
  /// subb, %al, ...
1110
  /// Into:
1111
  /// subb (%esp), ...
1112
  ///
1113
  /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1114
  /// reject subregs - but since this behavior used to be enforced in the
1115
  /// target-independent code, moving this responsibility to the targets
1116
  /// has the potential of causing nasty silent breakage in out-of-tree targets.
1117
  virtual bool isSubregFoldable() const { return false; }
1118
 
1119
  /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1120
  /// operands which can't be folded into stack references. Operands outside
1121
  /// of the range are most likely foldable but it is not guaranteed.
1122
  /// These instructions are unique in that stack references for some operands
1123
  /// have the same execution cost (e.g. none) as the unfolded register forms.
1124
  /// The ranged return is guaranteed to include all operands which can't be
1125
  /// folded at zero cost.
1126
  virtual std::pair<unsigned, unsigned>
1127
  getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1128
 
1129
  /// Attempt to fold a load or store of the specified stack
1130
  /// slot into the specified machine instruction for the specified operand(s).
1131
  /// If this is possible, a new instruction is returned with the specified
1132
  /// operand folded, otherwise NULL is returned.
1133
  /// The new instruction is inserted before MI, and the client is responsible
1134
  /// for removing the old instruction.
1135
  /// If VRM is passed, the assigned physregs can be inspected by target to
1136
  /// decide on using an opcode (note that those assignments can still change).
1137
  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1138
                                  int FI,
1139
                                  LiveIntervals *LIS = nullptr,
1140
                                  VirtRegMap *VRM = nullptr) const;
1141
 
1142
  /// Same as the previous version except it allows folding of any load and
1143
  /// store from / to any address, not just from a specific stack slot.
1144
  MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1145
                                  MachineInstr &LoadMI,
1146
                                  LiveIntervals *LIS = nullptr) const;
1147
 
1148
  /// Return true when there is potentially a faster code sequence
1149
  /// for an instruction chain ending in \p Root. All potential patterns are
1150
  /// returned in the \p Pattern vector. Pattern should be sorted in priority
1151
  /// order since the pattern evaluator stops checking as soon as it finds a
1152
  /// faster sequence.
1153
  /// \param Root - Instruction that could be combined with one of its operands
1154
  /// \param Patterns - Vector of possible combination patterns
1155
  virtual bool
1156
  getMachineCombinerPatterns(MachineInstr &Root,
1157
                             SmallVectorImpl<MachineCombinerPattern> &Patterns,
1158
                             bool DoRegPressureReduce) const;
1159
 
1160
  /// Return true if target supports reassociation of instructions in machine
1161
  /// combiner pass to reduce register pressure for a given BB.
1162
  virtual bool
1163
  shouldReduceRegisterPressure(const MachineBasicBlock *MBB,
1164
                               const RegisterClassInfo *RegClassInfo) const {
1165
    return false;
1166
  }
1167
 
1168
  /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1169
  virtual void
1170
  finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
1171
                    SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1172
 
1173
  /// Return true when a code sequence can improve throughput. It
1174
  /// should be called only for instructions in loops.
1175
  /// \param Pattern - combiner pattern
1176
  virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
1177
 
1178
  /// Return true if the input \P Inst is part of a chain of dependent ops
1179
  /// that are suitable for reassociation, otherwise return false.
1180
  /// If the instruction's operands must be commuted to have a previous
1181
  /// instruction of the same type define the first source operand, \P Commuted
1182
  /// will be set to true.
1183
  bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1184
 
1185
  /// Return true when \P Inst is both associative and commutative. If \P Invert
1186
  /// is true, then the inverse of \P Inst operation must be tested.
1187
  virtual bool isAssociativeAndCommutative(const MachineInstr &Inst,
1188
                                           bool Invert = false) const {
1189
    return false;
1190
  }
1191
 
1192
  /// Return the inverse operation opcode if it exists for \P Opcode (e.g. add
1193
  /// for sub and vice versa).
1194
  virtual std::optional<unsigned> getInverseOpcode(unsigned Opcode) const {
1195
    return std::nullopt;
1196
  }
1197
 
1198
  /// Return true when \P Opcode1 or its inversion is equal to \P Opcode2.
1199
  bool areOpcodesEqualOrInverse(unsigned Opcode1, unsigned Opcode2) const;
1200
 
1201
  /// Return true when \P Inst has reassociable operands in the same \P MBB.
1202
  virtual bool hasReassociableOperands(const MachineInstr &Inst,
1203
                                       const MachineBasicBlock *MBB) const;
1204
 
1205
  /// Return true when \P Inst has reassociable sibling.
1206
  virtual bool hasReassociableSibling(const MachineInstr &Inst,
1207
                                      bool &Commuted) const;
1208
 
1209
  /// When getMachineCombinerPatterns() finds patterns, this function generates
1210
  /// the instructions that could replace the original code sequence. The client
1211
  /// has to decide whether the actual replacement is beneficial or not.
1212
  /// \param Root - Instruction that could be combined with one of its operands
1213
  /// \param Pattern - Combination pattern for Root
1214
  /// \param InsInstrs - Vector of new instructions that implement P
1215
  /// \param DelInstrs - Old instructions, including Root, that could be
1216
  /// replaced by InsInstr
1217
  /// \param InstIdxForVirtReg - map of virtual register to instruction in
1218
  /// InsInstr that defines it
1219
  virtual void genAlternativeCodeSequence(
1220
      MachineInstr &Root, MachineCombinerPattern Pattern,
1221
      SmallVectorImpl<MachineInstr *> &InsInstrs,
1222
      SmallVectorImpl<MachineInstr *> &DelInstrs,
1223
      DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1224
 
