Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file declares the SelectionDAG class, and transitively defines the |
||
10 | // SDNode class and subclasses. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_CODEGEN_SELECTIONDAG_H |
||
15 | #define LLVM_CODEGEN_SELECTIONDAG_H |
||
16 | |||
17 | #include "llvm/ADT/APFloat.h" |
||
18 | #include "llvm/ADT/APInt.h" |
||
19 | #include "llvm/ADT/ArrayRef.h" |
||
20 | #include "llvm/ADT/DenseMap.h" |
||
21 | #include "llvm/ADT/DenseSet.h" |
||
22 | #include "llvm/ADT/FoldingSet.h" |
||
23 | #include "llvm/ADT/SmallVector.h" |
||
24 | #include "llvm/ADT/StringMap.h" |
||
25 | #include "llvm/ADT/ilist.h" |
||
26 | #include "llvm/ADT/iterator.h" |
||
27 | #include "llvm/ADT/iterator_range.h" |
||
28 | #include "llvm/CodeGen/DAGCombine.h" |
||
29 | #include "llvm/CodeGen/ISDOpcodes.h" |
||
30 | #include "llvm/CodeGen/MachineFunction.h" |
||
31 | #include "llvm/CodeGen/MachineMemOperand.h" |
||
32 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
||
33 | #include "llvm/CodeGen/ValueTypes.h" |
||
34 | #include "llvm/IR/DebugLoc.h" |
||
35 | #include "llvm/IR/Metadata.h" |
||
36 | #include "llvm/Support/Allocator.h" |
||
37 | #include "llvm/Support/ArrayRecycler.h" |
||
38 | #include "llvm/Support/CodeGen.h" |
||
39 | #include "llvm/Support/ErrorHandling.h" |
||
40 | #include "llvm/Support/MachineValueType.h" |
||
41 | #include "llvm/Support/RecyclingAllocator.h" |
||
42 | #include <cassert> |
||
43 | #include <cstdint> |
||
44 | #include <functional> |
||
45 | #include <map> |
||
46 | #include <string> |
||
47 | #include <tuple> |
||
48 | #include <utility> |
||
49 | #include <vector> |
||
50 | |||
51 | namespace llvm { |
||
52 | |||
53 | class DIExpression; |
||
54 | class DILabel; |
||
55 | class DIVariable; |
||
56 | class Function; |
||
57 | class Pass; |
||
58 | class Type; |
||
59 | template <class GraphType> struct GraphTraits; |
||
60 | template <typename T, unsigned int N> class SmallSetVector; |
||
61 | template <typename T, typename Enable> struct FoldingSetTrait; |
||
62 | class AAResults; |
||
63 | class BlockAddress; |
||
64 | class BlockFrequencyInfo; |
||
65 | class Constant; |
||
66 | class ConstantFP; |
||
67 | class ConstantInt; |
||
68 | class DataLayout; |
||
69 | struct fltSemantics; |
||
70 | class FunctionLoweringInfo; |
||
71 | class FunctionVarLocs; |
||
72 | class GlobalValue; |
||
73 | struct KnownBits; |
||
74 | class LegacyDivergenceAnalysis; |
||
75 | class LLVMContext; |
||
76 | class MachineBasicBlock; |
||
77 | class MachineConstantPoolValue; |
||
78 | class MCSymbol; |
||
79 | class OptimizationRemarkEmitter; |
||
80 | class ProfileSummaryInfo; |
||
81 | class SDDbgValue; |
||
82 | class SDDbgOperand; |
||
83 | class SDDbgLabel; |
||
84 | class SelectionDAG; |
||
85 | class SelectionDAGTargetInfo; |
||
86 | class TargetLibraryInfo; |
||
87 | class TargetLowering; |
||
88 | class TargetMachine; |
||
89 | class TargetSubtargetInfo; |
||
90 | class Value; |
||
91 | |||
92 | class SDVTListNode : public FoldingSetNode { |
||
93 | friend struct FoldingSetTrait<SDVTListNode>; |
||
94 | |||
95 | /// A reference to an Interned FoldingSetNodeID for this node. |
||
96 | /// The Allocator in SelectionDAG holds the data. |
||
97 | /// SDVTList contains all types which are frequently accessed in SelectionDAG. |
||
98 | /// The size of this list is not expected to be big so it won't introduce |
||
99 | /// a memory penalty. |
||
100 | FoldingSetNodeIDRef FastID; |
||
101 | const EVT *VTs; |
||
102 | unsigned int NumVTs; |
||
103 | /// The hash value for SDVTList is fixed, so cache it to avoid |
||
104 | /// hash calculation. |
||
105 | unsigned HashValue; |
||
106 | |||
107 | public: |
||
108 | SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) : |
||
109 | FastID(ID), VTs(VT), NumVTs(Num) { |
||
110 | HashValue = ID.ComputeHash(); |
||
111 | } |
||
112 | |||
113 | SDVTList getSDVTList() { |
||
114 | SDVTList result = {VTs, NumVTs}; |
||
115 | return result; |
||
116 | } |
||
117 | }; |
||
118 | |||
119 | /// Specialize FoldingSetTrait for SDVTListNode |
||
120 | /// to avoid computing temp FoldingSetNodeID and hash value. |
||
121 | template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> { |
||
122 | static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) { |
||
123 | ID = X.FastID; |
||
124 | } |
||
125 | |||
126 | static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID, |
||
127 | unsigned IDHash, FoldingSetNodeID &TempID) { |
||
128 | if (X.HashValue != IDHash) |
||
129 | return false; |
||
130 | return ID == X.FastID; |
||
131 | } |
||
132 | |||
133 | static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) { |
||
134 | return X.HashValue; |
||
135 | } |
||
136 | }; |
||
137 | |||
138 | template <> struct ilist_alloc_traits<SDNode> { |
||
139 | static void deleteNode(SDNode *) { |
||
140 | llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!"); |
||
141 | } |
||
142 | }; |
||
143 | |||
144 | /// Keeps track of dbg_value information through SDISel. We do |
||
145 | /// not build SDNodes for these so as not to perturb the generated code; |
||
146 | /// instead the info is kept off to the side in this structure. Each SDNode may |
||
147 | /// have one or more associated dbg_value entries. This information is kept in |
||
148 | /// DbgValMap. |
||
149 | /// Byval parameters are handled separately because they don't use alloca's, |
||
150 | /// which busts the normal mechanism. There is good reason for handling all |
||
151 | /// parameters separately: they may not have code generated for them, they |
||
152 | /// should always go at the beginning of the function regardless of other code |
||
153 | /// motion, and debug info for them is potentially useful even if the parameter |
||
154 | /// is unused. Right now only byval parameters are handled separately. |
||
155 | class SDDbgInfo { |
||
156 | BumpPtrAllocator Alloc; |
||
157 | SmallVector<SDDbgValue*, 32> DbgValues; |
||
158 | SmallVector<SDDbgValue*, 32> ByvalParmDbgValues; |
||
159 | SmallVector<SDDbgLabel*, 4> DbgLabels; |
||
160 | using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>; |
||
161 | DbgValMapType DbgValMap; |
||
162 | |||
163 | public: |
||
164 | SDDbgInfo() = default; |
||
165 | SDDbgInfo(const SDDbgInfo &) = delete; |
||
166 | SDDbgInfo &operator=(const SDDbgInfo &) = delete; |
||
167 | |||
168 | void add(SDDbgValue *V, bool isParameter); |
||
169 | |||
170 | void add(SDDbgLabel *L) { DbgLabels.push_back(L); } |
||
171 | |||
172 | /// Invalidate all DbgValues attached to the node and remove |
||
173 | /// it from the Node-to-DbgValues map. |
||
174 | void erase(const SDNode *Node); |
||
175 | |||
176 | void clear() { |
||
177 | DbgValMap.clear(); |
||
178 | DbgValues.clear(); |
||
179 | ByvalParmDbgValues.clear(); |
||
180 | DbgLabels.clear(); |
||
181 | Alloc.Reset(); |
||
182 | } |
||
183 | |||
184 | BumpPtrAllocator &getAlloc() { return Alloc; } |
||
185 | |||
186 | bool empty() const { |
||
187 | return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty(); |
||
188 | } |
||
189 | |||
190 | ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const { |
||
191 | auto I = DbgValMap.find(Node); |
||
192 | if (I != DbgValMap.end()) |
||
193 | return I->second; |
||
194 | return ArrayRef<SDDbgValue*>(); |
||
195 | } |
||
196 | |||
197 | using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator; |
||
198 | using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator; |
||
199 | |||
200 | DbgIterator DbgBegin() { return DbgValues.begin(); } |
||
201 | DbgIterator DbgEnd() { return DbgValues.end(); } |
||
202 | DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); } |
||
203 | DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); } |
||
204 | DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); } |
||
205 | DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); } |
||
206 | }; |
||
207 | |||
208 | void checkForCycles(const SelectionDAG *DAG, bool force = false); |
||
209 | |||
210 | /// This is used to represent a portion of an LLVM function in a low-level |
||
211 | /// Data Dependence DAG representation suitable for instruction selection. |
||
212 | /// This DAG is constructed as the first step of instruction selection in order |
||
213 | /// to allow implementation of machine specific optimizations |
||
214 | /// and code simplifications. |
||
215 | /// |
||
216 | /// The representation used by the SelectionDAG is a target-independent |
||
217 | /// representation, which has some similarities to the GCC RTL representation, |
||
218 | /// but is significantly more simple, powerful, and is a graph form instead of a |
||
219 | /// linear form. |
||
220 | /// |
||
221 | class SelectionDAG { |
||
222 | const TargetMachine &TM; |
||
223 | const SelectionDAGTargetInfo *TSI = nullptr; |
||
224 | const TargetLowering *TLI = nullptr; |
||
225 | const TargetLibraryInfo *LibInfo = nullptr; |
||
226 | const FunctionVarLocs *FnVarLocs = nullptr; |
||
227 | MachineFunction *MF; |
||
228 | Pass *SDAGISelPass = nullptr; |
||
229 | LLVMContext *Context; |
||
230 | CodeGenOpt::Level OptLevel; |
||
231 | |||
232 | LegacyDivergenceAnalysis * DA = nullptr; |
||
233 | FunctionLoweringInfo * FLI = nullptr; |
||
234 | |||
235 | /// The function-level optimization remark emitter. Used to emit remarks |
||
236 | /// whenever manipulating the DAG. |
||
237 | OptimizationRemarkEmitter *ORE; |
||
238 | |||
239 | ProfileSummaryInfo *PSI = nullptr; |
||
240 | BlockFrequencyInfo *BFI = nullptr; |
||
241 | |||
242 | /// List of non-single value types. |
||
243 | FoldingSet<SDVTListNode> VTListMap; |
||
244 | |||
245 | /// Pool allocation for misc. objects that are created once per SelectionDAG. |
||
246 | BumpPtrAllocator Allocator; |
||
247 | |||
248 | /// The starting token. |
||
249 | SDNode EntryNode; |
||
250 | |||
251 | /// The root of the entire DAG. |
||
252 | SDValue Root; |
||
253 | |||
254 | /// A linked list of nodes in the current DAG. |
||
255 | ilist<SDNode> AllNodes; |
||
256 | |||
257 | /// The AllocatorType for allocating SDNodes. We use |
||
258 | /// pool allocation with recycling. |
||
259 | using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode, |
||
260 | sizeof(LargestSDNode), |
||
261 | alignof(MostAlignedSDNode)>; |
||
262 | |||
263 | /// Pool allocation for nodes. |
||
264 | NodeAllocatorType NodeAllocator; |
||
265 | |||
266 | /// This structure is used to memoize nodes, automatically performing |
||
267 | /// CSE with existing nodes when a duplicate is requested. |
||
268 | FoldingSet<SDNode> CSEMap; |
||
269 | |||
270 | /// Pool allocation for machine-opcode SDNode operands. |
||
271 | BumpPtrAllocator OperandAllocator; |
||
272 | ArrayRecycler<SDUse> OperandRecycler; |
||
273 | |||
274 | /// Tracks dbg_value and dbg_label information through SDISel. |
||
275 | SDDbgInfo *DbgInfo; |
||
276 | |||
277 | using CallSiteInfo = MachineFunction::CallSiteInfo; |
||
278 | using CallSiteInfoImpl = MachineFunction::CallSiteInfoImpl; |
||
279 | |||
280 | struct NodeExtraInfo { |
||
281 | CallSiteInfo CSInfo; |
||
282 | MDNode *HeapAllocSite = nullptr; |
||
283 | MDNode *PCSections = nullptr; |
||
284 | bool NoMerge = false; |
||
285 | }; |
||
286 | /// Out-of-line extra information for SDNodes. |
||
287 | DenseMap<const SDNode *, NodeExtraInfo> SDEI; |
||
288 | |||
289 | /// PersistentId counter to be used when inserting the next |
||
290 | /// SDNode to this SelectionDAG. We do not place that under |
||
291 | /// `#if LLVM_ENABLE_ABI_BREAKING_CHECKS` intentionally because |
||
292 | /// it adds unneeded complexity without noticeable |
||
293 | /// benefits (see discussion with @thakis in D120714). |
||
294 | uint16_t NextPersistentId = 0; |
||
295 | |||
296 | public: |
||
297 | /// Clients of various APIs that cause global effects on |
||
298 | /// the DAG can optionally implement this interface. This allows the clients |
||
299 | /// to handle the various sorts of updates that happen. |
||
300 | /// |
||
301 | /// A DAGUpdateListener automatically registers itself with DAG when it is |
||
302 | /// constructed, and removes itself when destroyed in RAII fashion. |
||
303 | struct DAGUpdateListener { |
||
304 | DAGUpdateListener *const Next; |
||
305 | SelectionDAG &DAG; |
||
306 | |||
307 | explicit DAGUpdateListener(SelectionDAG &D) |
||
308 | : Next(D.UpdateListeners), DAG(D) { |
||
309 | DAG.UpdateListeners = this; |
||
310 | } |
||
311 | |||
312 | virtual ~DAGUpdateListener() { |
||
313 | assert(DAG.UpdateListeners == this && |
||
314 | "DAGUpdateListeners must be destroyed in LIFO order"); |
||
315 | DAG.UpdateListeners = Next; |
||
316 | } |
||
317 | |||
318 | /// The node N that was deleted and, if E is not null, an |
||
319 | /// equivalent node E that replaced it. |
||
320 | virtual void NodeDeleted(SDNode *N, SDNode *E); |
||
321 | |||
322 | /// The node N that was updated. |
||
323 | virtual void NodeUpdated(SDNode *N); |
||
324 | |||
325 | /// The node N that was inserted. |
||
326 | virtual void NodeInserted(SDNode *N); |
||
327 | }; |
||
328 | |||
329 | struct DAGNodeDeletedListener : public DAGUpdateListener { |
||
330 | std::function<void(SDNode *, SDNode *)> Callback; |
||
331 | |||
332 | DAGNodeDeletedListener(SelectionDAG &DAG, |
||
333 | std::function<void(SDNode *, SDNode *)> Callback) |
||
334 | : DAGUpdateListener(DAG), Callback(std::move(Callback)) {} |
||
335 | |||
336 | void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); } |
||
337 | |||
338 | private: |
||
339 | virtual void anchor(); |
||
340 | }; |
||
341 | |||
342 | struct DAGNodeInsertedListener : public DAGUpdateListener { |
||
343 | std::function<void(SDNode *)> Callback; |
||
344 | |||
345 | DAGNodeInsertedListener(SelectionDAG &DAG, |
||
346 | std::function<void(SDNode *)> Callback) |
||
347 | : DAGUpdateListener(DAG), Callback(std::move(Callback)) {} |
||
348 | |||
349 | void NodeInserted(SDNode *N) override { Callback(N); } |
||
350 | |||
351 | private: |
||
352 | virtual void anchor(); |
||
353 | }; |
||
354 | |||
355 | /// Help to insert SDNodeFlags automatically in transforming. Use |
||
356 | /// RAII to save and resume flags in current scope. |
||
357 | class FlagInserter { |
||
358 | SelectionDAG &DAG; |
||
359 | SDNodeFlags Flags; |
||
360 | FlagInserter *LastInserter; |
||
361 | |||
362 | public: |
||
363 | FlagInserter(SelectionDAG &SDAG, SDNodeFlags Flags) |
||
364 | : DAG(SDAG), Flags(Flags), |
||
365 | LastInserter(SDAG.getFlagInserter()) { |
||
366 | SDAG.setFlagInserter(this); |
||
367 | } |
||
368 | FlagInserter(SelectionDAG &SDAG, SDNode *N) |
||
369 | : FlagInserter(SDAG, N->getFlags()) {} |
||
370 | |||
371 | FlagInserter(const FlagInserter &) = delete; |
||
372 | FlagInserter &operator=(const FlagInserter &) = delete; |
