Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | /// \file Implements the ScheduleDAG class, which is used as the common base |
||
| 10 | /// class for instruction schedulers. This encapsulates the scheduling DAG, |
||
| 11 | /// which is shared between SelectionDAG and MachineInstr scheduling. |
||
| 12 | // |
||
| 13 | //===----------------------------------------------------------------------===// |
||
| 14 | |||
| 15 | #ifndef LLVM_CODEGEN_SCHEDULEDAG_H |
||
| 16 | #define LLVM_CODEGEN_SCHEDULEDAG_H |
||
| 17 | |||
| 18 | #include "llvm/ADT/BitVector.h" |
||
| 19 | #include "llvm/ADT/PointerIntPair.h" |
||
| 20 | #include "llvm/ADT/SmallVector.h" |
||
| 21 | #include "llvm/ADT/iterator.h" |
||
| 22 | #include "llvm/CodeGen/MachineInstr.h" |
||
| 23 | #include "llvm/CodeGen/TargetLowering.h" |
||
| 24 | #include "llvm/Support/ErrorHandling.h" |
||
| 25 | #include <cassert> |
||
| 26 | #include <cstddef> |
||
| 27 | #include <iterator> |
||
| 28 | #include <string> |
||
| 29 | #include <vector> |
||
| 30 | |||
| 31 | namespace llvm { |
||
| 32 | |||
| 33 | template <class GraphType> struct GraphTraits; |
||
| 34 | template<class Graph> class GraphWriter; |
||
| 35 | class LLVMTargetMachine; |
||
| 36 | class MachineFunction; |
||
| 37 | class MachineRegisterInfo; |
||
| 38 | class MCInstrDesc; |
||
| 39 | struct MCSchedClassDesc; |
||
| 40 | class SDNode; |
||
| 41 | class SUnit; |
||
| 42 | class ScheduleDAG; |
||
| 43 | class TargetInstrInfo; |
||
| 44 | class TargetRegisterClass; |
||
| 45 | class TargetRegisterInfo; |
||
| 46 | |||
| 47 | /// Scheduling dependency. This represents one direction of an edge in the |
||
| 48 | /// scheduling DAG. |
||
| 49 | class SDep { |
||
| 50 | public: |
||
| 51 | /// These are the different kinds of scheduling dependencies. |
||
| 52 | enum Kind { |
||
| 53 | Data, ///< Regular data dependence (aka true-dependence). |
||
| 54 | Anti, ///< A register anti-dependence (aka WAR). |
||
| 55 | Output, ///< A register output-dependence (aka WAW). |
||
| 56 | Order ///< Any other ordering dependency. |
||
| 57 | }; |
||
| 58 | |||
| 59 | // Strong dependencies must be respected by the scheduler. Artificial |
||
| 60 | // dependencies may be removed only if they are redundant with another |
||
| 61 | // strong dependence. |
||
| 62 | // |
||
| 63 | // Weak dependencies may be violated by the scheduling strategy, but only if |
||
| 64 | // the strategy can prove it is correct to do so. |
||
| 65 | // |
||
| 66 | // Strong OrderKinds must occur before "Weak". |
||
| 67 | // Weak OrderKinds must occur after "Weak". |
||
| 68 | enum OrderKind { |
||
| 69 | Barrier, ///< An unknown scheduling barrier. |
||
| 70 | MayAliasMem, ///< Nonvolatile load/Store instructions that may alias. |
||
| 71 | MustAliasMem, ///< Nonvolatile load/Store instructions that must alias. |
||
| 72 | Artificial, ///< Arbitrary strong DAG edge (no real dependence). |
||
| 73 | Weak, ///< Arbitrary weak DAG edge. |
||
| 74 | Cluster ///< Weak DAG edge linking a chain of clustered instrs. |
||
| 75 | }; |
||
| 76 | |||
| 77 | private: |
||
| 78 | /// A pointer to the depending/depended-on SUnit, and an enum |
||
| 79 | /// indicating the kind of the dependency. |
||
| 80 | PointerIntPair<SUnit *, 2, Kind> Dep; |
||
| 81 | |||
| 82 | /// A union discriminated by the dependence kind. |
||
| 83 | union { |
||
| 84 | /// For Data, Anti, and Output dependencies, the associated register. For |
||
| 85 | /// Data dependencies that don't currently have a register/ assigned, this |
||
| 86 | /// is set to zero. |
||
| 87 | unsigned Reg; |
||
| 88 | |||
| 89 | /// Additional information about Order dependencies. |
||
| 90 | unsigned OrdKind; // enum OrderKind |
||
| 91 | } Contents; |
||
| 92 | |||
| 93 | /// The time associated with this edge. Often this is just the value of the |
||
| 94 | /// Latency field of the predecessor, however advanced models may provide |
||
| 95 | /// additional information about specific edges. |
||
| 96 | unsigned Latency; |
||
| 97 | |||
| 98 | public: |
||
| 99 | /// Constructs a null SDep. This is only for use by container classes which |
||
| 100 | /// require default constructors. SUnits may not/ have null SDep edges. |
||
| 101 | SDep() : Dep(nullptr, Data) {} |
||
| 102 | |||
| 103 | /// Constructs an SDep with the specified values. |
||
| 104 | SDep(SUnit *S, Kind kind, unsigned Reg) |
||
| 105 | : Dep(S, kind), Contents() { |