1225
  /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1226
  /// reduce critical path length.
1227
  void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1228
                      MachineCombinerPattern Pattern,
1229
                      SmallVectorImpl<MachineInstr *> &InsInstrs,
1230
                      SmallVectorImpl<MachineInstr *> &DelInstrs,
1231
                      DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1232
 
1233
  /// Reassociation of some instructions requires inverse operations (e.g.
1234
  /// (X + A) - Y => (X - Y) + A). This method returns a pair of new opcodes
1235
  /// (new root opcode, new prev opcode) that must be used to reassociate \P
1236
  /// Root and \P Prev accoring to \P Pattern.
1237
  std::pair<unsigned, unsigned>
1238
  getReassociationOpcodes(MachineCombinerPattern Pattern,
1239
                          const MachineInstr &Root,
1240
                          const MachineInstr &Prev) const;
1241
 
1242
  /// The limit on resource length extension we accept in MachineCombiner Pass.
1243
  virtual int getExtendResourceLenLimit() const { return 0; }
1244
 
1245
  /// This is an architecture-specific helper function of reassociateOps.
1246
  /// Set special operand attributes for new instructions after reassociation.
1247
  virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1248
                                     MachineInstr &NewMI1,
1249
                                     MachineInstr &NewMI2) const {}
1250
 
1251
  /// Return true when a target supports MachineCombiner.
1252
  virtual bool useMachineCombiner() const { return false; }
1253
 
1254
  /// Return true if the given SDNode can be copied during scheduling
1255
  /// even if it has glue.
1256
  virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1257
 
1258
protected:
1259
  /// Target-dependent implementation for foldMemoryOperand.
1260
  /// Target-independent code in foldMemoryOperand will
1261
  /// take care of adding a MachineMemOperand to the newly created instruction.
1262
  /// The instruction and any auxiliary instructions necessary will be inserted
1263
  /// at InsertPt.
1264
  virtual MachineInstr *
1265
  foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1266
                        ArrayRef<unsigned> Ops,
1267
                        MachineBasicBlock::iterator InsertPt, int FrameIndex,
1268
                        LiveIntervals *LIS = nullptr,
1269
                        VirtRegMap *VRM = nullptr) const {
1270
    return nullptr;
1271
  }
1272
 
1273
  /// Target-dependent implementation for foldMemoryOperand.
1274
  /// Target-independent code in foldMemoryOperand will
1275
  /// take care of adding a MachineMemOperand to the newly created instruction.
1276
  /// The instruction and any auxiliary instructions necessary will be inserted
1277
  /// at InsertPt.
1278
  virtual MachineInstr *foldMemoryOperandImpl(
1279
      MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1280
      MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1281
      LiveIntervals *LIS = nullptr) const {
1282
    return nullptr;
1283
  }
1284
 
1285
  /// Target-dependent implementation of getRegSequenceInputs.
1286
  ///
1287
  /// \returns true if it is possible to build the equivalent
1288
  /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1289
  ///
1290
  /// \pre MI.isRegSequenceLike().
1291
  ///
1292
  /// \see TargetInstrInfo::getRegSequenceInputs.
1293
  virtual bool getRegSequenceLikeInputs(
1294
      const MachineInstr &MI, unsigned DefIdx,
1295
      SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1296
    return false;
1297
  }
1298
 
1299
  /// Target-dependent implementation of getExtractSubregInputs.
1300
  ///
1301
  /// \returns true if it is possible to build the equivalent
1302
  /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1303
  ///
1304
  /// \pre MI.isExtractSubregLike().
1305
  ///
1306
  /// \see TargetInstrInfo::getExtractSubregInputs.
1307
  virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1308
                                          unsigned DefIdx,
1309
                                          RegSubRegPairAndIdx &InputReg) const {
1310
    return false;
1311
  }
1312
 
1313
  /// Target-dependent implementation of getInsertSubregInputs.
1314
  ///
1315
  /// \returns true if it is possible to build the equivalent
1316
  /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1317
  ///
1318
  /// \pre MI.isInsertSubregLike().
1319
  ///
1320
  /// \see TargetInstrInfo::getInsertSubregInputs.
1321
  virtual bool
1322
  getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1323
                            RegSubRegPair &BaseReg,
1324
                            RegSubRegPairAndIdx &InsertedReg) const {
1325
    return false;
1326
  }
1327
 
1328
public:
1329
  /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1330
  /// a store or a load and a store into two or more instruction. If this is
1331
  /// possible, returns true as well as the new instructions by reference.
1332
  virtual bool
1333
  unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1334
                      bool UnfoldLoad, bool UnfoldStore,
1335
                      SmallVectorImpl<MachineInstr *> &NewMIs) const {
1336
    return false;
1337
  }
1338
 
1339
  virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1340
                                   SmallVectorImpl<SDNode *> &NewNodes) const {
1341
    return false;
1342
  }
1343
 
