Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file Implements the ScheduleDAGInstrs class, which implements scheduling
10
/// for a MachineInstr-based dependency graph.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
15
#define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
16
 
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/PointerIntPair.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/SparseMultiSet.h"
21
#include "llvm/ADT/SparseSet.h"
22
#include "llvm/ADT/identity.h"
23
#include "llvm/CodeGen/LivePhysRegs.h"
24
#include "llvm/CodeGen/MachineBasicBlock.h"
25
#include "llvm/CodeGen/ScheduleDAG.h"
26
#include "llvm/CodeGen/TargetRegisterInfo.h"
27
#include "llvm/CodeGen/TargetSchedule.h"
28
#include "llvm/MC/LaneBitmask.h"
29
#include <cassert>
30
#include <cstdint>
31
#include <list>
32
#include <string>
33
#include <utility>
34
#include <vector>
35
 
36
namespace llvm {
37
 
38
  class AAResults;
39
  class LiveIntervals;
40
  class MachineFrameInfo;
41
  class MachineFunction;
42
  class MachineInstr;
43
  class MachineLoopInfo;
44
  class MachineOperand;
45
  struct MCSchedClassDesc;
46
  class PressureDiffs;
47
  class PseudoSourceValue;
48
  class RegPressureTracker;
49
  class UndefValue;
50
  class Value;
51
 
52
  /// An individual mapping from virtual register number to SUnit.
53
  struct VReg2SUnit {
54
    unsigned VirtReg;
55
    LaneBitmask LaneMask;
56
    SUnit *SU;
57
 
58
    VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU)
59
      : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {}
60
 
61
    unsigned getSparseSetIndex() const {
62
      return Register::virtReg2Index(VirtReg);
63
    }
64
  };
65
 
66
  /// Mapping from virtual register to SUnit including an operand index.
67
  struct VReg2SUnitOperIdx : public VReg2SUnit {
68
    unsigned OperandIndex;
69
 
70
    VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask,
71
                      unsigned OperandIndex, SUnit *SU)
72
      : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {}
73
  };
74
 
75
  /// Record a physical register access.
76
  /// For non-data-dependent uses, OpIdx == -1.
77
  struct PhysRegSUOper {
78
    SUnit *SU;
79
    int OpIdx;
80
    unsigned Reg;
81
 
82
    PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {}
83
 
84
    unsigned getSparseSetIndex() const { return Reg; }
85
  };
86
 
87
  /// Use a SparseMultiSet to track physical registers. Storage is only
88
  /// allocated once for the pass. It can be cleared in constant time and reused
89
  /// without any frees.
90
  using Reg2SUnitsMap =
91
      SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>;
92
 
93
  /// Use SparseSet as a SparseMap by relying on the fact that it never
94
  /// compares ValueT's, only unsigned keys. This allows the set to be cleared
95
  /// between scheduling regions in constant time as long as ValueT does not
96
  /// require a destructor.
97
  using VReg2SUnitMap = SparseSet<VReg2SUnit, VirtReg2IndexFunctor>;
98
 
99
  /// Track local uses of virtual registers. These uses are gathered by the DAG
100
  /// builder and may be consulted by the scheduler to avoid iterating an entire
101
  /// vreg use list.
102
  using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>;
103
 
104
  using VReg2SUnitOperIdxMultiMap =
105
      SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>;
106
 
107
  using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
108
 
109
  struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> {
110
    UnderlyingObject(ValueType V, bool MayAlias)
111
        : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {}
112
 
113
    ValueType getValue() const { return getPointer(); }
114
    bool mayAlias() const { return getInt(); }
115
  };
116
 
117
  using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>;
118
 
119
  /// A ScheduleDAG for scheduling lists of MachineInstr.
120
  class ScheduleDAGInstrs : public ScheduleDAG {
121
  protected:
122
    const MachineLoopInfo *MLI;
123
    const MachineFrameInfo &MFI;
124
 
125
    /// TargetSchedModel provides an interface to the machine model.
126
    TargetSchedModel SchedModel;
127
 