||
| 106 | switch (kind) { |
||
| 107 | default: |
||
| 108 | llvm_unreachable("Reg given for non-register dependence!"); |
||
| 109 | case Anti: |
||
| 110 | case Output: |
||
| 111 | assert(Reg != 0 && |
||
| 112 | "SDep::Anti and SDep::Output must use a non-zero Reg!"); |
||
| 113 | Contents.Reg = Reg; |
||
| 114 | Latency = 0; |
||
| 115 | break; |
||
| 116 | case Data: |
||
| 117 | Contents.Reg = Reg; |
||
| 118 | Latency = 1; |
||
| 119 | break; |
||
| 120 | } |
||
| 121 | } |
||
| 122 | |||
| 123 | SDep(SUnit *S, OrderKind kind) |
||
| 124 | : Dep(S, Order), Contents(), Latency(0) { |
||
| 125 | Contents.OrdKind = kind; |
||
| 126 | } |
||
| 127 | |||
| 128 | /// Returns true if the specified SDep is equivalent except for latency. |
||
| 129 | bool overlaps(const SDep &Other) const; |
||
| 130 | |||
| 131 | bool operator==(const SDep &Other) const { |
||
| 132 | return overlaps(Other) && Latency == Other.Latency; |
||
| 133 | } |
||
| 134 | |||
| 135 | bool operator!=(const SDep &Other) const { |
||
| 136 | return !operator==(Other); |
||
| 137 | } |
||
| 138 | |||
| 139 | /// Returns the latency value for this edge, which roughly means the |
||
| 140 | /// minimum number of cycles that must elapse between the predecessor and |
||
| 141 | /// the successor, given that they have this edge between them. |
||
| 142 | unsigned getLatency() const { |
||
| 143 | return Latency; |
||
| 144 | } |
||
| 145 | |||
| 146 | /// Sets the latency for this edge. |
||
| 147 | void setLatency(unsigned Lat) { |
||
| 148 | Latency = Lat; |
||
| 149 | } |
||
| 150 | |||
| 151 | //// Returns the SUnit to which this edge points. |
||
| 152 | SUnit *getSUnit() const; |
||
| 153 | |||
| 154 | //// Assigns the SUnit to which this edge points. |
||
| 155 | void setSUnit(SUnit *SU); |
||
| 156 | |||
| 157 | /// Returns an enum value representing the kind of the dependence. |
||
| 158 | Kind getKind() const; |
||
| 159 | |||
| 160 | /// Shorthand for getKind() != SDep::Data. |
||
| 161 | bool isCtrl() const { |
||
| 162 | return getKind() != Data; |
||
| 163 | } |
||
| 164 | |||
| 165 | /// Tests if this is an Order dependence between two memory accesses |
||
| 166 | /// where both sides of the dependence access memory in non-volatile and |
||
| 167 | /// fully modeled ways. |
||
| 168 | bool isNormalMemory() const { |
||
| 169 | return getKind() == Order && (Contents.OrdKind == MayAliasMem |
||
| 170 | || Contents.OrdKind == MustAliasMem); |
||
| 171 | } |
||
| 172 | |||
| 173 | /// Tests if this is an Order dependence that is marked as a barrier. |
||
| 174 | bool isBarrier() const { |
||
| 175 | return getKind() == Order && Contents.OrdKind == Barrier; |
||
| 176 | } |
||
| 177 | |||
| 178 | /// Tests if this is could be any kind of memory dependence. |
||
| 179 | bool isNormalMemoryOrBarrier() const { |
||
| 180 | return (isNormalMemory() || isBarrier()); |
||
| 181 | } |
||
| 182 | |||
| 183 | /// Tests if this is an Order dependence that is marked as |
||
| 184 | /// "must alias", meaning that the SUnits at either end of the edge have a |
||
| 185 | /// memory dependence on a known memory location. |
||
| 186 | bool isMustAlias() const { |
||
| 187 | return getKind() == Order && Contents.OrdKind == MustAliasMem; |
||
| 188 | } |
||
| 189 | |||
| 190 | /// Tests if this a weak dependence. Weak dependencies are considered DAG |
||
| 191 | /// edges for height computation and other heuristics, but do not force |
||
| 192 | /// ordering. Breaking a weak edge may require the scheduler to compensate, |
||
| 193 | /// for example by inserting a copy. |
||
| 194 | bool isWeak() const { |
||
| 195 | return getKind() == Order && Contents.OrdKind >= Weak; |
||
| 196 | } |
||
| 197 | |||
| 198 | /// Tests if this is an Order dependence that is marked as |
||
| 199 | /// "artificial", meaning it isn't necessary for correctness. |
||
| 200 | bool isArtificial() const { |
||
| 201 | return getKind() == Order && Contents.OrdKind == Artificial; |
||
| 202 | } |
||
| 203 | |||
| 204 | /// Tests if this is an Order dependence that is marked as "cluster", |
||
| 205 | /// meaning it is artificial and wants to be adjacent. |
||
| 206 | bool isCluster() const { |
||
| 207 | return getKind() == Order && Contents.OrdKind == Cluster; |
||
| 208 | } |
||
| 209 | |||
| 210 | /// Tests if this is a Data dependence that is associated with a register. |
||
| 211 | bool isAssignedRegDep() const { |
||
