Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | /// \file Implements the ScheduleDAG class, which is used as the common base |
||
10 | /// class for instruction schedulers. This encapsulates the scheduling DAG, |
||
11 | /// which is shared between SelectionDAG and MachineInstr scheduling. |
||
12 | // |
||
13 | //===----------------------------------------------------------------------===// |
||
14 | |||
15 | #ifndef LLVM_CODEGEN_SCHEDULEDAG_H |
||
16 | #define LLVM_CODEGEN_SCHEDULEDAG_H |
||
17 | |||
18 | #include "llvm/ADT/BitVector.h" |
||
19 | #include "llvm/ADT/PointerIntPair.h" |
||
20 | #include "llvm/ADT/SmallVector.h" |
||
21 | #include "llvm/ADT/iterator.h" |
||
22 | #include "llvm/CodeGen/MachineInstr.h" |
||
23 | #include "llvm/CodeGen/TargetLowering.h" |
||
24 | #include "llvm/Support/ErrorHandling.h" |
||
25 | #include <cassert> |
||
26 | #include <cstddef> |
||
27 | #include <iterator> |
||
28 | #include <string> |
||
29 | #include <vector> |
||
30 | |||
31 | namespace llvm { |
||
32 | |||
33 | template <class GraphType> struct GraphTraits; |
||
34 | template<class Graph> class GraphWriter; |
||
35 | class LLVMTargetMachine; |
||
36 | class MachineFunction; |
||
37 | class MachineRegisterInfo; |
||
38 | class MCInstrDesc; |
||
39 | struct MCSchedClassDesc; |
||
40 | class SDNode; |
||
41 | class SUnit; |
||
42 | class ScheduleDAG; |
||
43 | class TargetInstrInfo; |
||
44 | class TargetRegisterClass; |
||
45 | class TargetRegisterInfo; |
||
46 | |||
47 | /// Scheduling dependency. This represents one direction of an edge in the |
||
48 | /// scheduling DAG. |
||
49 | class SDep { |
||
50 | public: |
||
51 | /// These are the different kinds of scheduling dependencies. |
||
52 | enum Kind { |
||
53 | Data, ///< Regular data dependence (aka true-dependence). |
||
54 | Anti, ///< A register anti-dependence (aka WAR). |
||
55 | Output, ///< A register output-dependence (aka WAW). |
||
56 | Order ///< Any other ordering dependency. |
||
57 | }; |
||
58 | |||
59 | // Strong dependencies must be respected by the scheduler. Artificial |
||
60 | // dependencies may be removed only if they are redundant with another |
||
61 | // strong dependence. |
||
62 | // |
||
63 | // Weak dependencies may be violated by the scheduling strategy, but only if |
||
64 | // the strategy can prove it is correct to do so. |
||
65 | // |
||
66 | // Strong OrderKinds must occur before "Weak". |
||
67 | // Weak OrderKinds must occur after "Weak". |
||
68 | enum OrderKind { |
||
69 | Barrier, ///< An unknown scheduling barrier. |
||
70 | MayAliasMem, ///< Nonvolatile load/Store instructions that may alias. |
||
71 | MustAliasMem, ///< Nonvolatile load/Store instructions that must alias. |
||
72 | Artificial, ///< Arbitrary strong DAG edge (no real dependence). |
||
73 | Weak, ///< Arbitrary weak DAG edge. |
||
74 | Cluster ///< Weak DAG edge linking a chain of clustered instrs. |
||
75 | }; |
||
76 | |||
77 | private: |
||
78 | /// A pointer to the depending/depended-on SUnit, and an enum |
||
79 | /// indicating the kind of the dependency. |
||
80 | PointerIntPair<SUnit *, 2, Kind> Dep; |
||
81 | |||
82 | /// A union discriminated by the dependence kind. |
||
83 | union { |
||
84 | /// For Data, Anti, and Output dependencies, the associated register. For |
||
85 | /// Data dependencies that don't currently have a register/ assigned, this |
||
86 | /// is set to zero. |
||
87 | unsigned Reg; |
||
88 | |||
89 | /// Additional information about Order dependencies. |
||
90 | unsigned OrdKind; // enum OrderKind |
||
91 | } Contents; |
||
92 | |||
93 | /// The time associated with this edge. Often this is just the value of the |
||
94 | /// Latency field of the predecessor, however advanced models may provide |
||
95 | /// additional information about specific edges. |
||
96 | unsigned Latency; |
||
97 | |||
98 | public: |
||