||
373 | ~FlagInserter() { DAG.setFlagInserter(LastInserter); } |
||
374 | |||
375 | SDNodeFlags getFlags() const { return Flags; } |
||
376 | }; |
||
377 | |||
378 | /// When true, additional steps are taken to |
||
379 | /// ensure that getConstant() and similar functions return DAG nodes that |
||
380 | /// have legal types. This is important after type legalization since |
||
381 | /// any illegally typed nodes generated after this point will not experience |
||
382 | /// type legalization. |
||
383 | bool NewNodesMustHaveLegalTypes = false; |
||
384 | |||
385 | private: |
||
386 | /// DAGUpdateListener is a friend so it can manipulate the listener stack. |
||
387 | friend struct DAGUpdateListener; |
||
388 | |||
389 | /// Linked list of registered DAGUpdateListener instances. |
||
390 | /// This stack is maintained by DAGUpdateListener RAII. |
||
391 | DAGUpdateListener *UpdateListeners = nullptr; |
||
392 | |||
393 | /// Implementation of setSubgraphColor. |
||
394 | /// Return whether we had to truncate the search. |
||
395 | bool setSubgraphColorHelper(SDNode *N, const char *Color, |
||
396 | DenseSet<SDNode *> &visited, |
||
397 | int level, bool &printed); |
||
398 | |||
399 | template <typename SDNodeT, typename... ArgTypes> |
||
400 | SDNodeT *newSDNode(ArgTypes &&... Args) { |
||
401 | return new (NodeAllocator.template Allocate<SDNodeT>()) |
||
402 | SDNodeT(std::forward<ArgTypes>(Args)...); |
||
403 | } |
||
404 | |||
405 | /// Build a synthetic SDNodeT with the given args and extract its subclass |
||
406 | /// data as an integer (e.g. for use in a folding set). |
||
407 | /// |
||
408 | /// The args to this function are the same as the args to SDNodeT's |
||
409 | /// constructor, except the second arg (assumed to be a const DebugLoc&) is |
||
410 | /// omitted. |
||
411 | template <typename SDNodeT, typename... ArgTypes> |
||
412 | static uint16_t getSyntheticNodeSubclassData(unsigned IROrder, |
||
413 | ArgTypes &&... Args) { |
||
414 | // The compiler can reduce this expression to a constant iff we pass an |
||
415 | // empty DebugLoc. Thankfully, the debug location doesn't have any bearing |
||
416 | // on the subclass data. |
||
417 | return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...) |
||
418 | .getRawSubclassData(); |
||
419 | } |
||
420 | |||
421 | template <typename SDNodeTy> |
||
422 | static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order, |
||
423 | SDVTList VTs, EVT MemoryVT, |
||
424 | MachineMemOperand *MMO) { |
||
425 | return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO) |
||
426 | .getRawSubclassData(); |
||
427 | } |
||
428 | |||
429 | void createOperands(SDNode *Node, ArrayRef<SDValue> Vals); |
||
430 | |||
431 | void removeOperands(SDNode *Node) { |
||
432 | if (!Node->OperandList) |
||
433 | return; |
||
434 | OperandRecycler.deallocate( |
||
435 | ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands), |
||
436 | Node->OperandList); |
||
437 | Node->NumOperands = 0; |
||
438 | Node->OperandList = nullptr; |
||
439 | } |
||
440 | void CreateTopologicalOrder(std::vector<SDNode*>& Order); |
||
441 | |||
442 | public: |
||
443 | // Maximum depth for recursive analysis such as computeKnownBits, etc. |
||
444 | static constexpr unsigned MaxRecursionDepth = 6; |
||
445 | |||
446 | explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level); |
||
447 | SelectionDAG(const SelectionDAG &) = delete; |
||
448 | SelectionDAG &operator=(const SelectionDAG &) = delete; |
||
449 | ~SelectionDAG(); |
||
450 | |||
451 | /// Prepare this SelectionDAG to process code in the given MachineFunction. |
||
452 | void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, |
||
453 | Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, |
||
454 | LegacyDivergenceAnalysis *Divergence, ProfileSummaryInfo *PSIin, |
||
455 | BlockFrequencyInfo *BFIin, FunctionVarLocs const *FnVarLocs); |
||
456 | |||
457 | void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) { |
||
458 | FLI = FuncInfo; |
||
459 | } |
||
460 | |||
461 | /// Clear state and free memory necessary to make this |
||
462 | /// SelectionDAG ready to process a new block. |
||
463 | void clear(); |
||
464 | |||
465 | MachineFunction &getMachineFunction() const { return *MF; } |
||
466 | const Pass *getPass() const { return SDAGISelPass; } |
||
467 | |||
468 | const DataLayout &getDataLayout() const { return MF->getDataLayout(); } |
||
469 | const TargetMachine &getTarget() const { return TM; } |
||
470 | const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); } |
||
471 | template <typename STC> const STC &getSubtarget() const { |
||
472 | return MF->getSubtarget<STC>(); |
||
473 | } |
||
474 | const TargetLowering &getTargetLoweringInfo() const { return *TLI; } |
||
475 | const TargetLibraryInfo &getLibInfo() const { return *LibInfo; } |
||
476 | const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; } |
||
477 | const LegacyDivergenceAnalysis *getDivergenceAnalysis() const { return DA; } |
||
478 | /// Returns the result of the AssignmentTrackingAnalysis pass if it's |
||
479 | /// available, otherwise return nullptr. |
||
480 | const FunctionVarLocs *getFunctionVarLocs() const { return FnVarLocs; } |
||
481 | LLVMContext *getContext() const { return Context; } |
||
482 | OptimizationRemarkEmitter &getORE() const { return *ORE; } |
||
483 | ProfileSummaryInfo *getPSI() const { return PSI; } |
||
484 | BlockFrequencyInfo *getBFI() const { return BFI; } |
||
485 | |||
486 | FlagInserter *getFlagInserter() { return Inserter; } |
||
487 | void setFlagInserter(FlagInserter *FI) { Inserter = FI; } |
||
488 | |||
489 | /// Just dump dot graph to a user-provided path and title. |
||
490 | /// This doesn't open the dot viewer program and |
||
491 | /// helps visualization when outside debugging session. |
||
492 | /// FileName expects absolute path. If provided |
||
493 | /// without any path separators then the file |
||
494 | /// will be created in the current directory. |
||
495 | /// Error will be emitted if the path is insane. |
||
496 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
497 | LLVM_DUMP_METHOD void dumpDotGraph(const Twine &FileName, const Twine &Title); |
||
498 | #endif |
||
499 | |||
500 | /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'. |
||
501 | void viewGraph(const std::string &Title); |
||
502 | void viewGraph(); |
||
503 | |||
504 | #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
||
505 | std::map<const SDNode *, std::string> NodeGraphAttrs; |
||
506 | #endif |
||
507 | |||
508 | /// Clear all previously defined node graph attributes. |
||
509 | /// Intended to be used from a debugging tool (eg. gdb). |
||
510 | void clearGraphAttrs(); |
||
511 | |||
512 | /// Set graph attributes for a node. (eg. "color=red".) |
||
513 | void setGraphAttrs(const SDNode *N, const char *Attrs); |
||
514 | |||
515 | /// Get graph attributes for a node. (eg. "color=red".) |
||
516 | /// Used from getNodeAttributes. |
||
517 | std::string getGraphAttrs(const SDNode *N) const; |
||
518 | |||
519 | /// Convenience for setting node color attribute. |
||
520 | void setGraphColor(const SDNode *N, const char *Color); |
||
521 | |||
522 | /// Convenience for setting subgraph color attribute. |
||
523 | void setSubgraphColor(SDNode *N, const char *Color); |
||
524 | |||
525 | using allnodes_const_iterator = ilist<SDNode>::const_iterator; |
||
526 | |||
527 | allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); } |
||
528 | allnodes_const_iterator allnodes_end() const { return AllNodes.end(); } |
||
529 | |||
530 | using allnodes_iterator = ilist<SDNode>::iterator; |
||
531 | |||
532 | allnodes_iterator allnodes_begin() { return AllNodes.begin(); } |
||
533 | allnodes_iterator allnodes_end() { return AllNodes.end(); } |
||
534 | |||
535 | ilist<SDNode>::size_type allnodes_size() const { |
||
536 | return AllNodes.size(); |
||
537 | } |
||
538 | |||
539 | iterator_range<allnodes_iterator> allnodes() { |
||
540 | return make_range(allnodes_begin(), allnodes_end()); |
||
541 | } |
||
542 | iterator_range<allnodes_const_iterator> allnodes() const { |
||
543 | return make_range(allnodes_begin(), allnodes_end()); |
||
544 | } |
||
545 | |||
546 | /// Return the root tag of the SelectionDAG. |
||
547 | const SDValue &getRoot() const { return Root; } |
||
548 | |||
549 | /// Return the token chain corresponding to the entry of the function. |
||
550 | SDValue getEntryNode() const { |
||
551 | return SDValue(const_cast<SDNode *>(&EntryNode), 0); |
||
552 | } |
||
553 | |||
554 | /// Set the current root tag of the SelectionDAG. |
||
555 | /// |
||
556 | const SDValue &setRoot(SDValue N) { |
||
557 | assert((!N.getNode() || N.getValueType() == MVT::Other) && |
||
558 | "DAG root value is not a chain!"); |
||
559 | if (N.getNode()) |
||
560 | checkForCycles(N.getNode(), this); |
||
561 | Root = N; |
||
562 | if (N.getNode()) |
||
563 | checkForCycles(this); |
||
564 | return Root; |
||
565 | } |
||
566 | |||
567 | #ifndef NDEBUG |
||
568 | void VerifyDAGDivergence(); |
||
569 | #endif |
||
570 | |||
571 | /// This iterates over the nodes in the SelectionDAG, folding |
||
572 | /// certain types of nodes together, or eliminating superfluous nodes. The |
||
573 | /// Level argument controls whether Combine is allowed to produce nodes and |
||
574 | /// types that are illegal on the target. |
||
575 | void Combine(CombineLevel Level, AAResults *AA, |
||
576 | CodeGenOpt::Level OptLevel); |
||
577 | |||
578 | /// This transforms the SelectionDAG into a SelectionDAG that |
||
579 | /// only uses types natively supported by the target. |
||
580 | /// Returns "true" if it made any changes. |
||
581 | /// |
||
582 | /// Note that this is an involved process that may invalidate pointers into |
||
583 | /// the graph. |
||
584 | bool LegalizeTypes(); |
||
585 | |||
586 | /// This transforms the SelectionDAG into a SelectionDAG that is |
||
587 | /// compatible with the target instruction selector, as indicated by the |
||
588 | /// TargetLowering object. |
||
589 | /// |
||
590 | /// Note that this is an involved process that may invalidate pointers into |
||
591 | /// the graph. |
||
592 | void Legalize(); |
||
593 | |||
594 | /// Transforms a SelectionDAG node and any operands to it into a node |
||
595 | /// that is compatible with the target instruction selector, as indicated by |
||
596 | /// the TargetLowering object. |
||
597 | /// |
||
598 | /// \returns true if \c N is a valid, legal node after calling this. |
||
599 | /// |
||
600 | /// This essentially runs a single recursive walk of the \c Legalize process |
||
601 | /// over the given node (and its operands). This can be used to incrementally |
||
602 | /// legalize the DAG. All of the nodes which are directly replaced, |
||
603 | /// potentially including N, are added to the output parameter \c |
||
604 | /// UpdatedNodes so that the delta to the DAG can be understood by the |
||
605 | /// caller. |
||
606 | /// |
||
607 | /// When this returns false, N has been legalized in a way that make the |
||
608 | /// pointer passed in no longer valid. It may have even been deleted from the |
||
609 | /// DAG, and so it shouldn't be used further. When this returns true, the |
||
610 | /// N passed in is a legal node, and can be immediately processed as such. |
||
611 | /// This may still have done some work on the DAG, and will still populate |
||
612 | /// UpdatedNodes with any new nodes replacing those originally in the DAG. |
||
613 | bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes); |
||
614 | |||
615 | /// This transforms the SelectionDAG into a SelectionDAG |
||
616 | /// that only uses vector math operations supported by the target. This is |
||
617 | /// necessary as a separate step from Legalize because unrolling a vector |
||
618 | /// operation can introduce illegal types, which requires running |
||
619 | /// LegalizeTypes again. |
||
620 | /// |
||
621 | /// This returns true if it made any changes; in that case, LegalizeTypes |
||
622 | /// is called again before Legalize. |
||
623 | /// |
||
624 | /// Note that this is an involved process that may invalidate pointers into |
||
625 | /// the graph. |
||
626 | bool LegalizeVectors(); |
||
627 | |||
628 | /// This method deletes all unreachable nodes in the SelectionDAG. |
||
629 | void RemoveDeadNodes(); |
||
630 | |||
631 | /// Remove the specified node from the system. This node must |
||
632 | /// have no referrers. |
||
633 | void DeleteNode(SDNode *N); |
||
634 | |||
635 | /// Return an SDVTList that represents the list of values specified. |
||
636 | SDVTList getVTList(EVT VT); |
||
637 | SDVTList getVTList(EVT VT1, EVT VT2); |
||
638 | SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3); |
||
639 | SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4); |
||
640 | SDVTList getVTList(ArrayRef<EVT> VTs); |
||
641 | |||
642 | //===--------------------------------------------------------------------===// |
||
643 | // Node creation methods. |
||
644 | |||
645 | /// Create a ConstantSDNode wrapping a constant value. |
||
646 | /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR. |
||
647 | /// |
||
648 | /// If only legal types can be produced, this does the necessary |
||
649 | /// transformations (e.g., if the vector element type is illegal). |
||
650 | /// @{ |
||
651 | SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, |
||
652 | bool isTarget = false, bool isOpaque = false); |
||
653 | SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT, |
||
654 | bool isTarget = false, bool isOpaque = false); |
||
655 | |||
656 | SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false, |
||
657 | bool IsOpaque = false) { |
||
658 | return getConstant(APInt::getAllOnes(VT.getScalarSizeInBits()), DL, VT, |
||
659 | IsTarget, IsOpaque); |
||
660 | } |
||
661 | |||
662 | SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, |
||
663 | bool isTarget = false, bool isOpaque = false); |
||
664 | SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, |
||
665 | bool isTarget = false); |
||
666 | SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL, |
||
667 | bool LegalTypes = true); |
||
668 | SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, |
||
669 | bool isTarget = false); |
||
670 | |||
671 | SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, |
||
672 | bool isOpaque = false) { |
||
673 | return getConstant(Val, DL, VT, true, isOpaque); |
||
674 | } |
||
675 | SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT, |
||
676 | bool isOpaque = false) { |
||
677 | return getConstant(Val, DL, VT, true, isOpaque); |
||
678 | } |
||
679 | SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, |
||
680 | bool isOpaque = false) { |
||