| 212 | return getKind() == Data && Contents.Reg != 0; |
||
| 213 | } |
||
| 214 | |||
| 215 | /// Returns the register associated with this edge. This is only valid on |
||
| 216 | /// Data, Anti, and Output edges. On Data edges, this value may be zero, |
||
| 217 | /// meaning there is no associated register. |
||
| 218 | unsigned getReg() const { |
||
| 219 | assert((getKind() == Data || getKind() == Anti || getKind() == Output) && |
||
| 220 | "getReg called on non-register dependence edge!"); |
||
| 221 | return Contents.Reg; |
||
| 222 | } |
||
| 223 | |||
| 224 | /// Assigns the associated register for this edge. This is only valid on |
||
| 225 | /// Data, Anti, and Output edges. On Anti and Output edges, this value must |
||
| 226 | /// not be zero. On Data edges, the value may be zero, which would mean that |
||
| 227 | /// no specific register is associated with this edge. |
||
| 228 | void setReg(unsigned Reg) { |
||
| 229 | assert((getKind() == Data || getKind() == Anti || getKind() == Output) && |
||
| 230 | "setReg called on non-register dependence edge!"); |
||
| 231 | assert((getKind() != Anti || Reg != 0) && |
||
| 232 | "SDep::Anti edge cannot use the zero register!"); |
||
| 233 | assert((getKind() != Output || Reg != 0) && |
||
| 234 | "SDep::Output edge cannot use the zero register!"); |
||
| 235 | Contents.Reg = Reg; |
||
| 236 | } |
||
| 237 | |||
| 238 | void dump(const TargetRegisterInfo *TRI = nullptr) const; |
||
| 239 | }; |
||
| 240 | |||
| 241 | /// Scheduling unit. This is a node in the scheduling DAG. |
||
| 242 | class SUnit { |
||
| 243 | private: |
||
| 244 | enum : unsigned { BoundaryID = ~0u }; |
||
| 245 | |||
| 246 | SDNode *Node = nullptr; ///< Representative node. |
||
| 247 | MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr. |
||
| 248 | |||
| 249 | public: |
||
| 250 | SUnit *OrigNode = nullptr; ///< If not this, the node from which this node |
||
| 251 | /// was cloned. (SD scheduling only) |
||
| 252 | |||
| 253 | const MCSchedClassDesc *SchedClass = |
||
| 254 | nullptr; ///< nullptr or resolved SchedClass. |
||
| 255 | |||
| 256 | SmallVector<SDep, 4> Preds; ///< All sunit predecessors. |
||
| 257 | SmallVector<SDep, 4> Succs; ///< All sunit successors. |
||
| 258 | |||
| 259 | typedef SmallVectorImpl<SDep>::iterator pred_iterator; |
||
| 260 | typedef SmallVectorImpl<SDep>::iterator succ_iterator; |
||
| 261 | typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator; |
||
| 262 | typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator; |
||
| 263 | |||
| 264 | unsigned NodeNum = BoundaryID; ///< Entry # of node in the node vector. |
||
| 265 | unsigned NodeQueueId = 0; ///< Queue id of node. |
||
| 266 | unsigned NumPreds = 0; ///< # of SDep::Data preds. |
||
| 267 | unsigned NumSuccs = 0; ///< # of SDep::Data sucss. |
||
| 268 | unsigned NumPredsLeft = 0; ///< # of preds not scheduled. |
||
| 269 | unsigned NumSuccsLeft = 0; ///< # of succs not scheduled. |
||
| 270 | unsigned WeakPredsLeft = 0; ///< # of weak preds not scheduled. |
||
| 271 | unsigned WeakSuccsLeft = 0; ///< # of weak succs not scheduled. |
||
| 272 | unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use. |
||
| 273 | unsigned short Latency = 0; ///< Node latency. |
||
| 274 | bool isVRegCycle : 1; ///< May use and def the same vreg. |
||
| 275 | bool isCall : 1; ///< Is a function call. |
||
| 276 | bool isCallOp : 1; ///< Is a function call operand. |
||
| 277 | bool isTwoAddress : 1; ///< Is a two-address instruction. |
||
| 278 | bool isCommutable : 1; ///< Is a commutable instruction. |
||
| 279 | bool hasPhysRegUses : 1; ///< Has physreg uses. |
||
| 280 | bool hasPhysRegDefs : 1; ///< Has physreg defs that are being used. |
||
| 281 | bool hasPhysRegClobbers : 1; ///< Has any physreg defs, used or not. |
||
| 282 | bool isPending : 1; ///< True once pending. |
||
| 283 | bool isAvailable : 1; ///< True once available. |
||
| 284 | bool isScheduled : 1; ///< True once scheduled. |
||
| 285 | bool isScheduleHigh : 1; ///< True if preferable to schedule high. |
||
| 286 | bool isScheduleLow : 1; ///< True if preferable to schedule low. |
||
| 287 | bool isCloned : 1; ///< True if this node has been cloned. |
||
| 288 | bool isUnbuffered : 1; ///< Uses an unbuffered resource. |
||
| 289 | bool hasReservedResource : 1; ///< Uses a reserved resource. |
||
| 290 | Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference. |