99 | /// Constructs a null SDep. This is only for use by container classes which |
||
100 | /// require default constructors. SUnits may not/ have null SDep edges. |
||
101 | SDep() : Dep(nullptr, Data) {} |
||
102 | |||
103 | /// Constructs an SDep with the specified values. |
||
104 | SDep(SUnit *S, Kind kind, unsigned Reg) |
||
105 | : Dep(S, kind), Contents() { |
||
106 | switch (kind) { |
||
107 | default: |
||
108 | llvm_unreachable("Reg given for non-register dependence!"); |
||
109 | case Anti: |
||
110 | case Output: |
||
111 | assert(Reg != 0 && |
||
112 | "SDep::Anti and SDep::Output must use a non-zero Reg!"); |
||
113 | Contents.Reg = Reg; |
||
114 | Latency = 0; |
||
115 | break; |
||
116 | case Data: |
||
117 | Contents.Reg = Reg; |
||
118 | Latency = 1; |
||
119 | break; |
||
120 | } |
||
121 | } |
||
122 | |||
123 | SDep(SUnit *S, OrderKind kind) |
||
124 | : Dep(S, Order), Contents(), Latency(0) { |
||
125 | Contents.OrdKind = kind; |
||
126 | } |
||
127 | |||
128 | /// Returns true if the specified SDep is equivalent except for latency. |
||
129 | bool overlaps(const SDep &Other) const; |
||
130 | |||
131 | bool operator==(const SDep &Other) const { |
||
132 | return overlaps(Other) && Latency == Other.Latency; |
||
133 | } |
||
134 | |||
135 | bool operator!=(const SDep &Other) const { |
||
136 | return !operator==(Other); |
||
137 | } |
||
138 | |||
139 | /// Returns the latency value for this edge, which roughly means the |
||
140 | /// minimum number of cycles that must elapse between the predecessor and |
||
141 | /// the successor, given that they have this edge between them. |
||
142 | unsigned getLatency() const { |
||
143 | return Latency; |
||
144 | } |
||
145 | |||
146 | /// Sets the latency for this edge. |
||
147 | void setLatency(unsigned Lat) { |
||
148 | Latency = Lat; |
||
149 | } |
||
150 | |||
151 | //// Returns the SUnit to which this edge points. |
||
152 | SUnit *getSUnit() const; |
||
153 | |||
154 | //// Assigns the SUnit to which this edge points. |
||
155 | void setSUnit(SUnit *SU); |
||
156 | |||
157 | /// Returns an enum value representing the kind of the dependence. |
||
158 | Kind getKind() const; |
||
159 | |||
160 | /// Shorthand for getKind() != SDep::Data. |
||
161 | bool isCtrl() const { |
||
162 | return getKind() != Data; |
||
163 | } |
||
164 | |||
165 | /// Tests if this is an Order dependence between two memory accesses |
||
166 | /// where both sides of the dependence access memory in non-volatile and |
||
167 | /// fully modeled ways. |
||
168 | bool isNormalMemory() const { |
||
169 | return getKind() == Order && (Contents.OrdKind == MayAliasMem |
||
170 | || Contents.OrdKind == MustAliasMem); |
||
171 | } |
||
172 | |||
173 | /// Tests if this is an Order dependence that is marked as a barrier. |
||
174 | bool isBarrier() const { |
||
175 | return getKind() == Order && Contents.OrdKind == Barrier; |
||
176 | } |
||
177 | |||
178 | /// Tests if this is could be any kind of memory dependence. |
||
179 | bool isNormalMemoryOrBarrier() const { |
||
180 | return (isNormalMemory() || isBarrier()); |
||
181 | } |
||
182 | |||
183 | /// Tests if this is an Order dependence that is marked as |
||
184 | /// "must alias", meaning that the SUnits at either end of the edge have a |
||
185 | /// memory dependence on a known memory location. |
||
186 | bool isMustAlias() const { |
||
187 | return getKind() == Order && Contents.OrdKind == MustAliasMem; |
||
188 | } |
||
189 | |||
190 | /// Tests if this a weak dependence. Weak dependencies are considered DAG |
||
191 | /// edges for height computation and other heuristics, but do not force |
||
192 | /// ordering. Breaking a weak edge may require the scheduler to compensate, |
||
193 | /// for example by inserting a copy. |
||
194 | bool isWeak() const { |
||
195 | return getKind() == Order && Contents.OrdKind >= Weak; |
||
196 | } |
||
197 | |||
198 | /// Tests if this is an Order dependence that is marked as |