1344
  /// Returns the opcode of the would be new
1345
  /// instruction after load / store are unfolded from an instruction of the
1346
  /// specified opcode. It returns zero if the specified unfolding is not
1347
  /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1348
  /// index of the operand which will hold the register holding the loaded
1349
  /// value.
1350
  virtual unsigned
1351
  getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1352
                             unsigned *LoadRegIndex = nullptr) const {
1353
    return 0;
1354
  }
1355
 
1356
  /// This is used by the pre-regalloc scheduler to determine if two loads are
1357
  /// loading from the same base address. It should only return true if the base
1358
  /// pointers are the same and the only differences between the two addresses
1359
  /// are the offset. It also returns the offsets by reference.
1360
  virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1361
                                       int64_t &Offset1,
1362
                                       int64_t &Offset2) const {
1363
    return false;
1364
  }
1365
 
1366
  /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1367
  /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1368
  /// On some targets if two loads are loading from
1369
  /// addresses in the same cache line, it's better if they are scheduled
1370
  /// together. This function takes two integers that represent the load offsets
1371
  /// from the common base address. It returns true if it decides it's desirable
1372
  /// to schedule the two loads together. "NumLoads" is the number of loads that
1373
  /// have already been scheduled after Load1.
1374
  virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1375
                                       int64_t Offset1, int64_t Offset2,
1376
                                       unsigned NumLoads) const {
1377
    return false;
1378
  }
1379
 
1380
  /// Get the base operand and byte offset of an instruction that reads/writes
1381
  /// memory. This is a convenience function for callers that are only prepared
1382
  /// to handle a single base operand.
1383
  bool getMemOperandWithOffset(const MachineInstr &MI,
1384
                               const MachineOperand *&BaseOp, int64_t &Offset,
1385
                               bool &OffsetIsScalable,
1386
                               const TargetRegisterInfo *TRI) const;
1387
 
1388
  /// Get zero or more base operands and the byte offset of an instruction that
1389
  /// reads/writes memory. Note that there may be zero base operands if the
1390
  /// instruction accesses a constant address.
1391
  /// It returns false if MI does not read/write memory.
1392
  /// It returns false if base operands and offset could not be determined.
1393
  /// It is not guaranteed to always recognize base operands and offsets in all
1394
  /// cases.
1395
  virtual bool getMemOperandsWithOffsetWidth(
1396
      const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1397
      int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
1398
      const TargetRegisterInfo *TRI) const {
1399
    return false;
1400
  }
1401
 
1402
  /// Return true if the instruction contains a base register and offset. If
1403
  /// true, the function also sets the operand position in the instruction
1404
  /// for the base register and offset.
1405
  virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1406
                                        unsigned &BasePos,
1407
                                        unsigned &OffsetPos) const {
1408
    return false;
1409
  }
1410
 
1411
  /// Target dependent implementation to get the values constituting the address
1412
  /// MachineInstr that is accessing memory. These values are returned as a
1413
  /// struct ExtAddrMode which contains all relevant information to make up the
1414
  /// address.
1415
  virtual std::optional<ExtAddrMode>
1416
  getAddrModeFromMemoryOp(const MachineInstr &MemI,
1417
                          const TargetRegisterInfo *TRI) const {
1418
    return std::nullopt;
1419
  }
1420
 
1421
  /// Returns true if MI's Def is NullValueReg, and the MI
1422
  /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1423
  /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1424
  /// function can return true even if becomes zero. Specifically cases such as
1425
  /// NullValueReg = shl NullValueReg, 63.
1426
  virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1427
                                       const Register NullValueReg,
1428
                                       const TargetRegisterInfo *TRI) const {
1429
    return false;
1430
  }
1431
 
1432
  /// If the instruction is an increment of a constant value, return the amount.
1433
  virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1434
    return false;
1435
  }
1436
 
1437
  /// Returns true if the two given memory operations should be scheduled
1438
  /// adjacent. Note that you have to add:
1439
  ///   DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1440
  /// or
1441
  ///   DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1442
  /// to TargetPassConfig::createMachineScheduler() to have an effect.
1443
  ///
1444
  /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1445
  /// \p NumLoads is the number of loads that will be in the cluster if this
1446
  /// hook returns true.
1447
  /// \p NumBytes is the number of bytes that will be loaded from all the
1448
  /// clustered loads if this hook returns true.
1449
  virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1450
                                   ArrayRef<const MachineOperand *> BaseOps2,
1451
                                   unsigned NumLoads, unsigned NumBytes) const {
1452
    llvm_unreachable("target did not implement shouldClusterMemOps()");
1453
  }
1454
 
1455
  /// Reverses the branch condition of the specified condition list,
1456
  /// returning false on success and true if it cannot be reversed.
1457
  virtual bool
1458
  reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1459
    return true;
1460
  }
1461
 
1462
  /// Insert a noop into the instruction stream at the specified point.
1463
  virtual void insertNoop(MachineBasicBlock &MBB,
1464
                          MachineBasicBlock::iterator MI) const;
1465
 
1466
  /// Insert noops into the instruction stream at the specified point.
1467
  virtual void insertNoops(MachineBasicBlock &MBB,
1468
                           MachineBasicBlock::iterator MI,
1469
                           unsigned Quantity) const;
1470
 