||
| 291 | |||
| 292 | private: |
||
| 293 | bool isDepthCurrent : 1; ///< True if Depth is current. |
||
| 294 | bool isHeightCurrent : 1; ///< True if Height is current. |
||
| 295 | unsigned Depth = 0; ///< Node depth. |
||
| 296 | unsigned Height = 0; ///< Node height. |
||
| 297 | |||
| 298 | public: |
||
| 299 | unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready. |
||
| 300 | unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready. |
||
| 301 | |||
| 302 | const TargetRegisterClass *CopyDstRC = |
||
| 303 | nullptr; ///< Is a special copy node if != nullptr. |
||
| 304 | const TargetRegisterClass *CopySrcRC = nullptr; |
||
| 305 | |||
| 306 | /// Constructs an SUnit for pre-regalloc scheduling to represent an |
||
| 307 | /// SDNode and any nodes flagged to it. |
||
| 308 | SUnit(SDNode *node, unsigned nodenum) |
||
| 309 | : Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false), |
||
| 310 | isCallOp(false), isTwoAddress(false), isCommutable(false), |
||
| 311 | hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), |
||
| 312 | isPending(false), isAvailable(false), isScheduled(false), |
||
| 313 | isScheduleHigh(false), isScheduleLow(false), isCloned(false), |
||
| 314 | isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false), |
||
| 315 | isHeightCurrent(false) {} |
||
| 316 | |||
| 317 | /// Constructs an SUnit for post-regalloc scheduling to represent a |
||
| 318 | /// MachineInstr. |
||
| 319 | SUnit(MachineInstr *instr, unsigned nodenum) |
||
| 320 | : Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false), |
||
| 321 | isCallOp(false), isTwoAddress(false), isCommutable(false), |
||
| 322 | hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), |
||
| 323 | isPending(false), isAvailable(false), isScheduled(false), |
||
| 324 | isScheduleHigh(false), isScheduleLow(false), isCloned(false), |
||
| 325 | isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false), |
||
| 326 | isHeightCurrent(false) {} |
||
| 327 | |||
| 328 | /// Constructs a placeholder SUnit. |
||
| 329 | SUnit() |
||
| 330 | : isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false), |
||
| 331 | isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false), |
||
| 332 | hasPhysRegClobbers(false), isPending(false), isAvailable(false), |
||
| 333 | isScheduled(false), isScheduleHigh(false), isScheduleLow(false), |
||
| 334 | isCloned(false), isUnbuffered(false), hasReservedResource(false), |
||
| 335 | isDepthCurrent(false), isHeightCurrent(false) {} |
||
| 336 | |||
| 337 | /// Boundary nodes are placeholders for the boundary of the |
||
| 338 | /// scheduling region. |
||
| 339 | /// |
||
| 340 | /// BoundaryNodes can have DAG edges, including Data edges, but they do not |
||
| 341 | /// correspond to schedulable entities (e.g. instructions) and do not have a |
||
| 342 | /// valid ID. Consequently, always check for boundary nodes before accessing |
||
| 343 | /// an associative data structure keyed on node ID. |
||
| 344 | bool isBoundaryNode() const { return NodeNum == BoundaryID; } |
||
| 345 | |||
| 346 | /// Assigns the representative SDNode for this SUnit. This may be used |
||
| 347 | /// during pre-regalloc scheduling. |
||
| 348 | void setNode(SDNode *N) { |
||
| 349 | assert(!Instr && "Setting SDNode of SUnit with MachineInstr!"); |
||
| 350 | Node = N; |
||
| 351 | } |
||
| 352 | |||
| 353 | /// Returns the representative SDNode for this SUnit. This may be used |
||
| 354 | /// during pre-regalloc scheduling. |
||
| 355 | SDNode *getNode() const { |
||
| 356 | assert(!Instr && "Reading SDNode of SUnit with MachineInstr!"); |
||
| 357 | return Node; |
||
| 358 | } |
||
| 359 | |||
| 360 | /// Returns true if this SUnit refers to a machine instruction as |
||
| 361 | /// opposed to an SDNode. |
||
| 362 | bool isInstr() const { return Instr; } |
||
| 363 | |||
| 364 | /// Assigns the instruction for the SUnit. This may be used during |
||
| 365 | /// post-regalloc scheduling. |
||
| 366 | void setInstr(MachineInstr *MI) { |
||
| 367 | assert(!Node && "Setting MachineInstr of SUnit with SDNode!"); |
||
| 368 | Instr = MI; |
||
| 369 | } |
||
| 370 | |||
| 371 | /// Returns the representative MachineInstr for this SUnit. This may be used |
||
| 372 | /// during post-regalloc scheduling. |
||
| 373 | MachineInstr *getInstr() const { |
||
| 374 | assert(!Node && "Reading MachineInstr of SUnit with SDNode!"); |
||
| 375 | return Instr; |