681 | return getConstant(Val, DL, VT, true, isOpaque); |
||
682 | } |
||
683 | |||
684 | /// Create a true or false constant of type \p VT using the target's |
||
685 | /// BooleanContent for type \p OpVT. |
||
686 | SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT); |
||
687 | /// @} |
||
688 | |||
689 | /// Create a ConstantFPSDNode wrapping a constant value. |
||
690 | /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR. |
||
691 | /// |
||
692 | /// If only legal types can be produced, this does the necessary |
||
693 | /// transformations (e.g., if the vector element type is illegal). |
||
694 | /// The forms that take a double should only be used for simple constants |
||
695 | /// that can be exactly represented in VT. No checks are made. |
||
696 | /// @{ |
||
697 | SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, |
||
698 | bool isTarget = false); |
||
699 | SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT, |
||
700 | bool isTarget = false); |
||
701 | SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT, |
||
702 | bool isTarget = false); |
||
703 | SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) { |
||
704 | return getConstantFP(Val, DL, VT, true); |
||
705 | } |
||
706 | SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) { |
||
707 | return getConstantFP(Val, DL, VT, true); |
||
708 | } |
||
709 | SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) { |
||
710 | return getConstantFP(Val, DL, VT, true); |
||
711 | } |
||
712 | /// @} |
||
713 | |||
714 | SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, |
||
715 | int64_t offset = 0, bool isTargetGA = false, |
||
716 | unsigned TargetFlags = 0); |
||
717 | SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, |
||
718 | int64_t offset = 0, unsigned TargetFlags = 0) { |
||
719 | return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags); |
||
720 | } |
||
721 | SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false); |
||
722 | SDValue getTargetFrameIndex(int FI, EVT VT) { |
||
723 | return getFrameIndex(FI, VT, true); |
||
724 | } |
||
725 | SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false, |
||
726 | unsigned TargetFlags = 0); |
||
727 | SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags = 0) { |
||
728 | return getJumpTable(JTI, VT, true, TargetFlags); |
||
729 | } |
||
730 | SDValue getConstantPool(const Constant *C, EVT VT, |
||
731 | MaybeAlign Align = std::nullopt, int Offs = 0, |
||
732 | bool isT = false, unsigned TargetFlags = 0); |
||
733 | SDValue getTargetConstantPool(const Constant *C, EVT VT, |
||
734 | MaybeAlign Align = std::nullopt, int Offset = 0, |
||
735 | unsigned TargetFlags = 0) { |
||
736 | return getConstantPool(C, VT, Align, Offset, true, TargetFlags); |
||
737 | } |
||
738 | SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT, |
||
739 | MaybeAlign Align = std::nullopt, int Offs = 0, |
||
740 | bool isT = false, unsigned TargetFlags = 0); |
||
741 | SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT, |
||
742 | MaybeAlign Align = std::nullopt, int Offset = 0, |
||
743 | unsigned TargetFlags = 0) { |
||
744 | return getConstantPool(C, VT, Align, Offset, true, TargetFlags); |
||
745 | } |
||
746 | SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0, |
||
747 | unsigned TargetFlags = 0); |
||
748 | // When generating a branch to a BB, we don't in general know enough |
||
749 | // to provide debug info for the BB at that time, so keep this one around. |
||
750 | SDValue getBasicBlock(MachineBasicBlock *MBB); |
||
751 | SDValue getExternalSymbol(const char *Sym, EVT VT); |
||
752 | SDValue getTargetExternalSymbol(const char *Sym, EVT VT, |
||
753 | unsigned TargetFlags = 0); |
||
754 | SDValue getMCSymbol(MCSymbol *Sym, EVT VT); |
||
755 | |||
756 | SDValue getValueType(EVT); |
||
757 | SDValue getRegister(unsigned Reg, EVT VT); |
||
758 | SDValue getRegisterMask(const uint32_t *RegMask); |
||
759 | SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label); |
||
760 | SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, |
||
761 | MCSymbol *Label); |
||
762 | SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0, |
||
763 | bool isTarget = false, unsigned TargetFlags = 0); |
||
764 | SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, |
||
765 | int64_t Offset = 0, unsigned TargetFlags = 0) { |
||
766 | return getBlockAddress(BA, VT, Offset, true, TargetFlags); |
||
767 | } |
||
768 | |||
769 | SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, |
||
770 | SDValue N) { |
||
771 | return getNode(ISD::CopyToReg, dl, MVT::Other, Chain, |
||
772 | getRegister(Reg, N.getValueType()), N); |
||
773 | } |
||
774 | |||
775 | // This version of the getCopyToReg method takes an extra operand, which |
||
776 | // indicates that there is potentially an incoming glue value (if Glue is not |
||
777 | // null) and that there should be a glue result. |
||
778 | SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N, |
||
779 | SDValue Glue) { |
||
780 | SDVTList VTs = getVTList(MVT::Other, MVT::Glue); |
||
781 | SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue }; |
||
782 | return getNode(ISD::CopyToReg, dl, VTs, |
||
783 | ArrayRef(Ops, Glue.getNode() ? 4 : 3)); |
||
784 | } |
||
785 | |||
786 | // Similar to last getCopyToReg() except parameter Reg is a SDValue |
||
787 | SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N, |
||
788 | SDValue Glue) { |
||
789 | SDVTList VTs = getVTList(MVT::Other, MVT::Glue); |
||
790 | SDValue Ops[] = { Chain, Reg, N, Glue }; |
||
791 | return getNode(ISD::CopyToReg, dl, VTs, |
||
792 | ArrayRef(Ops, Glue.getNode() ? 4 : 3)); |
||
793 | } |
||
794 | |||
795 | SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) { |
||
796 | SDVTList VTs = getVTList(VT, MVT::Other); |
||
797 | SDValue Ops[] = { Chain, getRegister(Reg, VT) }; |
||
798 | return getNode(ISD::CopyFromReg, dl, VTs, Ops); |
||
799 | } |
||
800 | |||
801 | // This version of the getCopyFromReg method takes an extra operand, which |
||
802 | // indicates that there is potentially an incoming glue value (if Glue is not |
||
803 | // null) and that there should be a glue result. |
||
804 | SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT, |
||
805 | SDValue Glue) { |
||
806 | SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue); |
||
807 | SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue }; |
||
808 | return getNode(ISD::CopyFromReg, dl, VTs, |
||
809 | ArrayRef(Ops, Glue.getNode() ? 3 : 2)); |
||
810 | } |
||
811 | |||
812 | SDValue getCondCode(ISD::CondCode Cond); |
||
813 | |||
814 | /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT, |
||
815 | /// which must be a vector type, must match the number of mask elements |
||
816 | /// NumElts. An integer mask element equal to -1 is treated as undefined. |
||
817 | SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, |
||
818 | ArrayRef<int> Mask); |
||
819 | |||
820 | /// Return an ISD::BUILD_VECTOR node. The number of elements in VT, |
||
821 | /// which must be a vector type, must match the number of operands in Ops. |
||
822 | /// The operands must have the same type as (or, for integers, a type wider |
||
823 | /// than) VT's element type. |
||
824 | SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) { |
||
825 | // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. |
||
826 | return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); |
||
827 | } |
||
828 | |||
829 | /// Return an ISD::BUILD_VECTOR node. The number of elements in VT, |
||
830 | /// which must be a vector type, must match the number of operands in Ops. |
||
831 | /// The operands must have the same type as (or, for integers, a type wider |
||
832 | /// than) VT's element type. |
||
833 | SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) { |
||
834 | // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. |
||
835 | return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); |
||
836 | } |
||
837 | |||
838 | /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all |
||
839 | /// elements. VT must be a vector type. Op's type must be the same as (or, |
||
840 | /// for integers, a type wider than) VT's element type. |
||
841 | SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) { |
||
842 | // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. |
||
843 | if (Op.getOpcode() == ISD::UNDEF) { |
||
844 | assert((VT.getVectorElementType() == Op.getValueType() || |
||
845 | (VT.isInteger() && |
||
846 | VT.getVectorElementType().bitsLE(Op.getValueType()))) && |
||
847 | "A splatted value must have a width equal or (for integers) " |
||
848 | "greater than the vector element type!"); |
||
849 | return getNode(ISD::UNDEF, SDLoc(), VT); |
||
850 | } |
||
851 | |||
852 | SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op); |
||
853 | return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); |
||
854 | } |
||
855 | |||
856 | // Return a splat ISD::SPLAT_VECTOR node, consisting of Op splatted to all |
||
857 | // elements. |
||
858 | SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op) { |
||
859 | if (Op.getOpcode() == ISD::UNDEF) { |
||
860 | assert((VT.getVectorElementType() == Op.getValueType() || |
||
861 | (VT.isInteger() && |
||
862 | VT.getVectorElementType().bitsLE(Op.getValueType()))) && |
||
863 | "A splatted value must have a width equal or (for integers) " |
||
864 | "greater than the vector element type!"); |
||
865 | return getNode(ISD::UNDEF, SDLoc(), VT); |
||
866 | } |
||
867 | return getNode(ISD::SPLAT_VECTOR, DL, VT, Op); |
||
868 | } |
||
869 | |||
870 | /// Returns a node representing a splat of one value into all lanes |
||
871 | /// of the provided vector type. This is a utility which returns |
||
872 | /// either a BUILD_VECTOR or SPLAT_VECTOR depending on the |
||
873 | /// scalability of the desired vector type. |
||
874 | SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op) { |
||
875 | assert(VT.isVector() && "Can't splat to non-vector type"); |
||
876 | return VT.isScalableVector() ? |
||
877 | getSplatVector(VT, DL, Op) : getSplatBuildVector(VT, DL, Op); |
||
878 | } |
||
879 | |||
880 | /// Returns a vector of type ResVT whose elements contain the linear sequence |
||
881 | /// <0, Step, Step * 2, Step * 3, ...> |
||
882 | SDValue getStepVector(const SDLoc &DL, EVT ResVT, APInt StepVal); |
||
883 | |||
884 | /// Returns a vector of type ResVT whose elements contain the linear sequence |
||
885 | /// <0, 1, 2, 3, ...> |
||
886 | SDValue getStepVector(const SDLoc &DL, EVT ResVT); |
||
887 | |||
888 | /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to |
||
889 | /// the shuffle node in input but with swapped operands. |
||
890 | /// |
||
891 | /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3> |
||
892 | SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV); |
||
893 | |||
894 | /// Convert Op, which must be of float type, to the |
||
895 | /// float type VT, by either extending or rounding (by truncation). |
||
896 | SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT); |
||
897 | |||
898 | /// Convert Op, which must be a STRICT operation of float type, to the |
||
899 | /// float type VT, by either extending or rounding (by truncation). |
||
900 | std::pair<SDValue, SDValue> |
||
901 | getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT); |
||
902 | |||
903 | /// Convert *_EXTEND_VECTOR_INREG to *_EXTEND opcode. |
||
904 | static unsigned getOpcode_EXTEND(unsigned Opcode) { |
||
905 | switch (Opcode) { |
||
906 | case ISD::ANY_EXTEND: |
||
907 | case ISD::ANY_EXTEND_VECTOR_INREG: |
||
908 | return ISD::ANY_EXTEND; |
||
909 | case ISD::ZERO_EXTEND: |
||
910 | case ISD::ZERO_EXTEND_VECTOR_INREG: |
||
911 | return ISD::ZERO_EXTEND; |
||
912 | case ISD::SIGN_EXTEND: |
||
913 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
||
914 | return ISD::SIGN_EXTEND; |
||
915 | } |
||
916 | llvm_unreachable("Unknown opcode"); |
||
917 | } |
||
918 | |||
919 | /// Convert *_EXTEND to *_EXTEND_VECTOR_INREG opcode. |
||
920 | static unsigned getOpcode_EXTEND_VECTOR_INREG(unsigned Opcode) { |
||
921 | switch (Opcode) { |
||
922 | case ISD::ANY_EXTEND: |
||
923 | case ISD::ANY_EXTEND_VECTOR_INREG: |
||
924 | return ISD::ANY_EXTEND_VECTOR_INREG; |
||
925 | case ISD::ZERO_EXTEND: |
||
926 | case ISD::ZERO_EXTEND_VECTOR_INREG: |
||
927 | return ISD::ZERO_EXTEND_VECTOR_INREG; |
||
928 | case ISD::SIGN_EXTEND: |
||
929 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
||
930 | return ISD::SIGN_EXTEND_VECTOR_INREG; |
||
931 | } |
||
932 | llvm_unreachable("Unknown opcode"); |
||
933 | } |
||
934 | |||
935 | /// Convert Op, which must be of integer type, to the |
||
936 | /// integer type VT, by either any-extending or truncating it. |
||
937 | SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
||
938 | |||
939 | /// Convert Op, which must be of integer type, to the |
||
940 | /// integer type VT, by either sign-extending or truncating it. |
||
941 | SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
||
942 | |||
943 | /// Convert Op, which must be of integer type, to the |
||
944 | /// integer type VT, by either zero-extending or truncating it. |
||
945 | SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
||
946 | |||
947 | /// Return the expression required to zero extend the Op |
||
948 | /// value assuming it was the smaller SrcTy value. |
||
949 | SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT); |
||
950 | |||
951 | /// Convert Op, which must be of integer type, to the integer type VT, by |
||
952 | /// either truncating it or performing either zero or sign extension as |
||
953 | /// appropriate extension for the pointer's semantics. |
||
954 | SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
||
955 | |||
956 | /// Return the expression required to extend the Op as a pointer value |
||
957 | /// assuming it was the smaller SrcTy value. This may be either a zero extend |
||
958 | /// or a sign extend. |
||
959 | SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT); |
||
960 | |||
961 | /// Convert Op, which must be of integer type, to the integer type VT, |
||
962 | /// by using an extension appropriate for the target's |
||
963 | /// BooleanContent for type OpVT or truncating it. |
||
964 | SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT); |
||
965 | |||
966 | /// Create negative operation as (SUB 0, Val). |
||
967 | SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT); |
||
968 | |||
969 | /// Create a bitwise NOT operation as (XOR Val, -1). |
||
970 | SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT); |
||
971 | |||
972 | /// Create a logical NOT operation as (XOR Val, BooleanOne). |
||
973 | SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT); |
||
974 | |||