128
    /// True if the DAG builder should remove kill flags (in preparation for
129
    /// rescheduling).
130
    bool RemoveKillFlags;
131
 
132
    /// The standard DAG builder does not normally include terminators as DAG
133
    /// nodes because it does not create the necessary dependencies to prevent
134
    /// reordering. A specialized scheduler can override
135
    /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
136
    /// it has taken responsibility for scheduling the terminator correctly.
137
    bool CanHandleTerminators = false;
138
 
139
    /// Whether lane masks should get tracked.
140
    bool TrackLaneMasks = false;
141
 
142
    // State specific to the current scheduling region.
143
    // ------------------------------------------------
144
 
145
    /// The block in which to insert instructions
146
    MachineBasicBlock *BB;
147
 
148
    /// The beginning of the range to be scheduled.
149
    MachineBasicBlock::iterator RegionBegin;
150
 
151
    /// The end of the range to be scheduled.
152
    MachineBasicBlock::iterator RegionEnd;
153
 
154
    /// Instructions in this region (distance(RegionBegin, RegionEnd)).
155
    unsigned NumRegionInstrs;
156
 
157
    /// After calling BuildSchedGraph, each machine instruction in the current
158
    /// scheduling region is mapped to an SUnit.
159
    DenseMap<MachineInstr*, SUnit*> MISUnitMap;
160
 
161
    // State internal to DAG building.
162
    // -------------------------------
163
 
164
    /// Defs, Uses - Remember where defs and uses of each register are as we
165
    /// iterate upward through the instructions. This is allocated here instead
166
    /// of inside BuildSchedGraph to avoid the need for it to be initialized and
167
    /// destructed for each block.
168
    Reg2SUnitsMap Defs;
169
    Reg2SUnitsMap Uses;
170
 
171
    /// Tracks the last instruction(s) in this region defining each virtual
172
    /// register. There may be multiple current definitions for a register with
173
    /// disjunct lanemasks.
174
    VReg2SUnitMultiMap CurrentVRegDefs;
175
    /// Tracks the last instructions in this region using each virtual register.
176
    VReg2SUnitOperIdxMultiMap CurrentVRegUses;
177
 
178
    AAResults *AAForDep = nullptr;
179
 
180
    /// Remember a generic side-effecting instruction as we proceed.
181
    /// No other SU ever gets scheduled around it (except in the special
182
    /// case of a huge region that gets reduced).
183
    SUnit *BarrierChain = nullptr;
184
 
185
  public:
186
    /// A list of SUnits, used in Value2SUsMap, during DAG construction.
187
    /// Note: to gain speed it might be worth investigating an optimized
188
    /// implementation of this data structure, such as a singly linked list
189
    /// with a memory pool (SmallVector was tried but slow and SparseSet is not
190
    /// applicable).
191
    using SUList = std::list<SUnit *>;
192
 
193
  protected:
194
    /// A map from ValueType to SUList, used during DAG construction, as
195
    /// a means of remembering which SUs depend on which memory locations.
196
    class Value2SUsMap;
197
 
198
    /// Reduces maps in FIFO order, by N SUs. This is better than turning
199
    /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
200
    /// it avoids unnecessary edges between seen SUs above the new BarrierChain,
201
    /// and those below it.
202
    void reduceHugeMemNodeMaps(Value2SUsMap &stores,
203
                               Value2SUsMap &loads, unsigned N);
204
 
205
    /// Adds a chain edge between SUa and SUb, but only if both
206
    /// AAResults and Target fail to deny the dependency.
207
    void addChainDependency(SUnit *SUa, SUnit *SUb,
208
                            unsigned Latency = 0);
209
 
210
    /// Adds dependencies as needed from all SUs in list to SU.
211
    void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) {
212
      for (SUnit *Entry : SUs)
213
        addChainDependency(SU, Entry, Latency);
214
    }
215
 
216
    /// Adds dependencies as needed from all SUs in map, to SU.
217
    void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap);
218
 