1471
  /// Return the noop instruction to use for a noop.
1472
  virtual MCInst getNop() const;
1473
 
1474
  /// Return true for post-incremented instructions.
1475
  virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1476
 
1477
  /// Returns true if the instruction is already predicated.
1478
  virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1479
 
1480
  /// Assumes the instruction is already predicated and returns true if the
1481
  /// instruction can be predicated again.
1482
  virtual bool canPredicatePredicatedInstr(const MachineInstr &MI) const {
1483
    assert(isPredicated(MI) && "Instruction is not predicated");
1484
    return false;
1485
  }
1486
 
1487
  // Returns a MIRPrinter comment for this machine operand.
1488
  virtual std::string
1489
  createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1490
                          unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1491
 
1492
  /// Returns true if the instruction is a
1493
  /// terminator instruction that has not been predicated.
1494
  bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1495
 
1496
  /// Returns true if MI is an unconditional tail call.
1497
  virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1498
    return false;
1499
  }
1500
 
1501
  /// Returns true if the tail call can be made conditional on BranchCond.
1502
  virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1503
                                          const MachineInstr &TailCall) const {
1504
    return false;
1505
  }
1506
 
1507
  /// Replace the conditional branch in MBB with a conditional tail call.
1508
  virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1509
                                         SmallVectorImpl<MachineOperand> &Cond,
1510
                                         const MachineInstr &TailCall) const {
1511
    llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1512
  }
1513
 
1514
  /// Convert the instruction into a predicated instruction.
1515
  /// It returns true if the operation was successful.
1516
  virtual bool PredicateInstruction(MachineInstr &MI,
1517
                                    ArrayRef<MachineOperand> Pred) const;
1518
 
1519
  /// Returns true if the first specified predicate
1520
  /// subsumes the second, e.g. GE subsumes GT.
1521
  virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1522
                                 ArrayRef<MachineOperand> Pred2) const {
1523
    return false;
1524
  }
1525
 
1526
  /// If the specified instruction defines any predicate
1527
  /// or condition code register(s) used for predication, returns true as well
1528
  /// as the definition predicate(s) by reference.
1529
  /// SkipDead should be set to false at any point that dead
1530
  /// predicate instructions should be considered as being defined.
1531
  /// A dead predicate instruction is one that is guaranteed to be removed
1532
  /// after a call to PredicateInstruction.
1533
  virtual bool ClobbersPredicate(MachineInstr &MI,
1534
                                 std::vector<MachineOperand> &Pred,
1535
                                 bool SkipDead) const {
1536
    return false;
1537
  }
1538
 
1539
  /// Return true if the specified instruction can be predicated.
1540
  /// By default, this returns true for every instruction with a
1541
  /// PredicateOperand.
1542
  virtual bool isPredicable(const MachineInstr &MI) const {
1543
    return MI.getDesc().isPredicable();
1544
  }
1545
 
1546
  /// Return true if it's safe to move a machine
1547
  /// instruction that defines the specified register class.
1548
  virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1549
    return true;
1550
  }
1551
 
1552
  /// Test if the given instruction should be considered a scheduling boundary.
1553
  /// This primarily includes labels and terminators.
1554
  virtual bool isSchedulingBoundary(const MachineInstr &MI,
1555
                                    const MachineBasicBlock *MBB,
1556
                                    const MachineFunction &MF) const;
1557
 
1558
  /// Measure the specified inline asm to determine an approximation of its
1559
  /// length.
1560
  virtual unsigned getInlineAsmLength(
1561
    const char *Str, const MCAsmInfo &MAI,
1562
    const TargetSubtargetInfo *STI = nullptr) const;
1563
 
1564
  /// Allocate and return a hazard recognizer to use for this target when
1565
  /// scheduling the machine instructions before register allocation.
1566
  virtual ScheduleHazardRecognizer *
1567
  CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1568
                               const ScheduleDAG *DAG) const;
1569
 
1570
  /// Allocate and return a hazard recognizer to use for this target when
1571
  /// scheduling the machine instructions before register allocation.
1572
  virtual ScheduleHazardRecognizer *
1573
  CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1574
                                 const ScheduleDAGMI *DAG) const;
1575
 
1576
  /// Allocate and return a hazard recognizer to use for this target when
1577
  /// scheduling the machine instructions after register allocation.
1578
  virtual ScheduleHazardRecognizer *
1579
  CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1580
                                     const ScheduleDAG *DAG) const;
1581
 
1582
  /// Allocate and return a hazard recognizer to use for by non-scheduling
1583
  /// passes.
1584
  virtual ScheduleHazardRecognizer *
1585
  CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1586
    return nullptr;
1587
  }
1588
 
1589
  /// Provide a global flag for disabling the PreRA hazard recognizer that
1590
  /// targets may choose to honor.
1591
  bool usePreRAHazardRecognizer() const;
1592
 
1593
  /// For a comparison instruction, return the source registers
1594
  /// in SrcReg and SrcReg2 if having two register operands, and the value it
1595
  /// compares against in CmpValue. Return true if the comparison instruction
1596
  /// can be analyzed.
1597
  virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1598
                              Register &SrcReg2, int64_t &Mask,
1599
                              int64_t &Value) const {
1600
    return false;
1601
  }
1602
 