975 | /// Create a vector-predicated logical NOT operation as (VP_XOR Val, |
||
976 | /// BooleanOne, Mask, EVL). |
||
977 | SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, |
||
978 | SDValue EVL, EVT VT); |
||
979 | |||
980 | /// Convert a vector-predicated Op, which must be an integer vector, to the |
||
981 | /// vector-type VT, by performing either vector-predicated zext or truncating |
||
982 | /// it. The Op will be returned as-is if Op and VT are vectors containing |
||
983 | /// integer with same width. |
||
984 | SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, |
||
985 | SDValue EVL); |
||
986 | |||
987 | /// Convert a vector-predicated Op, which must be of integer type, to the |
||
988 | /// vector-type integer type VT, by either truncating it or performing either |
||
989 | /// vector-predicated zero or sign extension as appropriate extension for the |
||
990 | /// pointer's semantics. This function just redirects to getVPZExtOrTrunc |
||
991 | /// right now. |
||
992 | SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, |
||
993 | SDValue EVL); |
||
994 | |||
995 | /// Returns sum of the base pointer and offset. |
||
996 | /// Unlike getObjectPtrOffset this does not set NoUnsignedWrap by default. |
||
997 | SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, |
||
998 | const SDNodeFlags Flags = SDNodeFlags()); |
||
999 | SDValue getMemBasePlusOffset(SDValue Base, SDValue Offset, const SDLoc &DL, |
||
1000 | const SDNodeFlags Flags = SDNodeFlags()); |
||
1001 | |||
1002 | /// Create an add instruction with appropriate flags when used for |
||
1003 | /// addressing some offset of an object. i.e. if a load is split into multiple |
||
1004 | /// components, create an add nuw from the base pointer to the offset. |
||
1005 | SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset) { |
||
1006 | SDNodeFlags Flags; |
||
1007 | Flags.setNoUnsignedWrap(true); |
||
1008 | return getMemBasePlusOffset(Ptr, Offset, SL, Flags); |
||
1009 | } |
||
1010 | |||
1011 | SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, SDValue Offset) { |
||
1012 | // The object itself can't wrap around the address space, so it shouldn't be |
||
1013 | // possible for the adds of the offsets to the split parts to overflow. |
||
1014 | SDNodeFlags Flags; |
||
1015 | Flags.setNoUnsignedWrap(true); |
||
1016 | return getMemBasePlusOffset(Ptr, Offset, SL, Flags); |
||
1017 | } |
||
1018 | |||
1019 | /// Return a new CALLSEQ_START node, that starts new call frame, in which |
||
1020 | /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and |
||
1021 | /// OutSize specifies part of the frame set up prior to the sequence. |
||
1022 | SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, |
||
1023 | const SDLoc &DL) { |
||
1024 | SDVTList VTs = getVTList(MVT::Other, MVT::Glue); |
||
1025 | SDValue Ops[] = { Chain, |
||
1026 | getIntPtrConstant(InSize, DL, true), |
||
1027 | getIntPtrConstant(OutSize, DL, true) }; |
||
1028 | return getNode(ISD::CALLSEQ_START, DL, VTs, Ops); |
||
1029 | } |
||
1030 | |||
1031 | /// Return a new CALLSEQ_END node, which always must have a |
||
1032 | /// glue result (to ensure it's not CSE'd). |
||
1033 | /// CALLSEQ_END does not have a useful SDLoc. |
||
1034 | SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, |
||
1035 | SDValue InGlue, const SDLoc &DL) { |
||
1036 | SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue); |
||
1037 | SmallVector<SDValue, 4> Ops; |
||
1038 | Ops.push_back(Chain); |
||
1039 | Ops.push_back(Op1); |
||
1040 | Ops.push_back(Op2); |
||
1041 | if (InGlue.getNode()) |
||
1042 | Ops.push_back(InGlue); |
||
1043 | return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops); |
||
1044 | } |
||
1045 | |||
1046 | SDValue getCALLSEQ_END(SDValue Chain, uint64_t Size1, uint64_t Size2, |
||
1047 | SDValue Glue, const SDLoc &DL) { |
||
1048 | return getCALLSEQ_END( |
||
1049 | Chain, getIntPtrConstant(Size1, DL, /*isTarget=*/true), |
||
1050 | getIntPtrConstant(Size2, DL, /*isTarget=*/true), Glue, DL); |
||
1051 | } |
||
1052 | |||
1053 | /// Return true if the result of this operation is always undefined. |
||
1054 | bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops); |
||
1055 | |||
1056 | /// Return an UNDEF node. UNDEF does not have a useful SDLoc. |
||
1057 | SDValue getUNDEF(EVT VT) { |
||
1058 | return getNode(ISD::UNDEF, SDLoc(), VT); |
||
1059 | } |
||
1060 | |||
1061 | /// Return a node that represents the runtime scaling 'MulImm * RuntimeVL'. |
||
1062 | SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm) { |
||
1063 | assert(MulImm.getMinSignedBits() <= VT.getSizeInBits() && |
||
1064 | "Immediate does not fit VT"); |
||
1065 | return getNode(ISD::VSCALE, DL, VT, |
||
1066 | getConstant(MulImm.sextOrTrunc(VT.getSizeInBits()), DL, VT)); |
||
1067 | } |
||
1068 | |||
1069 | /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc. |
||
1070 | SDValue getGLOBAL_OFFSET_TABLE(EVT VT) { |
||
1071 | return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT); |
||
1072 | } |
||
1073 | |||
1074 | /// Gets or creates the specified node. |
||
1075 | /// |
||
1076 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
||
1077 | ArrayRef<SDUse> Ops); |
||
1078 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
||
1079 | ArrayRef<SDValue> Ops, const SDNodeFlags Flags); |
||
1080 | SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys, |
||
1081 | ArrayRef<SDValue> Ops); |
||
1082 | SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
||
1083 | ArrayRef<SDValue> Ops, const SDNodeFlags Flags); |
||
1084 | |||
1085 | // Use flags from current flag inserter. |
||
1086 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
||
1087 | ArrayRef<SDValue> Ops); |
||
1088 | SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
||
1089 | ArrayRef<SDValue> Ops); |
||
1090 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand); |
||
1091 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
||
1092 | SDValue N2); |
||
1093 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
||
1094 | SDValue N2, SDValue N3); |
||
1095 | |||
1096 | // Specialize based on number of operands. |
||
1097 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT); |
||
1098 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand, |
||
1099 | const SDNodeFlags Flags); |
||
1100 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
||
1101 | SDValue N2, const SDNodeFlags Flags); |
||
1102 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
||
1103 | SDValue N2, SDValue N3, const SDNodeFlags Flags); |
||
1104 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
||
1105 | SDValue N2, SDValue N3, SDValue N4); |
||
1106 | SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
||
1107 | SDValue N2, SDValue N3, SDValue N4, SDValue N5); |
||
1108 | |||
1109 | // Specialize again based on number of operands for nodes with a VTList |
||
1110 | // rather than a single VT. |
||
1111 | SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList); |
||
1112 | SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N); |
||
1113 | SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
||
1114 | SDValue N2); |
||
1115 | SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
||
1116 | SDValue N2, SDValue N3); |
||
1117 | SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
||
1118 | SDValue N2, SDValue N3, SDValue N4); |
||
1119 | SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
||
1120 | SDValue N2, SDValue N3, SDValue N4, SDValue N5); |
||
1121 | |||
1122 | /// Compute a TokenFactor to force all the incoming stack arguments to be |
||
1123 | /// loaded from the stack. This is used in tail call lowering to protect |
||
1124 | /// stack arguments from being clobbered. |
||
1125 | SDValue getStackArgumentTokenFactor(SDValue Chain); |
||
1126 | |||
1127 | SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, |
||
1128 | SDValue Size, Align Alignment, bool isVol, |
||
1129 | bool AlwaysInline, bool isTailCall, |
||
1130 | MachinePointerInfo DstPtrInfo, |
||
1131 | MachinePointerInfo SrcPtrInfo, |
||
1132 | const AAMDNodes &AAInfo = AAMDNodes(), |
||
1133 | AAResults *AA = nullptr); |
||
1134 | |||
1135 | SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, |
||
1136 | SDValue Size, Align Alignment, bool isVol, bool isTailCall, |
||
1137 | MachinePointerInfo DstPtrInfo, |
||
1138 | MachinePointerInfo SrcPtrInfo, |
||
1139 | const AAMDNodes &AAInfo = AAMDNodes(), |
||
1140 | AAResults *AA = nullptr); |
||
1141 | |||
1142 | SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, |
||
1143 | SDValue Size, Align Alignment, bool isVol, |
||
1144 | bool AlwaysInline, bool isTailCall, |
||
1145 | MachinePointerInfo DstPtrInfo, |
||
1146 | const AAMDNodes &AAInfo = AAMDNodes()); |
||
1147 | |||
1148 | SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, |
||
1149 | SDValue Src, SDValue Size, Type *SizeTy, |
||
1150 | unsigned ElemSz, bool isTailCall, |
||
1151 | MachinePointerInfo DstPtrInfo, |
||
1152 | MachinePointerInfo SrcPtrInfo); |
||
1153 | |||
1154 | SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, |
||
1155 | SDValue Src, SDValue Size, Type *SizeTy, |
||
1156 | unsigned ElemSz, bool isTailCall, |
||
1157 | MachinePointerInfo DstPtrInfo, |
||
1158 | MachinePointerInfo SrcPtrInfo); |
||
1159 | |||
1160 | SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, |
||
1161 | SDValue Value, SDValue Size, Type *SizeTy, |
||
1162 | unsigned ElemSz, bool isTailCall, |
||
1163 | MachinePointerInfo DstPtrInfo); |
||
1164 | |||
1165 | /// Helper function to make it easier to build SetCC's if you just have an |
||
1166 | /// ISD::CondCode instead of an SDValue. |
||
1167 | SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, |
||
1168 | ISD::CondCode Cond, SDValue Chain = SDValue(), |
||
1169 | bool IsSignaling = false) { |
||
1170 | assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() && |
||
1171 | "Vector/scalar operand type mismatch for setcc"); |
||
1172 | assert(LHS.getValueType().isVector() == VT.isVector() && |
||
1173 | "Vector/scalar result type mismatch for setcc"); |
||
1174 | assert(Cond != ISD::SETCC_INVALID && |
||
1175 | "Cannot create a setCC of an invalid node."); |
||
1176 | if (Chain) |
||
1177 | return getNode(IsSignaling ? ISD::STRICT_FSETCCS : ISD::STRICT_FSETCC, DL, |
||
1178 | {VT, MVT::Other}, {Chain, LHS, RHS, getCondCode(Cond)}); |
||
1179 | return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond)); |
||
1180 | } |
||
1181 | |||
1182 | /// Helper function to make it easier to build VP_SETCCs if you just have an |
||
1183 | /// ISD::CondCode instead of an SDValue. |
||
1184 | SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, |
||
1185 | ISD::CondCode Cond, SDValue Mask, SDValue EVL) { |
||
1186 | assert(LHS.getValueType().isVector() && RHS.getValueType().isVector() && |
||
1187 | "Cannot compare scalars"); |
||
1188 | assert(Cond != ISD::SETCC_INVALID && |
||
1189 | "Cannot create a setCC of an invalid node."); |
||
1190 | return getNode(ISD::VP_SETCC, DL, VT, LHS, RHS, getCondCode(Cond), Mask, |
||
1191 | EVL); |
||
1192 | } |
||
1193 | |||
1194 | /// Helper function to make it easier to build Select's if you just have |
||
1195 | /// operands and don't want to check for vector. |
||
1196 | SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, |
||
1197 | SDValue RHS) { |
||
1198 | assert(LHS.getValueType() == VT && RHS.getValueType() == VT && |
||
1199 | "Cannot use select on differing types"); |
||
1200 | auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; |
||
1201 | return getNode(Opcode, DL, VT, Cond, LHS, RHS); |
||
1202 | } |
||
1203 | |||
1204 | /// Helper function to make it easier to build SelectCC's if you just have an |
||
1205 | /// ISD::CondCode instead of an SDValue. |
||
1206 | SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, |
||
1207 | SDValue False, ISD::CondCode Cond) { |
||
1208 | return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True, |
||
1209 | False, getCondCode(Cond)); |
||
1210 | } |
||
1211 | |||
1212 | /// Try to simplify a select/vselect into 1 of its operands or a constant. |
||
1213 | SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal); |
||
1214 | |||
1215 | /// Try to simplify a shift into 1 of its operands or a constant. |
||
1216 | SDValue simplifyShift(SDValue X, SDValue Y); |
||
1217 | |||
1218 | /// Try to simplify a floating-point binary operation into 1 of its operands |
||
1219 | /// or a constant. |
||
1220 | SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, |
||
1221 | SDNodeFlags Flags); |
||
1222 | |||
1223 | /// VAArg produces a result and token chain, and takes a pointer |
||
1224 | /// and a source value as input. |
||
1225 | SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
||
1226 | SDValue SV, unsigned Align); |
||
1227 | |||
1228 | /// Gets a node for an atomic cmpxchg op. There are two |
||
1229 | /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a |
||
1230 | /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded, |
||
1231 | /// a success flag (initially i1), and a chain. |
||
1232 | SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
||
1233 | SDVTList VTs, SDValue Chain, SDValue Ptr, |
||
1234 | SDValue Cmp, SDValue Swp, MachineMemOperand *MMO); |
||
1235 | |||
1236 | /// Gets a node for an atomic op, produces result (if relevant) |
||
1237 | /// and chain and takes 2 operands. |
||
1238 | SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, |
||
1239 | SDValue Ptr, SDValue Val, MachineMemOperand *MMO); |
||
1240 | |||
1241 | /// Gets a node for an atomic op, produces result and chain and |
||
1242 | /// takes 1 operand. |
||
1243 | SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT, |
||
1244 | SDValue Chain, SDValue Ptr, MachineMemOperand *MMO); |
||
1245 | |||
1246 | /// Gets a node for an atomic op, produces result and chain and takes N |
||
1247 | /// operands. |
||
1248 | SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
||
1249 | SDVTList VTList, ArrayRef<SDValue> Ops, |
||
1250 | MachineMemOperand *MMO); |
||
1251 | |||
1252 | /// Creates a MemIntrinsicNode that may produce a |
||
1253 | /// result and takes a list of operands. Opcode may be INTRINSIC_VOID, |
||
1254 | /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not |
||
1255 | /// less than FIRST_TARGET_MEMORY_OPCODE. |
||
1256 | SDValue getMemIntrinsicNode( |
||
1257 | unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, |
||
1258 | EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, |
||
1259 | MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad | |
||
1260 | MachineMemOperand::MOStore, |
||
1261 | uint64_t Size = 0, const AAMDNodes &AAInfo = AAMDNodes()); |
||
1262 | |||
1263 | inline SDValue getMemIntrinsicNode( |
||