||
199 | /// "artificial", meaning it isn't necessary for correctness. |
||
200 | bool isArtificial() const { |
||
201 | return getKind() == Order && Contents.OrdKind == Artificial; |
||
202 | } |
||
203 | |||
204 | /// Tests if this is an Order dependence that is marked as "cluster", |
||
205 | /// meaning it is artificial and wants to be adjacent. |
||
206 | bool isCluster() const { |
||
207 | return getKind() == Order && Contents.OrdKind == Cluster; |
||
208 | } |
||
209 | |||
210 | /// Tests if this is a Data dependence that is associated with a register. |
||
211 | bool isAssignedRegDep() const { |
||
212 | return getKind() == Data && Contents.Reg != 0; |
||
213 | } |
||
214 | |||
215 | /// Returns the register associated with this edge. This is only valid on |
||
216 | /// Data, Anti, and Output edges. On Data edges, this value may be zero, |
||
217 | /// meaning there is no associated register. |
||
218 | unsigned getReg() const { |
||
219 | assert((getKind() == Data || getKind() == Anti || getKind() == Output) && |
||
220 | "getReg called on non-register dependence edge!"); |
||
221 | return Contents.Reg; |
||
222 | } |
||
223 | |||
224 | /// Assigns the associated register for this edge. This is only valid on |
||
225 | /// Data, Anti, and Output edges. On Anti and Output edges, this value must |
||
226 | /// not be zero. On Data edges, the value may be zero, which would mean that |
||
227 | /// no specific register is associated with this edge. |
||
228 | void setReg(unsigned Reg) { |
||
229 | assert((getKind() == Data || getKind() == Anti || getKind() == Output) && |
||
230 | "setReg called on non-register dependence edge!"); |
||
231 | assert((getKind() != Anti || Reg != 0) && |
||
232 | "SDep::Anti edge cannot use the zero register!"); |
||
233 | assert((getKind() != Output || Reg != 0) && |
||
234 | "SDep::Output edge cannot use the zero register!"); |
||
235 | Contents.Reg = Reg; |
||
236 | } |
||
237 | |||
238 | void dump(const TargetRegisterInfo *TRI = nullptr) const; |
||
239 | }; |
||
240 | |||
241 | /// Scheduling unit. This is a node in the scheduling DAG. |
||
242 | class SUnit { |
||
243 | private: |
||
244 | enum : unsigned { BoundaryID = ~0u }; |
||
245 | |||
246 | SDNode *Node = nullptr; ///< Representative node. |
||
247 | MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr. |
||
248 | |||
249 | public: |
||
250 | SUnit *OrigNode = nullptr; ///< If not this, the node from which this node |
||
251 | /// was cloned. (SD scheduling only) |
||
252 | |||
253 | const MCSchedClassDesc *SchedClass = |
||
254 | nullptr; ///< nullptr or resolved SchedClass. |
||
255 | |||
256 | SmallVector<SDep, 4> Preds; ///< All sunit predecessors. |
||
257 | SmallVector<SDep, 4> Succs; ///< All sunit successors. |
||
258 | |||
259 | typedef SmallVectorImpl<SDep>::iterator pred_iterator; |
||
260 | typedef SmallVectorImpl<SDep>::iterator succ_iterator; |
||
261 | typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator; |
||
262 | typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator; |
||
263 | |||
264 | unsigned NodeNum = BoundaryID; ///< Entry # of node in the node vector. |
||
265 | unsigned NodeQueueId = 0; ///< Queue id of node. |
||
266 | unsigned NumPreds = 0; ///< # of SDep::Data preds. |
||
267 | unsigned NumSuccs = 0; ///< # of SDep::Data sucss. |
||
268 | unsigned NumPredsLeft = 0; ///< # of preds not scheduled. |
||
269 | unsigned NumSuccsLeft = 0; ///< # of succs not scheduled. |
||
270 | unsigned WeakPredsLeft = 0; ///< # of weak preds not scheduled. |
||
271 | unsigned WeakSuccsLeft = 0; ///< # of weak succs not scheduled. |
||
272 | unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use. |
||
273 | unsigned short Latency = 0; ///< Node latency. |
||
274 | bool isVRegCycle : 1; ///< May use and def the same vreg. |
||
275 | bool isCall : 1; ///< Is a function call. |
||