||
| 376 | } |
||
| 377 | |||
| 378 | /// Adds the specified edge as a pred of the current node if not already. |
||
| 379 | /// It also adds the current node as a successor of the specified node. |
||
| 380 | bool addPred(const SDep &D, bool Required = true); |
||
| 381 | |||
| 382 | /// Adds a barrier edge to SU by calling addPred(), with latency 0 |
||
| 383 | /// generally or latency 1 for a store followed by a load. |
||
| 384 | bool addPredBarrier(SUnit *SU) { |
||
| 385 | SDep Dep(SU, SDep::Barrier); |
||
| 386 | unsigned TrueMemOrderLatency = |
||
| 387 | ((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0); |
||
| 388 | Dep.setLatency(TrueMemOrderLatency); |
||
| 389 | return addPred(Dep); |
||
| 390 | } |
||
| 391 | |||
| 392 | /// Removes the specified edge as a pred of the current node if it exists. |
||
| 393 | /// It also removes the current node as a successor of the specified node. |
||
| 394 | void removePred(const SDep &D); |
||
| 395 | |||
| 396 | /// Returns the depth of this node, which is the length of the maximum path |
||
| 397 | /// up to any node which has no predecessors. |
||
| 398 | unsigned getDepth() const { |
||
| 399 | if (!isDepthCurrent) |
||
| 400 | const_cast<SUnit *>(this)->ComputeDepth(); |
||
| 401 | return Depth; |
||
| 402 | } |
||
| 403 | |||
| 404 | /// Returns the height of this node, which is the length of the |
||
| 405 | /// maximum path down to any node which has no successors. |
||
| 406 | unsigned getHeight() const { |
||
| 407 | if (!isHeightCurrent) |
||
| 408 | const_cast<SUnit *>(this)->ComputeHeight(); |
||
| 409 | return Height; |
||
| 410 | } |
||
| 411 | |||
| 412 | /// If NewDepth is greater than this node's depth value, sets it to |
||
| 413 | /// be the new depth value. This also recursively marks successor nodes |
||
| 414 | /// dirty. |
||
| 415 | void setDepthToAtLeast(unsigned NewDepth); |
||
| 416 | |||
| 417 | /// If NewHeight is greater than this node's height value, set it to be |
||
| 418 | /// the new height value. This also recursively marks predecessor nodes |
||
| 419 | /// dirty. |
||
| 420 | void setHeightToAtLeast(unsigned NewHeight); |
||
| 421 | |||
| 422 | /// Sets a flag in this node to indicate that its stored Depth value |
||
| 423 | /// will require recomputation the next time getDepth() is called. |
||
| 424 | void setDepthDirty(); |
||
| 425 | |||
| 426 | /// Sets a flag in this node to indicate that its stored Height value |
||
| 427 | /// will require recomputation the next time getHeight() is called. |
||
| 428 | void setHeightDirty(); |
||
| 429 | |||
| 430 | /// Tests if node N is a predecessor of this node. |
||
| 431 | bool isPred(const SUnit *N) const { |
||
| 432 | for (const SDep &Pred : Preds) |
||
| 433 | if (Pred.getSUnit() == N) |
||
| 434 | return true; |
||
| 435 | return false; |
||
| 436 | } |
||
| 437 | |||
| 438 | /// Tests if node N is a successor of this node. |
||
| 439 | bool isSucc(const SUnit *N) const { |
||
| 440 | for (const SDep &Succ : Succs) |
||
| 441 | if (Succ.getSUnit() == N) |
||
| 442 | return true; |
||
| 443 | return false; |
||
| 444 | } |
||
| 445 | |||
| 446 | bool isTopReady() const { |
||
| 447 | return NumPredsLeft == 0; |
||
| 448 | } |
||
| 449 | bool isBottomReady() const { |
||
| 450 | return NumSuccsLeft == 0; |
||
| 451 | } |
||
| 452 | |||
| 453 | /// Orders this node's predecessor edges such that the critical path |
||
| 454 | /// edge occurs first. |
||
| 455 | void biasCriticalPath(); |
||
| 456 | |||
| 457 | void dumpAttributes() const; |
||
| 458 | |||
| 459 | private: |
||
| 460 | void ComputeDepth(); |
||
| 461 | void ComputeHeight(); |
||
| 462 | }; |
||
| 463 | |||
| 464 | /// Returns true if the specified SDep is equivalent except for latency. |
||
| 465 | inline bool SDep::overlaps(const SDep &Other) const { |
||
| 466 | if (Dep != Other.Dep) |
||
| 467 | return false; |
||
| 468 | switch (Dep.getInt()) { |
||
| 469 | case Data: |
||
| 470 | case Anti: |
||
| 471 | case Output: |
||
| 472 | return Contents.Reg == Other.Contents.Reg; |
||
| 473 | case Order: |
||
| 474 | return Contents.OrdKind == Other.Contents.OrdKind; |
||
| 475 | } |
||
| 476 | llvm_unreachable("Invalid dependency kind!"); |
||
| 477 | } |
||
| 478 | |||
| 479 | //// Returns the SUnit to which this edge points. |
||
| 480 | inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); } |
||
| 481 | |||
| 482 | //// Assigns the SUnit to which this edge points. |