1264 | unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, |
||
1265 | EVT MemVT, MachinePointerInfo PtrInfo, |
||
1266 | MaybeAlign Alignment = std::nullopt, |
||
1267 | MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad | |
||
1268 | MachineMemOperand::MOStore, |
||
1269 | uint64_t Size = 0, const AAMDNodes &AAInfo = AAMDNodes()) { |
||
1270 | // Ensure that codegen never sees alignment 0 |
||
1271 | return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, PtrInfo, |
||
1272 | Alignment.value_or(getEVTAlign(MemVT)), Flags, |
||
1273 | Size, AAInfo); |
||
1274 | } |
||
1275 | |||
1276 | SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, |
||
1277 | ArrayRef<SDValue> Ops, EVT MemVT, |
||
1278 | MachineMemOperand *MMO); |
||
1279 | |||
1280 | /// Creates a LifetimeSDNode that starts (`IsStart==true`) or ends |
||
1281 | /// (`IsStart==false`) the lifetime of the portion of `FrameIndex` between |
||
1282 | /// offsets `Offset` and `Offset + Size`. |
||
1283 | SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, |
||
1284 | int FrameIndex, int64_t Size, int64_t Offset = -1); |
||
1285 | |||
1286 | /// Creates a PseudoProbeSDNode with function GUID `Guid` and |
||
1287 | /// the index of the block `Index` it is probing, as well as the attributes |
||
1288 | /// `attr` of the probe. |
||
1289 | SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, |
||
1290 | uint64_t Index, uint32_t Attr); |
||
1291 | |||
1292 | /// Create a MERGE_VALUES node from the given operands. |
||
1293 | SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl); |
||
1294 | |||
1295 | /// Loads are not normal binary operators: their result type is not |
||
1296 | /// determined by their operands, and they produce a value AND a token chain. |
||
1297 | /// |
||
1298 | /// This function will set the MOLoad flag on MMOFlags, but you can set it if |
||
1299 | /// you want. The MOStore flag must not be set. |
||
1300 | SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
||
1301 | MachinePointerInfo PtrInfo, |
||
1302 | MaybeAlign Alignment = MaybeAlign(), |
||
1303 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1304 | const AAMDNodes &AAInfo = AAMDNodes(), |
||
1305 | const MDNode *Ranges = nullptr); |
||
1306 | /// FIXME: Remove once transition to Align is over. |
||
1307 | LLVM_DEPRECATED("Use the getLoad function that takes a MaybeAlign instead", |
||
1308 | "") |
||
1309 | inline SDValue |
||
1310 | getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
||
1311 | MachinePointerInfo PtrInfo, unsigned Alignment, |
||
1312 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1313 | const AAMDNodes &AAInfo = AAMDNodes(), |
||
1314 | const MDNode *Ranges = nullptr) { |
||
1315 | return getLoad(VT, dl, Chain, Ptr, PtrInfo, MaybeAlign(Alignment), MMOFlags, |
||
1316 | AAInfo, Ranges); |
||
1317 | } |
||
1318 | SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
||
1319 | MachineMemOperand *MMO); |
||
1320 | SDValue |
||
1321 | getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, |
||
1322 | SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, |
||
1323 | MaybeAlign Alignment = MaybeAlign(), |
||
1324 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1325 | const AAMDNodes &AAInfo = AAMDNodes()); |
||
1326 | SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, |
||
1327 | SDValue Chain, SDValue Ptr, EVT MemVT, |
||
1328 | MachineMemOperand *MMO); |
||
1329 | SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, |
||
1330 | SDValue Offset, ISD::MemIndexedMode AM); |
||
1331 | SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
||
1332 | const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
||
1333 | MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, |
||
1334 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1335 | const AAMDNodes &AAInfo = AAMDNodes(), |
||
1336 | const MDNode *Ranges = nullptr); |
||
1337 | inline SDValue getLoad( |
||
1338 | ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, |
||
1339 | SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo, |
||
1340 | EVT MemVT, MaybeAlign Alignment = MaybeAlign(), |
||
1341 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1342 | const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr) { |
||
1343 | // Ensures that codegen never sees a None Alignment. |
||
1344 | return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, PtrInfo, MemVT, |
||
1345 | Alignment.value_or(getEVTAlign(MemVT)), MMOFlags, AAInfo, |
||
1346 | Ranges); |
||
1347 | } |
||
1348 | /// FIXME: Remove once transition to Align is over. |
||
1349 | LLVM_DEPRECATED("Use the getLoad function that takes a MaybeAlign instead", |
||
1350 | "") |
||
1351 | inline SDValue |
||
1352 | getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
||
1353 | const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
||
1354 | MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment, |
||
1355 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1356 | const AAMDNodes &AAInfo = AAMDNodes(), |
||
1357 | const MDNode *Ranges = nullptr) { |
||
1358 | return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, PtrInfo, MemVT, |
||
1359 | MaybeAlign(Alignment), MMOFlags, AAInfo, Ranges); |
||
1360 | } |
||
1361 | SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
||
1362 | const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
||
1363 | EVT MemVT, MachineMemOperand *MMO); |
||
1364 | |||
1365 | /// Helper function to build ISD::STORE nodes. |
||
1366 | /// |
||
1367 | /// This function will set the MOStore flag on MMOFlags, but you can set it if |
||
1368 | /// you want. The MOLoad and MOInvariant flags must not be set. |
||
1369 | |||
1370 | SDValue |
||
1371 | getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
||
1372 | MachinePointerInfo PtrInfo, Align Alignment, |
||
1373 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1374 | const AAMDNodes &AAInfo = AAMDNodes()); |
||
1375 | inline SDValue |
||
1376 | getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
||
1377 | MachinePointerInfo PtrInfo, MaybeAlign Alignment = MaybeAlign(), |
||
1378 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1379 | const AAMDNodes &AAInfo = AAMDNodes()) { |
||
1380 | return getStore(Chain, dl, Val, Ptr, PtrInfo, |
||
1381 | Alignment.value_or(getEVTAlign(Val.getValueType())), |
||
1382 | MMOFlags, AAInfo); |
||
1383 | } |
||
1384 | /// FIXME: Remove once transition to Align is over. |
||
1385 | LLVM_DEPRECATED("Use the version that takes a MaybeAlign instead", "") |
||
1386 | inline SDValue |
||
1387 | getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
||
1388 | MachinePointerInfo PtrInfo, unsigned Alignment, |
||
1389 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1390 | const AAMDNodes &AAInfo = AAMDNodes()) { |
||
1391 | return getStore(Chain, dl, Val, Ptr, PtrInfo, MaybeAlign(Alignment), |
||
1392 | MMOFlags, AAInfo); |
||
1393 | } |
||
1394 | SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
||
1395 | MachineMemOperand *MMO); |
||
1396 | SDValue |
||
1397 | getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
||
1398 | MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, |
||
1399 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1400 | const AAMDNodes &AAInfo = AAMDNodes()); |
||
1401 | inline SDValue |
||
1402 | getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
||
1403 | MachinePointerInfo PtrInfo, EVT SVT, |
||
1404 | MaybeAlign Alignment = MaybeAlign(), |
||
1405 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1406 | const AAMDNodes &AAInfo = AAMDNodes()) { |
||
1407 | return getTruncStore(Chain, dl, Val, Ptr, PtrInfo, SVT, |
||
1408 | Alignment.value_or(getEVTAlign(SVT)), MMOFlags, |
||
1409 | AAInfo); |
||
1410 | } |
||
1411 | /// FIXME: Remove once transition to Align is over. |
||
1412 | LLVM_DEPRECATED("Use the version that takes a MaybeAlign instead", "") |
||
1413 | inline SDValue |
||
1414 | getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
||
1415 | MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment, |
||
1416 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1417 | const AAMDNodes &AAInfo = AAMDNodes()) { |
||
1418 | return getTruncStore(Chain, dl, Val, Ptr, PtrInfo, SVT, |
||
1419 | MaybeAlign(Alignment), MMOFlags, AAInfo); |
||
1420 | } |
||
1421 | SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
||
1422 | SDValue Ptr, EVT SVT, MachineMemOperand *MMO); |
||
1423 | SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, |
||
1424 | SDValue Offset, ISD::MemIndexedMode AM); |
||
1425 | |||
1426 | SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
||
1427 | const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
||
1428 | SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, |
||
1429 | EVT MemVT, Align Alignment, |
||
1430 | MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, |
||
1431 | const MDNode *Ranges = nullptr, bool IsExpanding = false); |
||
1432 | inline SDValue |
||
1433 | getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
||
1434 | const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
||
1435 | SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, |
||
1436 | MaybeAlign Alignment = MaybeAlign(), |
||
1437 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1438 | const AAMDNodes &AAInfo = AAMDNodes(), |
||
1439 | const MDNode *Ranges = nullptr, bool IsExpanding = false) { |
||
1440 | // Ensures that codegen never sees a None Alignment. |
||
1441 | return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, |
||
1442 | PtrInfo, MemVT, Alignment.value_or(getEVTAlign(MemVT)), |
||
1443 | MMOFlags, AAInfo, Ranges, IsExpanding); |
||
1444 | } |
||
1445 | SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
||
1446 | const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
||
1447 | SDValue Mask, SDValue EVL, EVT MemVT, |
||
1448 | MachineMemOperand *MMO, bool IsExpanding = false); |
||
1449 | SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
||
1450 | SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, |
||
1451 | MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, |
||
1452 | const AAMDNodes &AAInfo, const MDNode *Ranges = nullptr, |
||
1453 | bool IsExpanding = false); |
||
1454 | SDValue getLoadVP(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
||
1455 | SDValue Mask, SDValue EVL, MachineMemOperand *MMO, |
||
1456 | bool IsExpanding = false); |
||
1457 | SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, |
||
1458 | SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, |
||
1459 | MachinePointerInfo PtrInfo, EVT MemVT, |
||
1460 | MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, |
||
1461 | const AAMDNodes &AAInfo, bool IsExpanding = false); |
||
1462 | SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, |
||
1463 | SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, |
||
1464 | EVT MemVT, MachineMemOperand *MMO, |
||
1465 | bool IsExpanding = false); |
||
1466 | SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, |
||
1467 | SDValue Offset, ISD::MemIndexedMode AM); |
||
1468 | SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
||
1469 | SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, |
||
1470 | MachineMemOperand *MMO, ISD::MemIndexedMode AM, |
||
1471 | bool IsTruncating = false, bool IsCompressing = false); |
||
1472 | SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, |
||
1473 | SDValue Ptr, SDValue Mask, SDValue EVL, |
||
1474 | MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, |
||
1475 | MachineMemOperand::Flags MMOFlags, |
||
1476 | const AAMDNodes &AAInfo, bool IsCompressing = false); |
||
1477 | SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, |
||
1478 | SDValue Ptr, SDValue Mask, SDValue EVL, EVT SVT, |
||
1479 | MachineMemOperand *MMO, bool IsCompressing = false); |
||
1480 | SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, |
||
1481 | SDValue Offset, ISD::MemIndexedMode AM); |
||
1482 | |||
1483 | SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, |
||
1484 | EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, |
||
1485 | SDValue Offset, SDValue Stride, SDValue Mask, |
||
1486 | SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, |
||
1487 | Align Alignment, MachineMemOperand::Flags MMOFlags, |
||
1488 | const AAMDNodes &AAInfo, |
||
1489 | const MDNode *Ranges = nullptr, |
||
1490 | bool IsExpanding = false); |
||
1491 | inline SDValue getStridedLoadVP( |
||
1492 | ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, |
||
1493 | SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, |
||
1494 | SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, |
||
1495 | MaybeAlign Alignment = MaybeAlign(), |
||
1496 | MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
||
1497 | const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr, |
||
1498 | bool IsExpanding = false) { |
||
1499 | // Ensures that codegen never sees a None Alignment. |
||
1500 | return getStridedLoadVP(AM, ExtType, VT, DL, Chain, Ptr, Offset, Stride, |
||
1501 | Mask, EVL, PtrInfo, MemVT, |
||
1502 | Alignment.value_or(getEVTAlign(MemVT)), MMOFlags, |
||
1503 | AAInfo, Ranges, IsExpanding); |
||
1504 | } |
||
1505 | SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, |
||
1506 | EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, |
||
1507 | SDValue Offset, SDValue Stride, SDValue Mask, |
||
1508 | SDValue EVL, EVT MemVT, MachineMemOperand *MMO, |
||
1509 | bool IsExpanding = false); |
||
1510 | SDValue getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, |
||
1511 | SDValue Stride, SDValue Mask, SDValue EVL, |
||
1512 | MachinePointerInfo PtrInfo, MaybeAlign Alignment, |
||
1513 | MachineMemOperand::Flags MMOFlags, |
||
1514 | const AAMDNodes &AAInfo, |
||
1515 | const MDNode *Ranges = nullptr, |
||
1516 | bool IsExpanding = false); |
||
1517 | SDValue getStridedLoadVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, |
||
1518 | SDValue Stride, SDValue Mask, SDValue EVL, |
||
1519 | MachineMemOperand *MMO, bool IsExpanding = false); |
||
1520 | SDValue |
||
1521 | getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, |
||
1522 | SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, |
||
1523 | SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, |
||
1524 | MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, |
||
1525 | const AAMDNodes &AAInfo, bool IsExpanding = false); |
||
1526 | SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, |
||
1527 | SDValue Chain, SDValue Ptr, SDValue Stride, |
||
1528 | SDValue Mask, SDValue EVL, EVT MemVT, |
||
1529 | MachineMemOperand *MMO, bool IsExpanding = false); |
||
1530 | SDValue getIndexedStridedLoadVP(SDValue OrigLoad, const SDLoc &DL, |
||
1531 | SDValue Base, SDValue Offset, |
||
1532 | ISD::MemIndexedMode AM); |