1603
  /// See if the comparison instruction can be converted
1604
  /// into something more efficient. E.g., on ARM most instructions can set the
1605
  /// flags register, obviating the need for a separate CMP.
1606
  virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1607
                                    Register SrcReg2, int64_t Mask,
1608
                                    int64_t Value,
1609
                                    const MachineRegisterInfo *MRI) const {
1610
    return false;
1611
  }
1612
  virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1613
 
1614
  /// Try to remove the load by folding it to a register operand at the use.
1615
  /// We fold the load instructions if and only if the
1616
  /// def and use are in the same BB. We only look at one load and see
1617
  /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1618
  /// defined by the load we are trying to fold. DefMI returns the machine
1619
  /// instruction that defines FoldAsLoadDefReg, and the function returns
1620
  /// the machine instruction generated due to folding.
1621
  virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1622
                                          const MachineRegisterInfo *MRI,
1623
                                          Register &FoldAsLoadDefReg,
1624
                                          MachineInstr *&DefMI) const {
1625
    return nullptr;
1626
  }
1627
 
1628
  /// 'Reg' is known to be defined by a move immediate instruction,
1629
  /// try to fold the immediate into the use instruction.
1630
  /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1631
  /// then the caller may assume that DefMI has been erased from its parent
1632
  /// block. The caller may assume that it will not be erased by this
1633
  /// function otherwise.
1634
  virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1635
                             Register Reg, MachineRegisterInfo *MRI) const {
1636
    return false;
1637
  }
1638
 
1639
  /// Return the number of u-operations the given machine
1640
  /// instruction will be decoded to on the target cpu. The itinerary's
1641
  /// IssueWidth is the number of microops that can be dispatched each
1642
  /// cycle. An instruction with zero microops takes no dispatch resources.
1643
  virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1644
                                  const MachineInstr &MI) const;
1645
 
1646
  /// Return true for pseudo instructions that don't consume any
1647
  /// machine resources in their current form. These are common cases that the
1648
  /// scheduler should consider free, rather than conservatively handling them
1649
  /// as instructions with no itinerary.
1650
  bool isZeroCost(unsigned Opcode) const {
1651
    return Opcode <= TargetOpcode::COPY;
1652
  }
1653
 
1654
  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1655
                                SDNode *DefNode, unsigned DefIdx,
1656
                                SDNode *UseNode, unsigned UseIdx) const;
1657
 
1658
  /// Compute and return the use operand latency of a given pair of def and use.
1659
  /// In most cases, the static scheduling itinerary was enough to determine the
1660
  /// operand latency. But it may not be possible for instructions with variable
1661
  /// number of defs / uses.
1662
  ///
1663
  /// This is a raw interface to the itinerary that may be directly overridden
1664
  /// by a target. Use computeOperandLatency to get the best estimate of
1665
  /// latency.
1666
  virtual int getOperandLatency(const InstrItineraryData *ItinData,
1667
                                const MachineInstr &DefMI, unsigned DefIdx,
1668
                                const MachineInstr &UseMI,
1669
                                unsigned UseIdx) const;
1670
 
1671
  /// Compute the instruction latency of a given instruction.
1672
  /// If the instruction has higher cost when predicated, it's returned via
1673
  /// PredCost.
1674
  virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1675
                                   const MachineInstr &MI,
1676
                                   unsigned *PredCost = nullptr) const;
1677
 
1678
  virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1679
 
1680
  virtual int getInstrLatency(const InstrItineraryData *ItinData,
1681
                              SDNode *Node) const;
1682
 
1683
  /// Return the default expected latency for a def based on its opcode.
1684
  unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1685
                             const MachineInstr &DefMI) const;
1686
 
1687
  /// Return true if this opcode has high latency to its result.
1688
  virtual bool isHighLatencyDef(int opc) const { return false; }
1689
 
1690
  /// Compute operand latency between a def of 'Reg'
1691
  /// and a use in the current loop. Return true if the target considered
1692
  /// it 'high'. This is used by optimization passes such as machine LICM to
1693
  /// determine whether it makes sense to hoist an instruction out even in a
1694
  /// high register pressure situation.
1695
  virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1696
                                     const MachineRegisterInfo *MRI,
1697
                                     const MachineInstr &DefMI, unsigned DefIdx,
1698
                                     const MachineInstr &UseMI,
1699
                                     unsigned UseIdx) const {
1700
    return false;
1701
  }
1702
 
1703
  /// Compute operand latency of a def of 'Reg'. Return true
1704
  /// if the target considered it 'low'.
1705
  virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1706
                                const MachineInstr &DefMI,
1707
                                unsigned DefIdx) const;
1708
 
1709
  /// Perform target-specific instruction verification.
1710
  virtual bool verifyInstruction(const MachineInstr &MI,
1711
                                 StringRef &ErrInfo) const {
1712
    return true;
1713
  }
1714
 