276 | bool isCallOp : 1; ///< Is a function call operand. |
||
277 | bool isTwoAddress : 1; ///< Is a two-address instruction. |
||
278 | bool isCommutable : 1; ///< Is a commutable instruction. |
||
279 | bool hasPhysRegUses : 1; ///< Has physreg uses. |
||
280 | bool hasPhysRegDefs : 1; ///< Has physreg defs that are being used. |
||
281 | bool hasPhysRegClobbers : 1; ///< Has any physreg defs, used or not. |
||
282 | bool isPending : 1; ///< True once pending. |
||
283 | bool isAvailable : 1; ///< True once available. |
||
284 | bool isScheduled : 1; ///< True once scheduled. |
||
285 | bool isScheduleHigh : 1; ///< True if preferable to schedule high. |
||
286 | bool isScheduleLow : 1; ///< True if preferable to schedule low. |
||
287 | bool isCloned : 1; ///< True if this node has been cloned. |
||
288 | bool isUnbuffered : 1; ///< Uses an unbuffered resource. |
||
289 | bool hasReservedResource : 1; ///< Uses a reserved resource. |
||
290 | Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference. |
||
291 | |||
292 | private: |
||
293 | bool isDepthCurrent : 1; ///< True if Depth is current. |
||
294 | bool isHeightCurrent : 1; ///< True if Height is current. |
||
295 | unsigned Depth = 0; ///< Node depth. |
||
296 | unsigned Height = 0; ///< Node height. |
||
297 | |||
298 | public: |
||
299 | unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready. |
||
300 | unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready. |
||
301 | |||
302 | const TargetRegisterClass *CopyDstRC = |
||
303 | nullptr; ///< Is a special copy node if != nullptr. |
||
304 | const TargetRegisterClass *CopySrcRC = nullptr; |
||
305 | |||
306 | /// Constructs an SUnit for pre-regalloc scheduling to represent an |
||
307 | /// SDNode and any nodes flagged to it. |
||
308 | SUnit(SDNode *node, unsigned nodenum) |
||
309 | : Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false), |
||
310 | isCallOp(false), isTwoAddress(false), isCommutable(false), |
||
311 | hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), |
||
312 | isPending(false), isAvailable(false), isScheduled(false), |
||
313 | isScheduleHigh(false), isScheduleLow(false), isCloned(false), |
||
314 | isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false), |
||
315 | isHeightCurrent(false) {} |
||
316 | |||
317 | /// Constructs an SUnit for post-regalloc scheduling to represent a |
||
318 | /// MachineInstr. |
||
319 | SUnit(MachineInstr *instr, unsigned nodenum) |
||
320 | : Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false), |
||
321 | isCallOp(false), isTwoAddress(false), isCommutable(false), |
||
322 | hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false), |
||
323 | isPending(false), isAvailable(false), isScheduled(false), |
||
324 | isScheduleHigh(false), isScheduleLow(false), isCloned(false), |
||
325 | isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false), |
||
326 | isHeightCurrent(false) {} |
||
327 | |||
328 | /// Constructs a placeholder SUnit. |
||
329 | SUnit() |
||
330 | : isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false), |
||
331 | isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false), |
||
332 | hasPhysRegClobbers(false), isPending(false), isAvailable(false), |
||
333 | isScheduled(false), isScheduleHigh(false), isScheduleLow(false), |
||
334 | isCloned(false), isUnbuffered(false), hasReservedResource(false), |
||
335 | isDepthCurrent(false), isHeightCurrent(false) {} |
||
336 | |||
337 | /// Boundary nodes are placeholders for the boundary of the |
||
338 | /// scheduling region. |
||
339 | /// |
||
340 | /// BoundaryNodes can have DAG edges, including Data edges, but they do not |
||
341 | /// correspond to schedulable entities (e.g. instructions) and do not have a |
||
342 | /// valid ID. Consequently, always check for boundary nodes before accessing |
||
343 | /// an associative data structure keyed on node ID. |
||