||
1533 | SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, |
||
1534 | SDValue Ptr, SDValue Offset, SDValue Stride, |
||
1535 | SDValue Mask, SDValue EVL, EVT MemVT, |
||
1536 | MachineMemOperand *MMO, ISD::MemIndexedMode AM, |
||
1537 | bool IsTruncating = false, |
||
1538 | bool IsCompressing = false); |
||
1539 | SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, |
||
1540 | SDValue Ptr, SDValue Stride, SDValue Mask, |
||
1541 | SDValue EVL, MachinePointerInfo PtrInfo, |
||
1542 | EVT SVT, Align Alignment, |
||
1543 | MachineMemOperand::Flags MMOFlags, |
||
1544 | const AAMDNodes &AAInfo, |
||
1545 | bool IsCompressing = false); |
||
1546 | SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, |
||
1547 | SDValue Ptr, SDValue Stride, SDValue Mask, |
||
1548 | SDValue EVL, EVT SVT, MachineMemOperand *MMO, |
||
1549 | bool IsCompressing = false); |
||
1550 | SDValue getIndexedStridedStoreVP(SDValue OrigStore, const SDLoc &DL, |
||
1551 | SDValue Base, SDValue Offset, |
||
1552 | ISD::MemIndexedMode AM); |
||
1553 | |||
1554 | SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, |
||
1555 | ArrayRef<SDValue> Ops, MachineMemOperand *MMO, |
||
1556 | ISD::MemIndexType IndexType); |
||
1557 | SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, |
||
1558 | ArrayRef<SDValue> Ops, MachineMemOperand *MMO, |
||
1559 | ISD::MemIndexType IndexType); |
||
1560 | |||
1561 | SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, |
||
1562 | SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, |
||
1563 | MachineMemOperand *MMO, ISD::MemIndexedMode AM, |
||
1564 | ISD::LoadExtType, bool IsExpanding = false); |
||
1565 | SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, |
||
1566 | SDValue Offset, ISD::MemIndexedMode AM); |
||
1567 | SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
||
1568 | SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, |
||
1569 | MachineMemOperand *MMO, ISD::MemIndexedMode AM, |
||
1570 | bool IsTruncating = false, bool IsCompressing = false); |
||
1571 | SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, |
||
1572 | SDValue Base, SDValue Offset, |
||
1573 | ISD::MemIndexedMode AM); |
||
1574 | SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, |
||
1575 | ArrayRef<SDValue> Ops, MachineMemOperand *MMO, |
||
1576 | ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy); |
||
1577 | SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, |
||
1578 | ArrayRef<SDValue> Ops, MachineMemOperand *MMO, |
||
1579 | ISD::MemIndexType IndexType, |
||
1580 | bool IsTruncating = false); |
||
1581 | |||
1582 | /// Construct a node to track a Value* through the backend. |
||
1583 | SDValue getSrcValue(const Value *v); |
||
1584 | |||
1585 | /// Return an MDNodeSDNode which holds an MDNode. |
||
1586 | SDValue getMDNode(const MDNode *MD); |
||
1587 | |||
1588 | /// Return a bitcast using the SDLoc of the value operand, and casting to the |
||
1589 | /// provided type. Use getNode to set a custom SDLoc. |
||
1590 | SDValue getBitcast(EVT VT, SDValue V); |
||
1591 | |||
1592 | /// Return an AddrSpaceCastSDNode. |
||
1593 | SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, |
||
1594 | unsigned DestAS); |
||
1595 | |||
1596 | /// Return a freeze using the SDLoc of the value operand. |
||
1597 | SDValue getFreeze(SDValue V); |
||
1598 | |||
1599 | /// Return an AssertAlignSDNode. |
||
1600 | SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A); |
||
1601 | |||
1602 | /// Swap N1 and N2 if Opcode is a commutative binary opcode |
||
1603 | /// and the canonical form expects the opposite order. |
||
1604 | void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, |
||
1605 | SDValue &N2) const; |
||
1606 | |||
1607 | /// Return the specified value casted to |
||
1608 | /// the target's desired shift amount type. |
||
1609 | SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op); |
||
1610 | |||
1611 | /// Expand the specified \c ISD::VAARG node as the Legalize pass would. |
||
1612 | SDValue expandVAArg(SDNode *Node); |
||
1613 | |||
1614 | /// Expand the specified \c ISD::VACOPY node as the Legalize pass would. |
||
1615 | SDValue expandVACopy(SDNode *Node); |
||
1616 | |||
1617 | /// Returs an GlobalAddress of the function from the current module with |
||
1618 | /// name matching the given ExternalSymbol. Additionally can provide the |
||
1619 | /// matched function. |
||
1620 | /// Panics the function doesn't exists. |
||
1621 | SDValue getSymbolFunctionGlobalAddress(SDValue Op, |
||
1622 | Function **TargetFunction = nullptr); |
||
1623 | |||
1624 | /// *Mutate* the specified node in-place to have the |
||
1625 | /// specified operands. If the resultant node already exists in the DAG, |
||
1626 | /// this does not modify the specified node, instead it returns the node that |
||
1627 | /// already exists. If the resultant node does not exist in the DAG, the |
||
1628 | /// input node is returned. As a degenerate case, if you specify the same |
||
1629 | /// input operands as the node already has, the input node is returned. |
||
1630 | SDNode *UpdateNodeOperands(SDNode *N, SDValue Op); |
||
1631 | SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2); |
||
1632 | SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
||
1633 | SDValue Op3); |
||
1634 | SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
||
1635 | SDValue Op3, SDValue Op4); |
||
1636 | SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
||
1637 | SDValue Op3, SDValue Op4, SDValue Op5); |
||
1638 | SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops); |
||
1639 | |||
1640 | /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k |
||
1641 | /// values or more, move values into new TokenFactors in 64k-1 blocks, until |
||
1642 | /// the final TokenFactor has less than 64k operands. |
||
1643 | SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals); |
||
1644 | |||
1645 | /// *Mutate* the specified machine node's memory references to the provided |
||
1646 | /// list. |
||
1647 | void setNodeMemRefs(MachineSDNode *N, |
||
1648 | ArrayRef<MachineMemOperand *> NewMemRefs); |
||
1649 | |||
1650 | // Calculate divergence of node \p N based on its operands. |
||
1651 | bool calculateDivergence(SDNode *N); |
||
1652 | |||
1653 | // Propagates the change in divergence to users |
||
1654 | void updateDivergence(SDNode * N); |
||
1655 | |||
1656 | /// These are used for target selectors to *mutate* the |
||
1657 | /// specified node to have the specified return type, Target opcode, and |
||
1658 | /// operands. Note that target opcodes are stored as |
||
1659 | /// ~TargetOpcode in the node opcode field. The resultant node is returned. |
||
1660 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT); |
||
1661 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1); |
||
1662 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, |
||
1663 | SDValue Op1, SDValue Op2); |
||
1664 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, |
||
1665 | SDValue Op1, SDValue Op2, SDValue Op3); |
||
1666 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, |
||
1667 | ArrayRef<SDValue> Ops); |
||
1668 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2); |
||
1669 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, |
||
1670 | EVT VT2, ArrayRef<SDValue> Ops); |
||
1671 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, |
||
1672 | EVT VT2, EVT VT3, ArrayRef<SDValue> Ops); |
||
1673 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, |
||
1674 | EVT VT2, SDValue Op1, SDValue Op2); |
||
1675 | SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs, |
||
1676 | ArrayRef<SDValue> Ops); |
||
1677 | |||
1678 | /// This *mutates* the specified node to have the specified |
||
1679 | /// return type, opcode, and operands. |
||
1680 | SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, |
||
1681 | ArrayRef<SDValue> Ops); |
||
1682 | |||
1683 | /// Mutate the specified strict FP node to its non-strict equivalent, |
||
1684 | /// unlinking the node from its chain and dropping the metadata arguments. |
||
1685 | /// The node must be a strict FP node. |
||
1686 | SDNode *mutateStrictFPToFP(SDNode *Node); |
||
1687 | |||
1688 | /// These are used for target selectors to create a new node |
||
1689 | /// with specified return type(s), MachineInstr opcode, and operands. |
||
1690 | /// |
||
1691 | /// Note that getMachineNode returns the resultant node. If there is already |
||
1692 | /// a node of the specified opcode and operands, it returns that node instead |
||
1693 | /// of the current one. |
||
1694 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT); |
||
1695 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
||
1696 | SDValue Op1); |
||
1697 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
||
1698 | SDValue Op1, SDValue Op2); |
||
1699 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
||
1700 | SDValue Op1, SDValue Op2, SDValue Op3); |
||
1701 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
||
1702 | ArrayRef<SDValue> Ops); |
||
1703 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
||
1704 | EVT VT2, SDValue Op1, SDValue Op2); |
||
1705 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
||
1706 | EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3); |
||
1707 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
||
1708 | EVT VT2, ArrayRef<SDValue> Ops); |
||
1709 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
||
1710 | EVT VT2, EVT VT3, SDValue Op1, SDValue Op2); |
||
1711 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
||
1712 | EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, |
||
1713 | SDValue Op3); |
||
1714 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
||
1715 | EVT VT2, EVT VT3, ArrayRef<SDValue> Ops); |
||
1716 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, |
||
1717 | ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops); |
||
1718 | MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs, |
||
1719 | ArrayRef<SDValue> Ops); |
||
1720 | |||
1721 | /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes. |
||
1722 | SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, |
||
1723 | SDValue Operand); |
||
1724 | |||
1725 | /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes. |
||
1726 | SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, |
||
1727 | SDValue Operand, SDValue Subreg); |
||
1728 | |||
1729 | /// Get the specified node if it's already available, or else return NULL. |
||
1730 | SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, |
||
1731 | ArrayRef<SDValue> Ops, const SDNodeFlags Flags); |
||
1732 | SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, |
||
1733 | ArrayRef<SDValue> Ops); |
||
1734 | |||
1735 | /// Check if a node exists without modifying its flags. |
||
1736 | bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops); |
||
1737 | |||
1738 | /// Creates a SDDbgValue node. |
||
1739 | SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, |
||
1740 | unsigned R, bool IsIndirect, const DebugLoc &DL, |
||
1741 | unsigned O); |
||
1742 | |||
1743 | /// Creates a constant SDDbgValue node. |
||
1744 | SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr, |
||
1745 | const Value *C, const DebugLoc &DL, |
||
1746 | unsigned O); |
||
1747 | |||
1748 | /// Creates a FrameIndex SDDbgValue node. |
||
1749 | SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, |
||
1750 | unsigned FI, bool IsIndirect, |
||
1751 | const DebugLoc &DL, unsigned O); |
||
1752 | |||
1753 | /// Creates a FrameIndex SDDbgValue node. |
||
1754 | SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, |
||
1755 | unsigned FI, |
||
1756 | ArrayRef<SDNode *> Dependencies, |
||
1757 | bool IsIndirect, const DebugLoc &DL, |
||
1758 | unsigned O); |
||
1759 | |||
1760 | /// Creates a VReg SDDbgValue node. |
||
1761 | SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr, |
||
1762 | unsigned VReg, bool IsIndirect, |
||
1763 | const DebugLoc &DL, unsigned O); |
||
1764 | |||
1765 | /// Creates a SDDbgValue node from a list of locations. |
||
1766 | SDDbgValue *getDbgValueList(DIVariable *Var, DIExpression *Expr, |
||
1767 | ArrayRef<SDDbgOperand> Locs, |
||
1768 | ArrayRef<SDNode *> Dependencies, bool IsIndirect, |
||
1769 | const DebugLoc &DL, unsigned O, bool IsVariadic); |
||
1770 | |||
1771 | /// Creates a SDDbgLabel node. |
||
1772 | SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O); |
||
1773 | |||
1774 | /// Transfer debug values from one node to another, while optionally |
||
1775 | /// generating fragment expressions for split-up values. If \p InvalidateDbg |
||
1776 | /// is set, debug values are invalidated after they are transferred. |
||
1777 | void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0, |
||
1778 | unsigned SizeInBits = 0, bool InvalidateDbg = true); |
||
1779 | |||
1780 | /// Remove the specified node from the system. If any of its |
||
1781 | /// operands then becomes dead, remove them as well. Inform UpdateListener |
||
1782 | /// for each node deleted. |
||
1783 | void RemoveDeadNode(SDNode *N); |
||
1784 | |||
1785 | /// This method deletes the unreachable nodes in the |
||
1786 | /// given list, and any nodes that become unreachable as a result. |
||
1787 | void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes); |
||
1788 | |||
1789 | /// Modify anything using 'From' to use 'To' instead. |
||
1790 | /// This can cause recursive merging of nodes in the DAG. Use the first |
||
1791 | /// version if 'From' is known to have a single result, use the second |
||
1792 | /// if you have two nodes with identical results (or if 'To' has a superset |
||
1793 | /// of the results of 'From'), use the third otherwise. |
||
1794 | /// |
||
1795 | /// These methods all take an optional UpdateListener, which (if not null) is |
||
1796 | /// informed about nodes that are deleted and modified due to recursive |
||
1797 | /// changes in the dag. |
||
1798 | /// |
||
1799 | /// These functions only replace all existing uses. It's possible that as |
||
1800 | /// these replacements are being performed, CSE may cause the From node |
||
1801 | /// to be given new uses. These new uses of From are left in place, and |
||
1802 | /// not automatically transferred to To. |
||
1803 | /// |
||
1804 | void ReplaceAllUsesWith(SDValue From, SDValue To); |
||
1805 | void ReplaceAllUsesWith(SDNode *From, SDNode *To); |
||
1806 | void ReplaceAllUsesWith(SDNode *From, const SDValue *To); |
||
1807 | |||
1808 | /// Replace any uses of From with To, leaving |
||
1809 | /// uses of other values produced by From.getNode() alone. |
||
1810 | void ReplaceAllUsesOfValueWith(SDValue From, SDValue To); |
||
1811 | |||
1812 | /// Like ReplaceAllUsesOfValueWith, but for multiple values at once. |