||
| 483 | inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); } |
||
| 484 | |||
| 485 | /// Returns an enum value representing the kind of the dependence. |
||
| 486 | inline SDep::Kind SDep::getKind() const { return Dep.getInt(); } |
||
| 487 | |||
| 488 | //===--------------------------------------------------------------------===// |
||
| 489 | |||
| 490 | /// This interface is used to plug different priorities computation |
||
| 491 | /// algorithms into the list scheduler. It implements the interface of a |
||
| 492 | /// standard priority queue, where nodes are inserted in arbitrary order and |
||
| 493 | /// returned in priority order. The computation of the priority and the |
||
| 494 | /// representation of the queue are totally up to the implementation to |
||
| 495 | /// decide. |
||
| 496 | class SchedulingPriorityQueue { |
||
| 497 | virtual void anchor(); |
||
| 498 | |||
| 499 | unsigned CurCycle = 0; |
||
| 500 | bool HasReadyFilter; |
||
| 501 | |||
| 502 | public: |
||
| 503 | SchedulingPriorityQueue(bool rf = false) : HasReadyFilter(rf) {} |
||
| 504 | |||
| 505 | virtual ~SchedulingPriorityQueue() = default; |
||
| 506 | |||
| 507 | virtual bool isBottomUp() const = 0; |
||
| 508 | |||
| 509 | virtual void initNodes(std::vector<SUnit> &SUnits) = 0; |
||
| 510 | virtual void addNode(const SUnit *SU) = 0; |
||
| 511 | virtual void updateNode(const SUnit *SU) = 0; |
||
| 512 | virtual void releaseState() = 0; |
||
| 513 | |||
| 514 | virtual bool empty() const = 0; |
||
| 515 | |||
| 516 | bool hasReadyFilter() const { return HasReadyFilter; } |
||
| 517 | |||
| 518 | virtual bool tracksRegPressure() const { return false; } |
||
| 519 | |||
| 520 | virtual bool isReady(SUnit *) const { |
||
| 521 | assert(!HasReadyFilter && "The ready filter must override isReady()"); |
||
| 522 | return true; |
||
| 523 | } |
||
| 524 | |||
| 525 | virtual void push(SUnit *U) = 0; |
||
| 526 | |||
| 527 | void push_all(const std::vector<SUnit *> &Nodes) { |
||
| 528 | for (SUnit *SU : Nodes) |
||
| 529 | push(SU); |
||
| 530 | } |
||
| 531 | |||
| 532 | virtual SUnit *pop() = 0; |
||
| 533 | |||
| 534 | virtual void remove(SUnit *SU) = 0; |
||
| 535 | |||
| 536 | virtual void dump(ScheduleDAG *) const {} |
||
| 537 | |||
| 538 | /// As each node is scheduled, this method is invoked. This allows the |
||
| 539 | /// priority function to adjust the priority of related unscheduled nodes, |
||
| 540 | /// for example. |
||
| 541 | virtual void scheduledNode(SUnit *) {} |
||
| 542 | |||
| 543 | virtual void unscheduledNode(SUnit *) {} |
||
| 544 | |||
| 545 | void setCurCycle(unsigned Cycle) { |
||
| 546 | CurCycle = Cycle; |
||
| 547 | } |
||
| 548 | |||
| 549 | unsigned getCurCycle() const { |
||
| 550 | return CurCycle; |
||
| 551 | } |
||
| 552 | }; |
||
| 553 | |||
| 554 | class ScheduleDAG { |
||
| 555 | public: |
||
| 556 | const LLVMTargetMachine &TM; ///< Target processor |
||
| 557 | const TargetInstrInfo *TII; ///< Target instruction information |
||
| 558 | const TargetRegisterInfo *TRI; ///< Target processor register info |
||
| 559 | MachineFunction &MF; ///< Machine function |
||
| 560 | MachineRegisterInfo &MRI; ///< Virtual/real register map |
||
| 561 | std::vector<SUnit> SUnits; ///< The scheduling units. |
||
| 562 | SUnit EntrySU; ///< Special node for the region entry. |
||
| 563 | SUnit ExitSU; ///< Special node for the region exit. |
||
| 564 | |||
| 565 | #ifdef NDEBUG |
||
| 566 | static const bool StressSched = false; |
||
| 567 | #else |
||
| 568 | bool StressSched; |
||
| 569 | #endif |
||
| 570 | |||
| 571 | explicit ScheduleDAG(MachineFunction &mf); |
||
| 572 | |||
| 573 | virtual ~ScheduleDAG(); |
||
| 574 | |||
| 575 | /// Clears the DAG state (between regions). |
||
| 576 | void clearDAG(); |
||
| 577 | |||
| 578 | /// Returns the MCInstrDesc of this SUnit. |
||
| 579 | /// Returns NULL for SDNodes without a machine opcode. |
||
| 580 | const MCInstrDesc *getInstrDesc(const SUnit *SU) const { |
||
| 581 | if (SU->isInstr()) return &SU->getInstr()->getDesc(); |
||
| 582 | return getNodeDesc(SU->getNode()); |
||
| 583 | } |
||
| 584 | |||
| 585 | /// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'. |
||
| 586 | virtual void viewGraph(const Twine &Name, const Twine &Title); |
||
| 587 | virtual void viewGraph(); |
||
| 588 | |||
| 589 | virtual void dumpNode(const SUnit &SU) const = 0; |
||