1715
  /// Return the current execution domain and bit mask of
1716
  /// possible domains for instruction.
1717
  ///
1718
  /// Some micro-architectures have multiple execution domains, and multiple
1719
  /// opcodes that perform the same operation in different domains.  For
1720
  /// example, the x86 architecture provides the por, orps, and orpd
1721
  /// instructions that all do the same thing.  There is a latency penalty if a
1722
  /// register is written in one domain and read in another.
1723
  ///
1724
  /// This function returns a pair (domain, mask) containing the execution
1725
  /// domain of MI, and a bit mask of possible domains.  The setExecutionDomain
1726
  /// function can be used to change the opcode to one of the domains in the
1727
  /// bit mask.  Instructions whose execution domain can't be changed should
1728
  /// return a 0 mask.
1729
  ///
1730
  /// The execution domain numbers don't have any special meaning except domain
1731
  /// 0 is used for instructions that are not associated with any interesting
1732
  /// execution domain.
1733
  ///
1734
  virtual std::pair<uint16_t, uint16_t>
1735
  getExecutionDomain(const MachineInstr &MI) const {
1736
    return std::make_pair(0, 0);
1737
  }
1738
 
1739
  /// Change the opcode of MI to execute in Domain.
1740
  ///
1741
  /// The bit (1 << Domain) must be set in the mask returned from
1742
  /// getExecutionDomain(MI).
1743
  virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1744
 
1745
  /// Returns the preferred minimum clearance
1746
  /// before an instruction with an unwanted partial register update.
1747
  ///
1748
  /// Some instructions only write part of a register, and implicitly need to
1749
  /// read the other parts of the register.  This may cause unwanted stalls
1750
  /// preventing otherwise unrelated instructions from executing in parallel in
1751
  /// an out-of-order CPU.
1752
  ///
1753
  /// For example, the x86 instruction cvtsi2ss writes its result to bits
1754
  /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1755
  /// the instruction needs to wait for the old value of the register to become
1756
  /// available:
1757
  ///
1758
  ///   addps %xmm1, %xmm0
1759
  ///   movaps %xmm0, (%rax)
1760
  ///   cvtsi2ss %rbx, %xmm0
1761
  ///
1762
  /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1763
  /// instruction before it can issue, even though the high bits of %xmm0
1764
  /// probably aren't needed.
1765
  ///
1766
  /// This hook returns the preferred clearance before MI, measured in
1767
  /// instructions.  Other defs of MI's operand OpNum are avoided in the last N
1768
  /// instructions before MI.  It should only return a positive value for
1769
  /// unwanted dependencies.  If the old bits of the defined register have
1770
  /// useful values, or if MI is determined to otherwise read the dependency,
1771
  /// the hook should return 0.
1772
  ///
1773
  /// The unwanted dependency may be handled by:
1774
  ///
1775
  /// 1. Allocating the same register for an MI def and use.  That makes the
1776
  ///    unwanted dependency identical to a required dependency.
1777
  ///
1778
  /// 2. Allocating a register for the def that has no defs in the previous N
1779
  ///    instructions.
1780
  ///
1781
  /// 3. Calling breakPartialRegDependency() with the same arguments.  This
1782
  ///    allows the target to insert a dependency breaking instruction.
1783
  ///
1784
  virtual unsigned
1785
  getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1786
                               const TargetRegisterInfo *TRI) const {
1787
    // The default implementation returns 0 for no partial register dependency.
1788
    return 0;
1789
  }
1790
 
1791
  /// Return the minimum clearance before an instruction that reads an
1792
  /// unused register.
1793
  ///
1794
  /// For example, AVX instructions may copy part of a register operand into
1795
  /// the unused high bits of the destination register.
1796
  ///
1797
  /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1798
  ///
1799
  /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1800
  /// false dependence on any previous write to %xmm0.
1801
  ///
1802
  /// This hook works similarly to getPartialRegUpdateClearance, except that it
1803
  /// does not take an operand index. Instead sets \p OpNum to the index of the
1804
  /// unused register.
1805
  virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1806
                                        const TargetRegisterInfo *TRI) const {
1807
    // The default implementation returns 0 for no undef register dependency.
1808
    return 0;
1809
  }
1810
 
1811
  /// Insert a dependency-breaking instruction
1812
  /// before MI to eliminate an unwanted dependency on OpNum.
1813
  ///
1814
  /// If it wasn't possible to avoid a def in the last N instructions before MI
1815
  /// (see getPartialRegUpdateClearance), this hook will be called to break the
1816
  /// unwanted dependency.
1817
  ///
1818
  /// On x86, an xorps instruction can be used as a dependency breaker:
1819
  ///
1820
  ///   addps %xmm1, %xmm0
1821
  ///   movaps %xmm0, (%rax)
1822
  ///   xorps %xmm0, %xmm0
1823
  ///   cvtsi2ss %rbx, %xmm0
1824
  ///
1825
  /// An <imp-kill> operand should be added to MI if an instruction was
1826
  /// inserted.  This ties the instructions together in the post-ra scheduler.
1827
  ///
1828
  virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1829
                                         const TargetRegisterInfo *TRI) const {}
1830
 
1831
  /// Create machine specific model for scheduling.
1832
  virtual DFAPacketizer *
1833
  CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1834
    return nullptr;
1835
  }
1836
 