344 | bool isBoundaryNode() const { return NodeNum == BoundaryID; } |
||
345 | |||
346 | /// Assigns the representative SDNode for this SUnit. This may be used |
||
347 | /// during pre-regalloc scheduling. |
||
348 | void setNode(SDNode *N) { |
||
349 | assert(!Instr && "Setting SDNode of SUnit with MachineInstr!"); |
||
350 | Node = N; |
||
351 | } |
||
352 | |||
353 | /// Returns the representative SDNode for this SUnit. This may be used |
||
354 | /// during pre-regalloc scheduling. |
||
355 | SDNode *getNode() const { |
||
356 | assert(!Instr && "Reading SDNode of SUnit with MachineInstr!"); |
||
357 | return Node; |
||
358 | } |
||
359 | |||
360 | /// Returns true if this SUnit refers to a machine instruction as |
||
361 | /// opposed to an SDNode. |
||
362 | bool isInstr() const { return Instr; } |
||
363 | |||
364 | /// Assigns the instruction for the SUnit. This may be used during |
||
365 | /// post-regalloc scheduling. |
||
366 | void setInstr(MachineInstr *MI) { |
||
367 | assert(!Node && "Setting MachineInstr of SUnit with SDNode!"); |
||
368 | Instr = MI; |
||
369 | } |
||
370 | |||
371 | /// Returns the representative MachineInstr for this SUnit. This may be used |
||
372 | /// during post-regalloc scheduling. |
||
373 | MachineInstr *getInstr() const { |
||
374 | assert(!Node && "Reading MachineInstr of SUnit with SDNode!"); |
||
375 | return Instr; |
||
376 | } |
||
377 | |||
378 | /// Adds the specified edge as a pred of the current node if not already. |
||
379 | /// It also adds the current node as a successor of the specified node. |
||
380 | bool addPred(const SDep &D, bool Required = true); |
||
381 | |||
382 | /// Adds a barrier edge to SU by calling addPred(), with latency 0 |
||
383 | /// generally or latency 1 for a store followed by a load. |
||
384 | bool addPredBarrier(SUnit *SU) { |
||
385 | SDep Dep(SU, SDep::Barrier); |
||
386 | unsigned TrueMemOrderLatency = |
||
387 | ((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0); |
||
388 | Dep.setLatency(TrueMemOrderLatency); |
||
389 | return addPred(Dep); |
||
390 | } |
||
391 | |||
392 | /// Removes the specified edge as a pred of the current node if it exists. |
||
393 | /// It also removes the current node as a successor of the specified node. |
||
394 | void removePred(const SDep &D); |
||
395 | |||
396 | /// Returns the depth of this node, which is the length of the maximum path |
||
397 | /// up to any node which has no predecessors. |
||
398 | unsigned getDepth() const { |
||
399 | if (!isDepthCurrent) |
||
400 | const_cast<SUnit *>(this)->ComputeDepth(); |
||
401 | return Depth; |
||
402 | } |
||
403 | |||
404 | /// Returns the height of this node, which is the length of the |
||
405 | /// maximum path down to any node which has no successors. |
||
406 | unsigned getHeight() const { |
||
407 | if (!isHeightCurrent) |
||
408 | const_cast<SUnit *>(this)->ComputeHeight(); |
||
409 | return Height; |
||
410 | } |
||
411 | |||
412 | /// If NewDepth is greater than this node's depth value, sets it to |
||
413 | /// be the new depth value. This also recursively marks successor nodes |
||
414 | /// dirty. |
||
415 | void setDepthToAtLeast(unsigned NewDepth); |
||
416 | |||
417 | /// If NewHeight is greater than this node's height value, set it to be |
||
418 | /// the new height value. This also recursively marks predecessor nodes |
||
419 | /// dirty. |
||
420 | void setHeightToAtLeast(unsigned NewHeight); |
||
421 | |||
422 | /// Sets a flag in this node to indicate that its stored Depth value |
||
423 | /// will require recomputation the next time getDepth() is called. |
||
424 | void setDepthDirty(); |
||
425 | |||
426 | /// Sets a flag in this node to indicate that its stored Height value |
||
427 | /// will require recomputation the next time getHeight() is called. |
||
428 | void setHeightDirty(); |
||
429 | |||
430 | /// Tests if node N is a predecessor of this node. |