| 590 | virtual void dump() const = 0; |
||
| 591 | void dumpNodeName(const SUnit &SU) const; |
||
| 592 | |||
| 593 | /// Returns a label for an SUnit node in a visualization of the ScheduleDAG. |
||
| 594 | virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0; |
||
| 595 | |||
| 596 | /// Returns a label for the region of code covered by the DAG. |
||
| 597 | virtual std::string getDAGName() const = 0; |
||
| 598 | |||
| 599 | /// Adds custom features for a visualization of the ScheduleDAG. |
||
| 600 | virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {} |
||
| 601 | |||
| 602 | #ifndef NDEBUG |
||
| 603 | /// Verifies that all SUnits were scheduled and that their state is |
||
| 604 | /// consistent. Returns the number of scheduled SUnits. |
||
| 605 | unsigned VerifyScheduledDAG(bool isBottomUp); |
||
| 606 | #endif |
||
| 607 | |||
| 608 | protected: |
||
| 609 | void dumpNodeAll(const SUnit &SU) const; |
||
| 610 | |||
| 611 | private: |
||
| 612 | /// Returns the MCInstrDesc of this SDNode or NULL. |
||
| 613 | const MCInstrDesc *getNodeDesc(const SDNode *Node) const; |
||
| 614 | }; |
||
| 615 | |||
| 616 | class SUnitIterator { |
||
| 617 | SUnit *Node; |
||
| 618 | unsigned Operand; |
||
| 619 | |||
| 620 | SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {} |
||
| 621 | |||
| 622 | public: |
||
| 623 | using iterator_category = std::forward_iterator_tag; |
||
| 624 | using value_type = SUnit; |
||
| 625 | using difference_type = std::ptrdiff_t; |
||
| 626 | using pointer = value_type *; |
||
| 627 | using reference = value_type &; |
||
| 628 | |||
| 629 | bool operator==(const SUnitIterator& x) const { |
||
| 630 | return Operand == x.Operand; |
||
| 631 | } |
||
| 632 | bool operator!=(const SUnitIterator& x) const { return !operator==(x); } |
||
| 633 | |||
| 634 | pointer operator*() const { |
||
| 635 | return Node->Preds[Operand].getSUnit(); |
||
| 636 | } |
||
| 637 | pointer operator->() const { return operator*(); } |
||
| 638 | |||
| 639 | SUnitIterator& operator++() { // Preincrement |
||
| 640 | ++Operand; |
||
| 641 | return *this; |
||
| 642 | } |
||
| 643 | SUnitIterator operator++(int) { // Postincrement |
||
| 644 | SUnitIterator tmp = *this; ++*this; return tmp; |
||
| 645 | } |
||
| 646 | |||
| 647 | static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); } |
||
| 648 | static SUnitIterator end (SUnit *N) { |
||
| 649 | return SUnitIterator(N, (unsigned)N->Preds.size()); |
||
| 650 | } |
||
| 651 | |||
| 652 | unsigned getOperand() const { return Operand; } |
||
| 653 | const SUnit *getNode() const { return Node; } |
||
| 654 | |||
| 655 | /// Tests if this is not an SDep::Data dependence. |
||
| 656 | bool isCtrlDep() const { |
||
| 657 | return getSDep().isCtrl(); |
||
| 658 | } |
||
| 659 | bool isArtificialDep() const { |
||
| 660 | return getSDep().isArtificial(); |
||
| 661 | } |
||
| 662 | const SDep &getSDep() const { |
||
| 663 | return Node->Preds[Operand]; |
||
| 664 | } |
||
| 665 | }; |
||
| 666 | |||
| 667 | template <> struct GraphTraits<SUnit*> { |
||
| 668 | typedef SUnit *NodeRef; |
||
| 669 | typedef SUnitIterator ChildIteratorType; |
||
| 670 | static NodeRef getEntryNode(SUnit *N) { return N; } |
||
| 671 | static ChildIteratorType child_begin(NodeRef N) { |
||
| 672 | return SUnitIterator::begin(N); |
||
| 673 | } |
||
| 674 | static ChildIteratorType child_end(NodeRef N) { |
||
| 675 | return SUnitIterator::end(N); |
||
| 676 | } |
||
| 677 | }; |
||
| 678 | |||
| 679 | template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> { |
||
| 680 | typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator; |
||
| 681 | static nodes_iterator nodes_begin(ScheduleDAG *G) { |
||
| 682 | return nodes_iterator(G->SUnits.begin()); |
||
| 683 | } |
||
| 684 | static nodes_iterator nodes_end(ScheduleDAG *G) { |
||
| 685 | return nodes_iterator(G->SUnits.end()); |
||
| 686 | } |
||
| 687 | }; |
||
| 688 | |||
| 689 | /// This class can compute a topological ordering for SUnits and provides |
||
| 690 | /// methods for dynamically updating the ordering as new edges are added. |
||
| 691 | /// |
||
| 692 | /// This allows a very fast implementation of IsReachable, for example. |
||
| 693 | class ScheduleDAGTopologicalSort { |
||
| 694 | /// A reference to the ScheduleDAG's SUnits. |
||
| 695 | std::vector<SUnit> &SUnits; |
||
| 696 | SUnit *ExitSU; |
||
| 697 | |||
| 698 | // Have any new nodes been added? |