219
    /// Adds dependencies as needed to SU, from all SUs mapped to V.
220
    void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap,
221
                              ValueType V);
222
 
223
    /// Adds barrier chain edges from all SUs in map, and then clear the map.
224
    /// This is equivalent to insertBarrierChain(), but optimized for the common
225
    /// case where the new BarrierChain (a global memory object) has a higher
226
    /// NodeNum than all SUs in map. It is assumed BarrierChain has been set
227
    /// before calling this.
228
    void addBarrierChain(Value2SUsMap &map);
229
 
230
    /// Inserts a barrier chain in a huge region, far below current SU.
231
    /// Adds barrier chain edges from all SUs in map with higher NodeNums than
232
    /// this new BarrierChain, and remove them from map. It is assumed
233
    /// BarrierChain has been set before calling this.
234
    void insertBarrierChain(Value2SUsMap &map);
235
 
236
    /// For an unanalyzable memory access, this Value is used in maps.
237
    UndefValue *UnknownValue;
238
 
239
 
240
    /// Topo - A topological ordering for SUnits which permits fast IsReachable
241
    /// and similar queries.
242
    ScheduleDAGTopologicalSort Topo;
243
 
244
    using DbgValueVector =
245
        std::vector<std::pair<MachineInstr *, MachineInstr *>>;
246
    /// Remember instruction that precedes DBG_VALUE.
247
    /// These are generated by buildSchedGraph but persist so they can be
248
    /// referenced when emitting the final schedule.
249
    DbgValueVector DbgValues;
250
    MachineInstr *FirstDbgValue = nullptr;
251
 
252
    /// Set of live physical registers for updating kill flags.
253
    LivePhysRegs LiveRegs;
254
 
255
  public:
256
    explicit ScheduleDAGInstrs(MachineFunction &mf,
257
                               const MachineLoopInfo *mli,
258
                               bool RemoveKillFlags = false);
259
 
260
    ~ScheduleDAGInstrs() override = default;
261
 
262
    /// Gets the machine model for instruction scheduling.
263
    const TargetSchedModel *getSchedModel() const { return &SchedModel; }
264
 
265
    /// Resolves and cache a resolved scheduling class for an SUnit.
266
    const MCSchedClassDesc *getSchedClass(SUnit *SU) const {
267
      if (!SU->SchedClass && SchedModel.hasInstrSchedModel())
268
        SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr());
269
      return SU->SchedClass;
270
    }
271
 
272
    /// IsReachable - Checks if SU is reachable from TargetSU.
273
    bool IsReachable(SUnit *SU, SUnit *TargetSU) {
274
      return Topo.IsReachable(SU, TargetSU);
275
    }
276
 
277
    /// Returns an iterator to the top of the current scheduling region.
278
    MachineBasicBlock::iterator begin() const { return RegionBegin; }
279
 
280
    /// Returns an iterator to the bottom of the current scheduling region.
281
    MachineBasicBlock::iterator end() const { return RegionEnd; }
282
 
283
    /// Creates a new SUnit and return a ptr to it.
284
    SUnit *newSUnit(MachineInstr *MI);
285
 
286
    /// Returns an existing SUnit for this MI, or nullptr.
287
    SUnit *getSUnit(MachineInstr *MI) const;
288
 
289
    /// If this method returns true, handling of the scheduling regions
290
    /// themselves (in case of a scheduling boundary in MBB) will be done
291
    /// beginning with the topmost region of MBB.
292
    virtual bool doMBBSchedRegionsTopDown() const { return false; }
293
 
294
    /// Prepares to perform scheduling in the given block.
295
    virtual void startBlock(MachineBasicBlock *BB);
296
 
297
    /// Cleans up after scheduling in the given block.
298
    virtual void finishBlock();
299
 