||
431 | bool isPred(const SUnit *N) const { |
||
432 | for (const SDep &Pred : Preds) |
||
433 | if (Pred.getSUnit() == N) |
||
434 | return true; |
||
435 | return false; |
||
436 | } |
||
437 | |||
438 | /// Tests if node N is a successor of this node. |
||
439 | bool isSucc(const SUnit *N) const { |
||
440 | for (const SDep &Succ : Succs) |
||
441 | if (Succ.getSUnit() == N) |
||
442 | return true; |
||
443 | return false; |
||
444 | } |
||
445 | |||
446 | bool isTopReady() const { |
||
447 | return NumPredsLeft == 0; |
||
448 | } |
||
449 | bool isBottomReady() const { |
||
450 | return NumSuccsLeft == 0; |
||
451 | } |
||
452 | |||
453 | /// Orders this node's predecessor edges such that the critical path |
||
454 | /// edge occurs first. |
||
455 | void biasCriticalPath(); |
||
456 | |||
457 | void dumpAttributes() const; |
||
458 | |||
459 | private: |
||
460 | void ComputeDepth(); |
||
461 | void ComputeHeight(); |
||
462 | }; |
||
463 | |||
464 | /// Returns true if the specified SDep is equivalent except for latency. |
||
465 | inline bool SDep::overlaps(const SDep &Other) const { |
||
466 | if (Dep != Other.Dep) |
||
467 | return false; |
||
468 | switch (Dep.getInt()) { |
||
469 | case Data: |
||
470 | case Anti: |
||
471 | case Output: |
||
472 | return Contents.Reg == Other.Contents.Reg; |
||
473 | case Order: |
||
474 | return Contents.OrdKind == Other.Contents.OrdKind; |
||
475 | } |
||
476 | llvm_unreachable("Invalid dependency kind!"); |
||
477 | } |
||
478 | |||
479 | //// Returns the SUnit to which this edge points. |
||
480 | inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); } |
||
481 | |||
482 | //// Assigns the SUnit to which this edge points. |
||
483 | inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); } |
||
484 | |||
485 | /// Returns an enum value representing the kind of the dependence. |
||
486 | inline SDep::Kind SDep::getKind() const { return Dep.getInt(); } |
||
487 | |||
488 | //===--------------------------------------------------------------------===// |
||
489 | |||
490 | /// This interface is used to plug different priorities computation |
||
491 | /// algorithms into the list scheduler. It implements the interface of a |
||
492 | /// standard priority queue, where nodes are inserted in arbitrary order and |
||
493 | /// returned in priority order. The computation of the priority and the |
||
494 | /// representation of the queue are totally up to the implementation to |
||
495 | /// decide. |
||
496 | class SchedulingPriorityQueue { |
||
497 | virtual void anchor(); |
||
498 | |||
499 | unsigned CurCycle = 0; |
||
500 | bool HasReadyFilter; |
||
501 | |||
502 | public: |
||
503 | SchedulingPriorityQueue(bool rf = false) : HasReadyFilter(rf) {} |
||
504 | |||
505 | virtual ~SchedulingPriorityQueue() = default; |
||
506 | |||
507 | virtual bool isBottomUp() const = 0; |
||
508 | |||
509 | virtual void initNodes(std::vector<SUnit> &SUnits) = 0; |
||
510 | virtual void addNode(const SUnit *SU) = 0; |
||
511 | virtual void updateNode(const SUnit *SU) = 0; |
||
512 | virtual void releaseState() = 0; |
||
513 | |||
514 | virtual bool empty() const = 0; |
||
515 | |||
516 | bool hasReadyFilter() const { return HasReadyFilter; } |
||
517 | |||
518 | virtual bool tracksRegPressure() const { return false; } |
||
519 | |||
520 | virtual bool isReady(SUnit *) const { |
||
521 | assert(!HasReadyFilter && "The ready filter must override isReady()"); |
||
522 | return true; |
||
523 | } |
||
524 | |||
525 | virtual void push(SUnit *U) = 0; |
||
526 | |||
527 | void push_all(const std::vector<SUnit *> &Nodes) { |
||
528 | for (SUnit *SU : Nodes) |
||
529 | push(SU); |
||
530 | } |
||
531 | |||
532 | virtual SUnit *pop() = 0; |
||
533 | |||
534 | virtual void remove(SUnit *SU) = 0; |
||
535 | |||
536 | virtual void dump(ScheduleDAG *) const {} |
||
537 | |||