||
| 699 | bool Dirty = false; |
||
| 700 | |||
| 701 | // Outstanding added edges, that have not been applied to the ordering. |
||
| 702 | SmallVector<std::pair<SUnit *, SUnit *>, 16> Updates; |
||
| 703 | |||
| 704 | /// Maps topological index to the node number. |
||
| 705 | std::vector<int> Index2Node; |
||
| 706 | /// Maps the node number to its topological index. |
||
| 707 | std::vector<int> Node2Index; |
||
| 708 | /// a set of nodes visited during a DFS traversal. |
||
| 709 | BitVector Visited; |
||
| 710 | |||
| 711 | /// Makes a DFS traversal and mark all nodes affected by the edge insertion. |
||
| 712 | /// These nodes will later get new topological indexes by means of the Shift |
||
| 713 | /// method. |
||
| 714 | void DFS(const SUnit *SU, int UpperBound, bool& HasLoop); |
||
| 715 | |||
| 716 | /// Reassigns topological indexes for the nodes in the DAG to |
||
| 717 | /// preserve the topological ordering. |
||
| 718 | void Shift(BitVector& Visited, int LowerBound, int UpperBound); |
||
| 719 | |||
| 720 | /// Assigns the topological index to the node n. |
||
| 721 | void Allocate(int n, int index); |
||
| 722 | |||
| 723 | /// Fix the ordering, by either recomputing from scratch or by applying |
||
| 724 | /// any outstanding updates. Uses a heuristic to estimate what will be |
||
| 725 | /// cheaper. |
||
| 726 | void FixOrder(); |
||
| 727 | |||
| 728 | public: |
||
| 729 | ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU); |
||
| 730 | |||
| 731 | /// Add a SUnit without predecessors to the end of the topological order. It |
||
| 732 | /// also must be the first new node added to the DAG. |
||
| 733 | void AddSUnitWithoutPredecessors(const SUnit *SU); |
||
| 734 | |||
| 735 | /// Creates the initial topological ordering from the DAG to be scheduled. |
||
| 736 | void InitDAGTopologicalSorting(); |
||
| 737 | |||
| 738 | /// Returns an array of SUs that are both in the successor |
||
| 739 | /// subtree of StartSU and in the predecessor subtree of TargetSU. |
||
| 740 | /// StartSU and TargetSU are not in the array. |
||
| 741 | /// Success is false if TargetSU is not in the successor subtree of |
||
| 742 | /// StartSU, else it is true. |
||
| 743 | std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU, |
||
| 744 | bool &Success); |
||
| 745 | |||
| 746 | /// Checks if \p SU is reachable from \p TargetSU. |
||
| 747 | bool IsReachable(const SUnit *SU, const SUnit *TargetSU); |
||
| 748 | |||
| 749 | /// Returns true if addPred(TargetSU, SU) creates a cycle. |
||
| 750 | bool WillCreateCycle(SUnit *TargetSU, SUnit *SU); |
||
| 751 | |||
| 752 | /// Updates the topological ordering to accommodate an edge to be |
||
| 753 | /// added from SUnit \p X to SUnit \p Y. |
||
| 754 | void AddPred(SUnit *Y, SUnit *X); |
||
| 755 | |||
| 756 | /// Queues an update to the topological ordering to accommodate an edge to |
||
| 757 | /// be added from SUnit \p X to SUnit \p Y. |
||
| 758 | void AddPredQueued(SUnit *Y, SUnit *X); |
||
| 759 | |||
| 760 | /// Updates the topological ordering to accommodate an an edge to be |
||
| 761 | /// removed from the specified node \p N from the predecessors of the |
||
| 762 | /// current node \p M. |
||
| 763 | void RemovePred(SUnit *M, SUnit *N); |
||
| 764 | |||
| 765 | /// Mark the ordering as temporarily broken, after a new node has been |
||
| 766 | /// added. |
||
| 767 | void MarkDirty() { Dirty = true; } |
||
| 768 | |||
| 769 | typedef std::vector<int>::iterator iterator; |
||
| 770 | typedef std::vector<int>::const_iterator const_iterator; |
||
| 771 | iterator begin() { return Index2Node.begin(); } |
||
| 772 | const_iterator begin() const { return Index2Node.begin(); } |
||
| 773 | iterator end() { return Index2Node.end(); } |
||
| 774 | const_iterator end() const { return Index2Node.end(); } |
||
| 775 | |||
| 776 | typedef std::vector<int>::reverse_iterator reverse_iterator; |
||
| 777 | typedef std::vector<int>::const_reverse_iterator const_reverse_iterator; |
||
| 778 | reverse_iterator rbegin() { return Index2Node.rbegin(); } |
||
| 779 | const_reverse_iterator rbegin() const { return Index2Node.rbegin(); } |
||
| 780 | reverse_iterator rend() { return Index2Node.rend(); } |
||
| 781 | const_reverse_iterator rend() const { return Index2Node.rend(); } |
||
| 782 | }; |
||
| 783 | |||
| 784 | } // end namespace llvm |
||
| 785 | |||
| 786 | #endif // LLVM_CODEGEN_SCHEDULEDAG_H |