300
    /// Initialize the DAG and common scheduler state for a new
301
    /// scheduling region. This does not actually create the DAG, only clears
302
    /// it. The scheduling driver may call BuildSchedGraph multiple times per
303
    /// scheduling region.
304
    virtual void enterRegion(MachineBasicBlock *bb,
305
                             MachineBasicBlock::iterator begin,
306
                             MachineBasicBlock::iterator end,
307
                             unsigned regioninstrs);
308
 
309
    /// Called when the scheduler has finished scheduling the current region.
310
    virtual void exitRegion();
311
 
312
    /// Builds SUnits for the current region.
313
    /// If \p RPTracker is non-null, compute register pressure as a side effect.
314
    /// The DAG builder is an efficient place to do it because it already visits
315
    /// operands.
316
    void buildSchedGraph(AAResults *AA,
317
                         RegPressureTracker *RPTracker = nullptr,
318
                         PressureDiffs *PDiffs = nullptr,
319
                         LiveIntervals *LIS = nullptr,
320
                         bool TrackLaneMasks = false);
321
 
322
    /// Adds dependencies from instructions in the current list of
323
    /// instructions being scheduled to scheduling barrier. We want to make sure
324
    /// instructions which define registers that are either used by the
325
    /// terminator or are live-out are properly scheduled. This is especially
326
    /// important when the definition latency of the return value(s) are too
327
    /// high to be hidden by the branch or when the liveout registers used by
328
    /// instructions in the fallthrough block.
329
    void addSchedBarrierDeps();
330
 
331
    /// Orders nodes according to selected style.
332
    ///
333
    /// Typically, a scheduling algorithm will implement schedule() without
334
    /// overriding enterRegion() or exitRegion().
335
    virtual void schedule() = 0;
336
 
337
    /// Allow targets to perform final scheduling actions at the level of the
338
    /// whole MachineFunction. By default does nothing.
339
    virtual void finalizeSchedule() {}
340
 
341
    void dumpNode(const SUnit &SU) const override;
342
    void dump() const override;
343
 
344
    /// Returns a label for a DAG node that points to an instruction.
345
    std::string getGraphNodeLabel(const SUnit *SU) const override;
346
 
347
    /// Returns a label for the region of code covered by the DAG.
348
    std::string getDAGName() const override;
349
 
350
    /// Fixes register kill flags that scheduling has made invalid.
351
    void fixupKills(MachineBasicBlock &MBB);
352
 
353
    /// True if an edge can be added from PredSU to SuccSU without creating
354
    /// a cycle.
355
    bool canAddEdge(SUnit *SuccSU, SUnit *PredSU);
356
 
357
    /// Add a DAG edge to the given SU with the given predecessor
358
    /// dependence data.
359
    ///
360
    /// \returns true if the edge may be added without creating a cycle OR if an
361
    /// equivalent edge already existed (false indicates failure).
362
    bool addEdge(SUnit *SuccSU, const SDep &PredDep);
363
 
364
  protected:
365
    void initSUnits();
366
    void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx);
367
    void addPhysRegDeps(SUnit *SU, unsigned OperIdx);
368
    void addVRegDefDeps(SUnit *SU, unsigned OperIdx);
369
    void addVRegUseDeps(SUnit *SU, unsigned OperIdx);
370
 
371
    /// Returns a mask for which lanes get read/written by the given (register)
372
    /// machine operand.
373
    LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const;
374
 
375
    /// Returns true if the def register in \p MO has no uses.
376
    bool deadDefHasNoUse(const MachineOperand &MO);
377
  };
378
 
379
  /// Creates a new SUnit and return a ptr to it.
380
  inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) {
381
#ifndef NDEBUG
382
    const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0];
383
#endif
384
    SUnits.emplace_back(MI, (unsigned)SUnits.size());
385
    assert((Addr == nullptr || Addr == &SUnits[0]) &&
386
           "SUnits std::vector reallocated on the fly!");
387
    return &SUnits.back();
388
  }
389
 
390
  /// Returns an existing SUnit for this MI, or nullptr.
391
  inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const {
392
    return MISUnitMap.lookup(MI);
393
  }
394
 
395
} // end namespace llvm
396
 
397
#endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H