538 | /// As each node is scheduled, this method is invoked. This allows the |
||
539 | /// priority function to adjust the priority of related unscheduled nodes, |
||
540 | /// for example. |
||
541 | virtual void scheduledNode(SUnit *) {} |
||
542 | |||
543 | virtual void unscheduledNode(SUnit *) {} |
||
544 | |||
545 | void setCurCycle(unsigned Cycle) { |
||
546 | CurCycle = Cycle; |
||
547 | } |
||
548 | |||
549 | unsigned getCurCycle() const { |
||
550 | return CurCycle; |
||
551 | } |
||
552 | }; |
||
553 | |||
554 | class ScheduleDAG { |
||
555 | public: |
||
556 | const LLVMTargetMachine &TM; ///< Target processor |
||
557 | const TargetInstrInfo *TII; ///< Target instruction information |
||
558 | const TargetRegisterInfo *TRI; ///< Target processor register info |
||
559 | MachineFunction &MF; ///< Machine function |
||
560 | MachineRegisterInfo &MRI; ///< Virtual/real register map |
||
561 | std::vector<SUnit> SUnits; ///< The scheduling units. |
||
562 | SUnit EntrySU; ///< Special node for the region entry. |
||
563 | SUnit ExitSU; ///< Special node for the region exit. |
||
564 | |||
565 | #ifdef NDEBUG |
||
566 | static const bool StressSched = false; |
||
567 | #else |
||
568 | bool StressSched; |
||
569 | #endif |
||
570 | |||
571 | explicit ScheduleDAG(MachineFunction &mf); |
||
572 | |||
573 | virtual ~ScheduleDAG(); |
||
574 | |||
575 | /// Clears the DAG state (between regions). |
||
576 | void clearDAG(); |
||
577 | |||
578 | /// Returns the MCInstrDesc of this SUnit. |
||
579 | /// Returns NULL for SDNodes without a machine opcode. |
||
580 | const MCInstrDesc *getInstrDesc(const SUnit *SU) const { |
||
581 | if (SU->isInstr()) return &SU->getInstr()->getDesc(); |
||
582 | return getNodeDesc(SU->getNode()); |
||
583 | } |
||
584 | |||
585 | /// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'. |
||
586 | virtual void viewGraph(const Twine &Name, const Twine &Title); |
||
587 | virtual void viewGraph(); |
||
588 | |||
589 | virtual void dumpNode(const SUnit &SU) const = 0; |
||
590 | virtual void dump() const = 0; |
||
591 | void dumpNodeName(const SUnit &SU) const; |
||
592 | |||
593 | /// Returns a label for an SUnit node in a visualization of the ScheduleDAG. |
||
594 | virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0; |
||
595 | |||
596 | /// Returns a label for the region of code covered by the DAG. |
||
597 | virtual std::string getDAGName() const = 0; |
||
598 | |||
599 | /// Adds custom features for a visualization of the ScheduleDAG. |
||
600 | virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {} |
||
601 | |||
602 | #ifndef NDEBUG |
||
603 | /// Verifies that all SUnits were scheduled and that their state is |
||
604 | /// consistent. Returns the number of scheduled SUnits. |
||
605 | unsigned VerifyScheduledDAG(bool isBottomUp); |
||
606 | #endif |
||
607 | |||
608 | protected: |
||
609 | void dumpNodeAll(const SUnit &SU) const; |
||
610 | |||
611 | private: |
||
612 | /// Returns the MCInstrDesc of this SDNode or NULL. |
||
613 | const MCInstrDesc *getNodeDesc(const SDNode *Node) const; |
||
614 | }; |
||
615 | |||
616 | class SUnitIterator { |
||
617 | SUnit *Node; |
||
618 | unsigned Operand; |
||
619 | |||
620 | SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {} |
||
621 | |||
622 | public: |
||
623 | using iterator_category = std::forward_iterator_tag; |
||
624 | using value_type = SUnit; |
||
625 | using difference_type = std::ptrdiff_t; |
||
626 | using pointer = value_type *; |
||
627 | using reference = value_type &; |
||
628 | |||
629 | bool operator==(const SUnitIterator& x) const { |
||
630 | return Operand == x.Operand; |
||
631 | } |
||
632 | bool operator!=(const SUnitIterator& x) const { return !operator==(x); } |
||
633 | |||
634 | pointer operator*() const { |
||
635 | return Node->Preds[Operand].getSUnit(); |
||
636 | } |
||
637 | pointer operator->() const { return operator*(); } |
||
638 | |||