1837
  /// Sometimes, it is possible for the target
1838
  /// to tell, even without aliasing information, that two MIs access different
1839
  /// memory addresses. This function returns true if two MIs access different
1840
  /// memory addresses and false otherwise.
1841
  ///
1842
  /// Assumes any physical registers used to compute addresses have the same
1843
  /// value for both instructions. (This is the most useful assumption for
1844
  /// post-RA scheduling.)
1845
  ///
1846
  /// See also MachineInstr::mayAlias, which is implemented on top of this
1847
  /// function.
1848
  virtual bool
1849
  areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1850
                                  const MachineInstr &MIb) const {
1851
    assert(MIa.mayLoadOrStore() &&
1852
           "MIa must load from or modify a memory location");
1853
    assert(MIb.mayLoadOrStore() &&
1854
           "MIb must load from or modify a memory location");
1855
    return false;
1856
  }
1857
 
1858
  /// Return the value to use for the MachineCSE's LookAheadLimit,
1859
  /// which is a heuristic used for CSE'ing phys reg defs.
1860
  virtual unsigned getMachineCSELookAheadLimit() const {
1861
    // The default lookahead is small to prevent unprofitable quadratic
1862
    // behavior.
1863
    return 5;
1864
  }
1865
 
1866
  /// Return the maximal number of alias checks on memory operands. For
1867
  /// instructions with more than one memory operands, the alias check on a
1868
  /// single MachineInstr pair has quadratic overhead and results in
1869
  /// unacceptable performance in the worst case. The limit here is to clamp
1870
  /// that maximal checks performed. Usually, that's the product of memory
1871
  /// operand numbers from that pair of MachineInstr to be checked. For
1872
  /// instance, with two MachineInstrs with 4 and 5 memory operands
1873
  /// correspondingly, a total of 20 checks are required. With this limit set to
1874
  /// 16, their alias check is skipped. We choose to limit the product instead
1875
  /// of the individual instruction as targets may have special MachineInstrs
1876
  /// with a considerably high number of memory operands, such as `ldm` in ARM.
1877
  /// Setting this limit per MachineInstr would result in either too high
1878
  /// overhead or too rigid restriction.
1879
  virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1880
 
1881
  /// Return an array that contains the ids of the target indices (used for the
1882
  /// TargetIndex machine operand) and their names.
1883
  ///
1884
  /// MIR Serialization is able to serialize only the target indices that are
1885
  /// defined by this method.
1886
  virtual ArrayRef<std::pair<int, const char *>>
1887
  getSerializableTargetIndices() const {
1888
    return std::nullopt;
1889
  }
1890
 
1891
  /// Decompose the machine operand's target flags into two values - the direct
1892
  /// target flag value and any of bit flags that are applied.
1893
  virtual std::pair<unsigned, unsigned>
1894
  decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1895
    return std::make_pair(0u, 0u);
1896
  }
1897
 
1898
  /// Return an array that contains the direct target flag values and their
1899
  /// names.
1900
  ///
1901
  /// MIR Serialization is able to serialize only the target flags that are
1902
  /// defined by this method.
1903
  virtual ArrayRef<std::pair<unsigned, const char *>>
1904
  getSerializableDirectMachineOperandTargetFlags() const {
1905
    return std::nullopt;
1906
  }
1907
 
1908
  /// Return an array that contains the bitmask target flag values and their
1909
  /// names.
1910
  ///
1911
  /// MIR Serialization is able to serialize only the target flags that are
1912
  /// defined by this method.
1913
  virtual ArrayRef<std::pair<unsigned, const char *>>
1914
  getSerializableBitmaskMachineOperandTargetFlags() const {
1915
    return std::nullopt;
1916
  }
1917
 
1918
  /// Return an array that contains the MMO target flag values and their
1919
  /// names.
1920
  ///
1921
  /// MIR Serialization is able to serialize only the MMO target flags that are
1922
  /// defined by this method.
1923
  virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1924
  getSerializableMachineMemOperandTargetFlags() const {
1925
    return std::nullopt;
1926
  }
1927
 
1928
  /// Determines whether \p Inst is a tail call instruction. Override this
1929
  /// method on targets that do not properly set MCID::Return and MCID::Call on
1930
  /// tail call instructions."
1931
  virtual bool isTailCall(const MachineInstr &Inst) const {
1932
    return Inst.isReturn() && Inst.isCall();
1933
  }
1934
 
1935
  /// True if the instruction is bound to the top of its basic block and no
1936
  /// other instructions shall be inserted before it. This can be implemented
1937
  /// to prevent register allocator to insert spills before such instructions.
1938
  virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1939
    return false;
1940
  }
1941
 
1942
  /// During PHI eleimination lets target to make necessary checks and
1943
  /// insert the copy to the PHI destination register in a target specific
1944
  /// manner.
1945
  virtual MachineInstr *createPHIDestinationCopy(
1946
      MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
1947
      const DebugLoc &DL, Register Src, Register Dst) const {
1948
    return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1949
        .addReg(Src);
1950
  }
1951
 
1952
  /// During PHI eleimination lets target to make necessary checks and
1953
  /// insert the copy to the PHI destination register in a target specific
1954
  /// manner.
1955
  virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
1956
                                            MachineBasicBlock::iterator InsPt,
1957
                                            const DebugLoc &DL, Register Src,
1958
                                            unsigned SrcSubReg,
1959
                                            Register Dst) const {
1960
    return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1961
        .addReg(Src, 0, SrcSubReg);
1962
  }
1963
 