||
1813 | /// This correctly handles the case where |
||
1814 | /// there is an overlap between the From values and the To values. |
||
1815 | void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, |
||
1816 | unsigned Num); |
||
1817 | |||
1818 | /// If an existing load has uses of its chain, create a token factor node with |
||
1819 | /// that chain and the new memory node's chain and update users of the old |
||
1820 | /// chain to the token factor. This ensures that the new memory node will have |
||
1821 | /// the same relative memory dependency position as the old load. Returns the |
||
1822 | /// new merged load chain. |
||
1823 | SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain); |
||
1824 | |||
1825 | /// If an existing load has uses of its chain, create a token factor node with |
||
1826 | /// that chain and the new memory node's chain and update users of the old |
||
1827 | /// chain to the token factor. This ensures that the new memory node will have |
||
1828 | /// the same relative memory dependency position as the old load. Returns the |
||
1829 | /// new merged load chain. |
||
1830 | SDValue makeEquivalentMemoryOrdering(LoadSDNode *OldLoad, SDValue NewMemOp); |
||
1831 | |||
1832 | /// Topological-sort the AllNodes list and a |
||
1833 | /// assign a unique node id for each node in the DAG based on their |
||
1834 | /// topological order. Returns the number of nodes. |
||
1835 | unsigned AssignTopologicalOrder(); |
||
1836 | |||
1837 | /// Move node N in the AllNodes list to be immediately |
||
1838 | /// before the given iterator Position. This may be used to update the |
||
1839 | /// topological ordering when the list of nodes is modified. |
||
1840 | void RepositionNode(allnodes_iterator Position, SDNode *N) { |
||
1841 | AllNodes.insert(Position, AllNodes.remove(N)); |
||
1842 | } |
||
1843 | |||
1844 | /// Returns an APFloat semantics tag appropriate for the given type. If VT is |
||
1845 | /// a vector type, the element semantics are returned. |
||
1846 | static const fltSemantics &EVTToAPFloatSemantics(EVT VT) { |
||
1847 | switch (VT.getScalarType().getSimpleVT().SimpleTy) { |
||
1848 | default: llvm_unreachable("Unknown FP format"); |
||
1849 | case MVT::f16: return APFloat::IEEEhalf(); |
||
1850 | case MVT::bf16: return APFloat::BFloat(); |
||
1851 | case MVT::f32: return APFloat::IEEEsingle(); |
||
1852 | case MVT::f64: return APFloat::IEEEdouble(); |
||
1853 | case MVT::f80: return APFloat::x87DoubleExtended(); |
||
1854 | case MVT::f128: return APFloat::IEEEquad(); |
||
1855 | case MVT::ppcf128: return APFloat::PPCDoubleDouble(); |
||
1856 | } |
||
1857 | } |
||
1858 | |||
1859 | /// Add a dbg_value SDNode. If SD is non-null that means the |
||
1860 | /// value is produced by SD. |
||
1861 | void AddDbgValue(SDDbgValue *DB, bool isParameter); |
||
1862 | |||
1863 | /// Add a dbg_label SDNode. |
||
1864 | void AddDbgLabel(SDDbgLabel *DB); |
||
1865 | |||
1866 | /// Get the debug values which reference the given SDNode. |
||
1867 | ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const { |
||
1868 | return DbgInfo->getSDDbgValues(SD); |
||
1869 | } |
||
1870 | |||
1871 | public: |
||
1872 | /// Return true if there are any SDDbgValue nodes associated |
||
1873 | /// with this SelectionDAG. |
||
1874 | bool hasDebugValues() const { return !DbgInfo->empty(); } |
||
1875 | |||
1876 | SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); } |
||
1877 | SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); } |
||
1878 | |||
1879 | SDDbgInfo::DbgIterator ByvalParmDbgBegin() const { |
||
1880 | return DbgInfo->ByvalParmDbgBegin(); |
||
1881 | } |
||
1882 | SDDbgInfo::DbgIterator ByvalParmDbgEnd() const { |
||
1883 | return DbgInfo->ByvalParmDbgEnd(); |
||
1884 | } |
||
1885 | |||
1886 | SDDbgInfo::DbgLabelIterator DbgLabelBegin() const { |
||
1887 | return DbgInfo->DbgLabelBegin(); |
||
1888 | } |
||
1889 | SDDbgInfo::DbgLabelIterator DbgLabelEnd() const { |
||
1890 | return DbgInfo->DbgLabelEnd(); |
||
1891 | } |
||
1892 | |||
1893 | /// To be invoked on an SDNode that is slated to be erased. This |
||
1894 | /// function mirrors \c llvm::salvageDebugInfo. |
||
1895 | void salvageDebugInfo(SDNode &N); |
||
1896 | |||
1897 | void dump() const; |
||
1898 | |||
1899 | /// In most cases this function returns the ABI alignment for a given type, |
||
1900 | /// except for illegal vector types where the alignment exceeds that of the |
||
1901 | /// stack. In such cases we attempt to break the vector down to a legal type |
||
1902 | /// and return the ABI alignment for that instead. |
||
1903 | Align getReducedAlign(EVT VT, bool UseABI); |
||
1904 | |||
1905 | /// Create a stack temporary based on the size in bytes and the alignment |
||
1906 | SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment); |
||
1907 | |||
1908 | /// Create a stack temporary, suitable for holding the specified value type. |
||
1909 | /// If minAlign is specified, the slot size will have at least that alignment. |
||
1910 | SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1); |
||
1911 | |||
1912 | /// Create a stack temporary suitable for holding either of the specified |
||
1913 | /// value types. |
||
1914 | SDValue CreateStackTemporary(EVT VT1, EVT VT2); |
||
1915 | |||
1916 | SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, |
||
1917 | const GlobalAddressSDNode *GA, |
||
1918 | const SDNode *N2); |
||
1919 | |||
1920 | SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, |
||
1921 | ArrayRef<SDValue> Ops); |
||
1922 | |||
1923 | /// Fold floating-point operations with 2 operands when both operands are |
||
1924 | /// constants and/or undefined. |
||
1925 | SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, |
||
1926 | SDValue N1, SDValue N2); |
||
1927 | |||
1928 | /// Constant fold a setcc to true or false. |
||
1929 | SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, |
||
1930 | const SDLoc &dl); |
||
1931 | |||
1932 | /// Return true if the sign bit of Op is known to be zero. |
||
1933 | /// We use this predicate to simplify operations downstream. |
||
1934 | bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const; |
||
1935 | |||
1936 | /// Return true if 'Op & Mask' is known to be zero. We |
||
1937 | /// use this predicate to simplify operations downstream. Op and Mask are |
||
1938 | /// known to be the same type. |
||
1939 | bool MaskedValueIsZero(SDValue Op, const APInt &Mask, |
||
1940 | unsigned Depth = 0) const; |
||
1941 | |||
1942 | /// Return true if 'Op & Mask' is known to be zero in DemandedElts. We |
||
1943 | /// use this predicate to simplify operations downstream. Op and Mask are |
||
1944 | /// known to be the same type. |
||
1945 | bool MaskedValueIsZero(SDValue Op, const APInt &Mask, |
||
1946 | const APInt &DemandedElts, unsigned Depth = 0) const; |
||
1947 | |||
1948 | /// Return true if 'Op' is known to be zero in DemandedElts. We |
||
1949 | /// use this predicate to simplify operations downstream. |
||
1950 | bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, |
||
1951 | unsigned Depth = 0) const; |
||
1952 | |||
1953 | /// Return true if '(Op & Mask) == Mask'. |
||
1954 | /// Op and Mask are known to be the same type. |
||
1955 | bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, |
||
1956 | unsigned Depth = 0) const; |
||
1957 | |||
1958 | /// For each demanded element of a vector, see if it is known to be zero. |
||
1959 | APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, |
||
1960 | unsigned Depth = 0) const; |
||
1961 | |||
1962 | /// Determine which bits of Op are known to be either zero or one and return |
||
1963 | /// them in Known. For vectors, the known bits are those that are shared by |
||
1964 | /// every vector element. |
||
1965 | /// Targets can implement the computeKnownBitsForTargetNode method in the |
||
1966 | /// TargetLowering class to allow target nodes to be understood. |
||
1967 | KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const; |
||
1968 | |||
1969 | /// Determine which bits of Op are known to be either zero or one and return |
||
1970 | /// them in Known. The DemandedElts argument allows us to only collect the |
||
1971 | /// known bits that are shared by the requested vector elements. |
||
1972 | /// Targets can implement the computeKnownBitsForTargetNode method in the |
||
1973 | /// TargetLowering class to allow target nodes to be understood. |
||
1974 | KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts, |
||
1975 | unsigned Depth = 0) const; |
||
1976 | |||
1977 | /// Used to represent the possible overflow behavior of an operation. |
||
1978 | /// Never: the operation cannot overflow. |
||
1979 | /// Always: the operation will always overflow. |
||
1980 | /// Sometime: the operation may or may not overflow. |
||
1981 | enum OverflowKind { |
||
1982 | OFK_Never, |
||
1983 | OFK_Sometime, |
||
1984 | OFK_Always, |
||
1985 | }; |
||
1986 | |||
1987 | /// Determine if the result of the addition of 2 node can overflow. |
||
1988 | OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const; |
||
1989 | |||
1990 | /// Test if the given value is known to have exactly one bit set. This differs |
||
1991 | /// from computeKnownBits in that it doesn't necessarily determine which bit |
||
1992 | /// is set. |
||
1993 | bool isKnownToBeAPowerOfTwo(SDValue Val) const; |
||
1994 | |||
1995 | /// Return the number of times the sign bit of the register is replicated into |
||
1996 | /// the other bits. We know that at least 1 bit is always equal to the sign |
||
1997 | /// bit (itself), but other cases can give us information. For example, |
||
1998 | /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal |
||
1999 | /// to each other, so we return 3. Targets can implement the |
||
2000 | /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow |
||
2001 | /// target nodes to be understood. |
||
2002 | unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const; |
||
2003 | |||
2004 | /// Return the number of times the sign bit of the register is replicated into |
||
2005 | /// the other bits. We know that at least 1 bit is always equal to the sign |
||
2006 | /// bit (itself), but other cases can give us information. For example, |
||
2007 | /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal |
||
2008 | /// to each other, so we return 3. The DemandedElts argument allows |
||
2009 | /// us to only collect the minimum sign bits of the requested vector elements. |
||
2010 | /// Targets can implement the ComputeNumSignBitsForTarget method in the |
||
2011 | /// TargetLowering class to allow target nodes to be understood. |
||
2012 | unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, |
||
2013 | unsigned Depth = 0) const; |
||
2014 | |||
2015 | /// Get the upper bound on bit size for this Value \p Op as a signed integer. |
||
2016 | /// i.e. x == sext(trunc(x to MaxSignedBits) to bitwidth(x)). |
||
2017 | /// Similar to the APInt::getSignificantBits function. |
||
2018 | /// Helper wrapper to ComputeNumSignBits. |
||
2019 | unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth = 0) const; |
||
2020 | |||
2021 | /// Get the upper bound on bit size for this Value \p Op as a signed integer. |
||
2022 | /// i.e. x == sext(trunc(x to MaxSignedBits) to bitwidth(x)). |
||
2023 | /// Similar to the APInt::getSignificantBits function. |
||
2024 | /// Helper wrapper to ComputeNumSignBits. |
||
2025 | unsigned ComputeMaxSignificantBits(SDValue Op, const APInt &DemandedElts, |
||
2026 | unsigned Depth = 0) const; |
||
2027 | |||
2028 | /// Return true if this function can prove that \p Op is never poison |
||
2029 | /// and, if \p PoisonOnly is false, does not have undef bits. |
||
2030 | bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly = false, |
||
2031 | unsigned Depth = 0) const; |
||
2032 | |||
2033 | /// Return true if this function can prove that \p Op is never poison |
||
2034 | /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts |
||
2035 | /// argument limits the check to the requested vector elements. |
||
2036 | bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, const APInt &DemandedElts, |
||
2037 | bool PoisonOnly = false, |
||
2038 | unsigned Depth = 0) const; |
||
2039 | |||
2040 | /// Return true if this function can prove that \p Op is never poison. |
||
2041 | bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth = 0) const { |
||
2042 | return isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly*/ true, Depth); |
||
2043 | } |
||
2044 | |||
2045 | /// Return true if this function can prove that \p Op is never poison. The |
||
2046 | /// DemandedElts argument limits the check to the requested vector elements. |
||
2047 | bool isGuaranteedNotToBePoison(SDValue Op, const APInt &DemandedElts, |
||
2048 | unsigned Depth = 0) const { |
||
2049 | return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, |
||
2050 | /*PoisonOnly*/ true, Depth); |
||
2051 | } |
||
2052 | |||
2053 | /// Return true if Op can create undef or poison from non-undef & non-poison |
||
2054 | /// operands. The DemandedElts argument limits the check to the requested |
||
2055 | /// vector elements. |
||
2056 | /// |
||
2057 | /// \p ConsiderFlags controls whether poison producing flags on the |
||
2058 | /// instruction are considered. This can be used to see if the instruction |
||
2059 | /// could still introduce undef or poison even without poison generating flags |
||
2060 | /// which might be on the instruction. (i.e. could the result of |
||
2061 | /// Op->dropPoisonGeneratingFlags() still create poison or undef) |
||
2062 | bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, |
||
2063 | bool PoisonOnly = false, |
||
2064 | bool ConsiderFlags = true, |
||
2065 | unsigned Depth = 0) const; |
||
2066 | |||
2067 | /// Return true if Op can create undef or poison from non-undef & non-poison |
||
2068 | /// operands. |
||
2069 | /// |
||
2070 | /// \p ConsiderFlags controls whether poison producing flags on the |
||
2071 | /// instruction are considered. This can be used to see if the instruction |
||
2072 | /// could still introduce undef or poison even without poison generating flags |
||
2073 | /// which might be on the instruction. (i.e. could the result of |
||
2074 | /// Op->dropPoisonGeneratingFlags() still create poison or undef) |
||
2075 | bool canCreateUndefOrPoison(SDValue Op, bool PoisonOnly = false, |
||
2076 | bool ConsiderFlags = true, |
||
2077 | unsigned Depth = 0) const; |
||
2078 | |||
2079 | /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode |
||
2080 | /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that |
||
2081 | /// is guaranteed to have the same semantics as an ADD. This handles the |
||
2082 | /// equivalence: |