1964
  /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1965
  /// information for a set of outlining candidates.
1966
  virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1967
      std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1968
    llvm_unreachable(
1969
        "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1970
  }
1971
 
1972
  /// Optional target hook to create the LLVM IR attributes for the outlined
1973
  /// function. If overridden, the overriding function must call the default
1974
  /// implementation.
1975
  virtual void mergeOutliningCandidateAttributes(
1976
      Function &F, std::vector<outliner::Candidate> &Candidates) const;
1977
 
1978
  /// Returns how or if \p MI should be outlined.
1979
  virtual outliner::InstrType
1980
  getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1981
    llvm_unreachable(
1982
        "Target didn't implement TargetInstrInfo::getOutliningType!");
1983
  }
1984
 
1985
  /// Optional target hook that returns true if \p MBB is safe to outline from,
1986
  /// and returns any target-specific information in \p Flags.
1987
  virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1988
                                      unsigned &Flags) const;
1989
 
1990
  /// Insert a custom frame for outlined functions.
1991
  virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1992
                                  const outliner::OutlinedFunction &OF) const {
1993
    llvm_unreachable(
1994
        "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1995
  }
1996
 
1997
  /// Insert a call to an outlined function into the program.
1998
  /// Returns an iterator to the spot where we inserted the call. This must be
1999
  /// implemented by the target.
2000
  virtual MachineBasicBlock::iterator
2001
  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
2002
                     MachineBasicBlock::iterator &It, MachineFunction &MF,
2003
                     outliner::Candidate &C) const {
2004
    llvm_unreachable(
2005
        "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
2006
  }
2007
 
2008
  /// Return true if the function can safely be outlined from.
2009
  /// A function \p MF is considered safe for outlining if an outlined function
2010
  /// produced from instructions in F will produce a program which produces the
2011
  /// same output for any set of given inputs.
2012
  virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
2013
                                           bool OutlineFromLinkOnceODRs) const {
2014
    llvm_unreachable("Target didn't implement "
2015
                     "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
2016
  }
2017
 
2018
  /// Return true if the function should be outlined from by default.
2019
  virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
2020
    return false;
2021
  }
2022
 
2023
  /// Produce the expression describing the \p MI loading a value into
2024
  /// the physical register \p Reg. This hook should only be used with
2025
  /// \p MIs belonging to VReg-less functions.
2026
  virtual std::optional<ParamLoadedValue>
2027
  describeLoadedValue(const MachineInstr &MI, Register Reg) const;
2028
 
2029
  /// Given the generic extension instruction \p ExtMI, returns true if this
2030
  /// extension is a likely candidate for being folded into an another
2031
  /// instruction.
2032
  virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
2033
                                        MachineRegisterInfo &MRI) const {
2034
    return false;
2035
  }
2036
 
2037
  /// Return MIR formatter to format/parse MIR operands.  Target can override
2038
  /// this virtual function and return target specific MIR formatter.
2039
  virtual const MIRFormatter *getMIRFormatter() const {
2040
    if (!Formatter.get())
2041
      Formatter = std::make_unique<MIRFormatter>();
2042
    return Formatter.get();
2043
  }
2044
 
2045
  /// Returns the target-specific default value for tail duplication.
2046
  /// This value will be used if the tail-dup-placement-threshold argument is
2047
  /// not provided.
2048
  virtual unsigned getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
2049
    return OptLevel >= CodeGenOpt::Aggressive ? 4 : 2;
2050
  }
2051
 
2052
  /// Returns the callee operand from the given \p MI.
2053
  virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
2054
    return MI.getOperand(0);
2055
  }
2056
 
2057
  /// Return the uniformity behavior of the given instruction.
2058
  virtual InstructionUniformity
2059
  getInstructionUniformity(const MachineInstr &MI) const {
2060
    return InstructionUniformity::Default;
2061
  }
2062
 
2063
  /// Returns true if the given \p MI defines a TargetIndex operand that can be
2064
  /// tracked by their offset, can have values, and can have debug info
2065
  /// associated with it. If so, sets \p Index and \p Offset of the target index
2066
  /// operand.
2067
  virtual bool isExplicitTargetIndexDef(const MachineInstr &MI, int &Index,
2068
                                        int64_t &Offset) const {
2069
    return false;
2070
  }
2071
 
2072
private:
2073
  mutable std::unique_ptr<MIRFormatter> Formatter;
2074
  unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
2075
  unsigned CatchRetOpcode;
2076
  unsigned ReturnOpcode;
2077
};
2078
 
2079
/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2080
template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
2081
  using RegInfo = DenseMapInfo<unsigned>;
2082
 
2083
  static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
2084
    return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2085
                                          RegInfo::getEmptyKey());
2086
  }
2087
 
2088
  static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
2089
    return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2090
                                          RegInfo::getTombstoneKey());
2091
  }
2092
 
2093
  /// Reuse getHashValue implementation from
2094
  /// std::pair<unsigned, unsigned>.
2095
  static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2096
    std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
2097
    return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2098
  }
2099
 
2100
  static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
2101
                      const TargetInstrInfo::RegSubRegPair &RHS) {
2102
    return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
2103
           RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
2104
  }
2105
};
2106
 
2107
} // end namespace llvm
2108
 
2109
#endif // LLVM_CODEGEN_TARGETINSTRINFO_H