||
2083 | /// X|Cst == X+Cst iff X&Cst = 0. |
||
2084 | bool isBaseWithConstantOffset(SDValue Op) const; |
||
2085 | |||
2086 | /// Test whether the given SDValue (or all elements of it, if it is a |
||
2087 | /// vector) is known to never be NaN. If \p SNaN is true, returns if \p Op is |
||
2088 | /// known to never be a signaling NaN (it may still be a qNaN). |
||
2089 | bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const; |
||
2090 | |||
2091 | /// \returns true if \p Op is known to never be a signaling NaN. |
||
2092 | bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const { |
||
2093 | return isKnownNeverNaN(Op, true, Depth); |
||
2094 | } |
||
2095 | |||
2096 | /// Test whether the given floating point SDValue is known to never be |
||
2097 | /// positive or negative zero. |
||
2098 | bool isKnownNeverZeroFloat(SDValue Op) const; |
||
2099 | |||
2100 | /// Test whether the given SDValue is known to contain non-zero value(s). |
||
2101 | bool isKnownNeverZero(SDValue Op) const; |
||
2102 | |||
2103 | /// Test whether two SDValues are known to compare equal. This |
||
2104 | /// is true if they are the same value, or if one is negative zero and the |
||
2105 | /// other positive zero. |
||
2106 | bool isEqualTo(SDValue A, SDValue B) const; |
||
2107 | |||
2108 | /// Return true if A and B have no common bits set. As an example, this can |
||
2109 | /// allow an 'add' to be transformed into an 'or'. |
||
2110 | bool haveNoCommonBitsSet(SDValue A, SDValue B) const; |
||
2111 | |||
2112 | /// Test whether \p V has a splatted value for all the demanded elements. |
||
2113 | /// |
||
2114 | /// On success \p UndefElts will indicate the elements that have UNDEF |
||
2115 | /// values instead of the splat value, this is only guaranteed to be correct |
||
2116 | /// for \p DemandedElts. |
||
2117 | /// |
||
2118 | /// NOTE: The function will return true for a demanded splat of UNDEF values. |
||
2119 | bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, |
||
2120 | unsigned Depth = 0) const; |
||
2121 | |||
2122 | /// Test whether \p V has a splatted value. |
||
2123 | bool isSplatValue(SDValue V, bool AllowUndefs = false) const; |
||
2124 | |||
2125 | /// If V is a splatted value, return the source vector and its splat index. |
||
2126 | SDValue getSplatSourceVector(SDValue V, int &SplatIndex); |
||
2127 | |||
2128 | /// If V is a splat vector, return its scalar source operand by extracting |
||
2129 | /// that element from the source vector. If LegalTypes is true, this method |
||
2130 | /// may only return a legally-typed splat value. If it cannot legalize the |
||
2131 | /// splatted value it will return SDValue(). |
||
2132 | SDValue getSplatValue(SDValue V, bool LegalTypes = false); |
||
2133 | |||
2134 | /// If a SHL/SRA/SRL node \p V has a constant or splat constant shift amount |
||
2135 | /// that is less than the element bit-width of the shift node, return it. |
||
2136 | const APInt *getValidShiftAmountConstant(SDValue V, |
||
2137 | const APInt &DemandedElts) const; |
||
2138 | |||
2139 | /// If a SHL/SRA/SRL node \p V has constant shift amounts that are all less |
||
2140 | /// than the element bit-width of the shift node, return the minimum value. |
||
2141 | const APInt * |
||
2142 | getValidMinimumShiftAmountConstant(SDValue V, |
||
2143 | const APInt &DemandedElts) const; |
||
2144 | |||
2145 | /// If a SHL/SRA/SRL node \p V has constant shift amounts that are all less |
||
2146 | /// than the element bit-width of the shift node, return the maximum value. |
||
2147 | const APInt * |
||
2148 | getValidMaximumShiftAmountConstant(SDValue V, |
||
2149 | const APInt &DemandedElts) const; |
||
2150 | |||
2151 | /// Match a binop + shuffle pyramid that represents a horizontal reduction |
||
2152 | /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p |
||
2153 | /// Extract. The reduction must use one of the opcodes listed in /p |
||
2154 | /// CandidateBinOps and on success /p BinOp will contain the matching opcode. |
||
2155 | /// Returns the vector that is being reduced on, or SDValue() if a reduction |
||
2156 | /// was not matched. If \p AllowPartials is set then in the case of a |
||
2157 | /// reduction pattern that only matches the first few stages, the extracted |
||
2158 | /// subvector of the start of the reduction is returned. |
||
2159 | SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, |
||
2160 | ArrayRef<ISD::NodeType> CandidateBinOps, |
||
2161 | bool AllowPartials = false); |
||
2162 | |||
2163 | /// Utility function used by legalize and lowering to |
||
2164 | /// "unroll" a vector operation by splitting out the scalars and operating |
||
2165 | /// on each element individually. If the ResNE is 0, fully unroll the vector |
||
2166 | /// op. If ResNE is less than the width of the vector op, unroll up to ResNE. |
||
2167 | /// If the ResNE is greater than the width of the vector op, unroll the |
||
2168 | /// vector op and fill the end of the resulting vector with UNDEFS. |
||
2169 | SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0); |
||
2170 | |||
2171 | /// Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes. |
||
2172 | /// This is a separate function because those opcodes have two results. |
||
2173 | std::pair<SDValue, SDValue> UnrollVectorOverflowOp(SDNode *N, |
||
2174 | unsigned ResNE = 0); |
||
2175 | |||
2176 | /// Return true if loads are next to each other and can be |
||
2177 | /// merged. Check that both are nonvolatile and if LD is loading |
||
2178 | /// 'Bytes' bytes from a location that is 'Dist' units away from the |
||
2179 | /// location that the 'Base' load is loading from. |
||
2180 | bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, |
||
2181 | unsigned Bytes, int Dist) const; |
||
2182 | |||
2183 | /// Infer alignment of a load / store address. Return std::nullopt if it |
||
2184 | /// cannot be inferred. |
||
2185 | MaybeAlign InferPtrAlign(SDValue Ptr) const; |
||
2186 | |||
2187 | /// Compute the VTs needed for the low/hi parts of a type |
||
2188 | /// which is split (or expanded) into two not necessarily identical pieces. |
||
2189 | std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const; |
||
2190 | |||
2191 | /// Compute the VTs needed for the low/hi parts of a type, dependent on an |
||
2192 | /// enveloping VT that has been split into two identical pieces. Sets the |
||
2193 | /// HisIsEmpty flag when hi type has zero storage size. |
||
2194 | std::pair<EVT, EVT> GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, |
||
2195 | bool *HiIsEmpty) const; |
||
2196 | |||
2197 | /// Split the vector with EXTRACT_SUBVECTOR using the provides |
||
2198 | /// VTs and return the low/high part. |
||
2199 | std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL, |
||
2200 | const EVT &LoVT, const EVT &HiVT); |
||
2201 | |||
2202 | /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part. |
||
2203 | std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) { |
||
2204 | EVT LoVT, HiVT; |
||
2205 | std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType()); |
||
2206 | return SplitVector(N, DL, LoVT, HiVT); |
||
2207 | } |
||
2208 | |||
2209 | /// Split the explicit vector length parameter of a VP operation. |
||
2210 | std::pair<SDValue, SDValue> SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL); |
||
2211 | |||
2212 | /// Split the node's operand with EXTRACT_SUBVECTOR and |
||
2213 | /// return the low/high part. |
||
2214 | std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo) |
||
2215 | { |
||
2216 | return SplitVector(N->getOperand(OpNo), SDLoc(N)); |
||
2217 | } |
||
2218 | |||
2219 | /// Widen the vector up to the next power of two using INSERT_SUBVECTOR. |
||
2220 | SDValue WidenVector(const SDValue &N, const SDLoc &DL); |
||
2221 | |||
2222 | /// Append the extracted elements from Start to Count out of the vector Op in |
||
2223 | /// Args. If Count is 0, all of the elements will be extracted. The extracted |
||
2224 | /// elements will have type EVT if it is provided, and otherwise their type |
||
2225 | /// will be Op's element type. |
||
2226 | void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args, |
||
2227 | unsigned Start = 0, unsigned Count = 0, |
||
2228 | EVT EltVT = EVT()); |
||
2229 | |||
2230 | /// Compute the default alignment value for the given type. |
||
2231 | Align getEVTAlign(EVT MemoryVT) const; |
||
2232 | |||
2233 | /// Test whether the given value is a constant int or similar node. |
||
2234 | SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N) const; |
||
2235 | |||
2236 | /// Test whether the given value is a constant FP or similar node. |
||
2237 | SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N) const ; |
||
2238 | |||
2239 | /// \returns true if \p N is any kind of constant or build_vector of |
||
2240 | /// constants, int or float. If a vector, it may not necessarily be a splat. |
||
2241 | inline bool isConstantValueOfAnyType(SDValue N) const { |
||
2242 | return isConstantIntBuildVectorOrConstantInt(N) || |
||
2243 | isConstantFPBuildVectorOrConstantFP(N); |
||
2244 | } |
||
2245 | |||
2246 | /// Set CallSiteInfo to be associated with Node. |
||
2247 | void addCallSiteInfo(const SDNode *Node, CallSiteInfoImpl &&CallInfo) { |
||
2248 | SDEI[Node].CSInfo = std::move(CallInfo); |
||
2249 | } |
||
2250 | /// Return CallSiteInfo associated with Node, or a default if none exists. |
||
2251 | CallSiteInfo getCallSiteInfo(const SDNode *Node) { |
||
2252 | auto I = SDEI.find(Node); |
||
2253 | return I != SDEI.end() ? std::move(I->second).CSInfo : CallSiteInfo(); |
||
2254 | } |
||
2255 | /// Set HeapAllocSite to be associated with Node. |
||
2256 | void addHeapAllocSite(const SDNode *Node, MDNode *MD) { |
||
2257 | SDEI[Node].HeapAllocSite = MD; |
||
2258 | } |
||
2259 | /// Return HeapAllocSite associated with Node, or nullptr if none exists. |
||
2260 | MDNode *getHeapAllocSite(const SDNode *Node) const { |
||
2261 | auto I = SDEI.find(Node); |
||
2262 | return I != SDEI.end() ? I->second.HeapAllocSite : nullptr; |
||
2263 | } |
||
2264 | /// Set PCSections to be associated with Node. |
||
2265 | void addPCSections(const SDNode *Node, MDNode *MD) { |
||
2266 | SDEI[Node].PCSections = MD; |
||
2267 | } |
||
2268 | /// Return PCSections associated with Node, or nullptr if none exists. |
||
2269 | MDNode *getPCSections(const SDNode *Node) const { |
||
2270 | auto It = SDEI.find(Node); |
||
2271 | return It != SDEI.end() ? It->second.PCSections : nullptr; |
||
2272 | } |
||
2273 | /// Set NoMergeSiteInfo to be associated with Node if NoMerge is true. |
||
2274 | void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge) { |
||
2275 | if (NoMerge) |
||
2276 | SDEI[Node].NoMerge = NoMerge; |
||
2277 | } |
||
2278 | /// Return NoMerge info associated with Node. |
||
2279 | bool getNoMergeSiteInfo(const SDNode *Node) const { |
||
2280 | auto I = SDEI.find(Node); |
||
2281 | return I != SDEI.end() ? I->second.NoMerge : false; |
||
2282 | } |
||
2283 | |||
2284 | /// Copy extra info associated with one node to another. |
||
2285 | void copyExtraInfo(SDNode *From, SDNode *To); |
||
2286 | |||
2287 | /// Return the current function's default denormal handling kind for the given |
||
2288 | /// floating point type. |
||
2289 | DenormalMode getDenormalMode(EVT VT) const { |
||
2290 | return MF->getDenormalMode(EVTToAPFloatSemantics(VT)); |
||
2291 | } |
||
2292 | |||
2293 | bool shouldOptForSize() const; |
||
2294 | |||
2295 | /// Get the (commutative) neutral element for the given opcode, if it exists. |
||
2296 | SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, |
||
2297 | SDNodeFlags Flags); |
||
2298 | |||
2299 | /// Some opcodes may create immediate undefined behavior when used with some |
||
2300 | /// values (integer division-by-zero for example). Therefore, these operations |
||
2301 | /// are not generally safe to move around or change. |
||
2302 | bool isSafeToSpeculativelyExecute(unsigned Opcode) const { |
||
2303 | switch (Opcode) { |
||
2304 | case ISD::SDIV: |
||
2305 | case ISD::SREM: |
||
2306 | case ISD::SDIVREM: |
||
2307 | case ISD::UDIV: |
||
2308 | case ISD::UREM: |
||
2309 | case ISD::UDIVREM: |
||
2310 | return false; |
||
2311 | default: |
||
2312 | return true; |
||
2313 | } |
||
2314 | } |
||
2315 | |||
2316 | private: |
||
2317 | void InsertNode(SDNode *N); |
||
2318 | bool RemoveNodeFromCSEMaps(SDNode *N); |
||
2319 | void AddModifiedNodeToCSEMaps(SDNode *N); |
||
2320 | SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos); |
||
2321 | SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2, |
||
2322 | void *&InsertPos); |
||
2323 | SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, |
||
2324 | void *&InsertPos); |
||
2325 | SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc); |
||
2326 | |||
2327 | void DeleteNodeNotInCSEMaps(SDNode *N); |
||
2328 | void DeallocateNode(SDNode *N); |
||
2329 | |||
2330 | void allnodes_clear(); |
||
2331 | |||
2332 | /// Look up the node specified by ID in CSEMap. If it exists, return it. If |
||
2333 | /// not, return the insertion token that will make insertion faster. This |
||
2334 | /// overload is for nodes other than Constant or ConstantFP, use the other one |
||
2335 | /// for those. |
||
2336 | SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); |
||
2337 | |||
2338 | /// Look up the node specified by ID in CSEMap. If it exists, return it. If |
||
2339 | /// not, return the insertion token that will make insertion faster. Performs |
||
2340 | /// additional processing for constant nodes. |
||
2341 | SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL, |
||
2342 | void *&InsertPos); |
||
2343 | |||
2344 | /// Maps to auto-CSE operations. |
||
2345 | std::vector<CondCodeSDNode*> CondCodeNodes; |
||
2346 | |||
2347 | std::vector<SDNode*> ValueTypeNodes; |
||
2348 | std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes; |
||
2349 | StringMap<SDNode*> ExternalSymbols; |
||
2350 | |||
2351 | std::map<std::pair<std::string, unsigned>, SDNode *> TargetExternalSymbols; |
||
2352 | DenseMap<MCSymbol *, SDNode *> MCSymbols; |
||
2353 | |||
2354 | FlagInserter *Inserter = nullptr; |
||
2355 | }; |
||
2356 | |||
2357 | template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> { |
||
2358 | using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>; |
||
2359 | |||
2360 | static nodes_iterator nodes_begin(SelectionDAG *G) { |
||
2361 | return nodes_iterator(G->allnodes_begin()); |
||
2362 | } |
||
2363 | |||
2364 | static nodes_iterator nodes_end(SelectionDAG *G) { |
||
2365 | return nodes_iterator(G->allnodes_end()); |
||
2366 | } |
||
2367 | }; |
||
2368 | |||
2369 | } // end namespace llvm |
||
2370 | |||
2371 | #endif // LLVM_CODEGEN_SELECTIONDAG_H |