639 | SUnitIterator& operator++() { // Preincrement |
||
640 | ++Operand; |
||
641 | return *this; |
||
642 | } |
||
643 | SUnitIterator operator++(int) { // Postincrement |
||
644 | SUnitIterator tmp = *this; ++*this; return tmp; |
||
645 | } |
||
646 | |||
647 | static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); } |
||
648 | static SUnitIterator end (SUnit *N) { |
||
649 | return SUnitIterator(N, (unsigned)N->Preds.size()); |
||
650 | } |
||
651 | |||
652 | unsigned getOperand() const { return Operand; } |
||
653 | const SUnit *getNode() const { return Node; } |
||
654 | |||
655 | /// Tests if this is not an SDep::Data dependence. |
||
656 | bool isCtrlDep() const { |
||
657 | return getSDep().isCtrl(); |
||
658 | } |
||
659 | bool isArtificialDep() const { |
||
660 | return getSDep().isArtificial(); |
||
661 | } |
||
662 | const SDep &getSDep() const { |
||
663 | return Node->Preds[Operand]; |
||
664 | } |
||
665 | }; |
||
666 | |||
667 | template <> struct GraphTraits<SUnit*> { |
||
668 | typedef SUnit *NodeRef; |
||
669 | typedef SUnitIterator ChildIteratorType; |
||
670 | static NodeRef getEntryNode(SUnit *N) { return N; } |
||
671 | static ChildIteratorType child_begin(NodeRef N) { |
||
672 | return SUnitIterator::begin(N); |
||
673 | } |
||
674 | static ChildIteratorType child_end(NodeRef N) { |
||
675 | return SUnitIterator::end(N); |
||
676 | } |
||
677 | }; |
||
678 | |||
679 | template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> { |
||
680 | typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator; |
||
681 | static nodes_iterator nodes_begin(ScheduleDAG *G) { |
||
682 | return nodes_iterator(G->SUnits.begin()); |
||
683 | } |
||
684 | static nodes_iterator nodes_end(ScheduleDAG *G) { |
||
685 | return nodes_iterator(G->SUnits.end()); |
||
686 | } |
||
687 | }; |
||
688 | |||
689 | /// This class can compute a topological ordering for SUnits and provides |
||
690 | /// methods for dynamically updating the ordering as new edges are added. |
||
691 | /// |
||
692 | /// This allows a very fast implementation of IsReachable, for example. |
||
693 | class ScheduleDAGTopologicalSort { |
||
694 | /// A reference to the ScheduleDAG's SUnits. |
||
695 | std::vector<SUnit> &SUnits; |
||
696 | SUnit *ExitSU; |
||
697 | |||
698 | // Have any new nodes been added? |
||
699 | bool Dirty = false; |
||
700 | |||
701 | // Outstanding added edges, that have not been applied to the ordering. |
||
702 | SmallVector<std::pair<SUnit *, SUnit *>, 16> Updates; |
||
703 | |||
704 | /// Maps topological index to the node number. |
||
705 | std::vector<int> Index2Node; |
||
706 | /// Maps the node number to its topological index. |
||
707 | std::vector<int> Node2Index; |
||
708 | /// a set of nodes visited during a DFS traversal. |
||
709 | BitVector Visited; |
||
710 | |||
711 | /// Makes a DFS traversal and mark all nodes affected by the edge insertion. |
||
712 | /// These nodes will later get new topological indexes by means of the Shift |
||
713 | /// method. |
||
714 | void DFS(const SUnit *SU, int UpperBound, bool& HasLoop); |
||
715 | |||
716 | /// Reassigns topological indexes for the nodes in the DAG to |
||
717 | /// preserve the topological ordering. |
||
718 | void Shift(BitVector& Visited, int LowerBound, int UpperBound); |
||
719 | |||
720 | /// Assigns the topological index to the node n. |
||
721 | void Allocate(int n, int index); |
||
722 | |||
723 | /// Fix the ordering, by either recomputing from scratch or by applying |
||
724 | /// any outstanding updates. Uses a heuristic to estimate what will be |
||
725 | /// cheaper. |
||
726 | void FixOrder(); |
||
727 | |||
728 | public: |
||
729 | ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU); |
||
730 | |||
731 | /// Add a SUnit without predecessors to the end of the topological order. It |
||
732 | /// also must be the first new node added to the DAG. |
||
733 | void AddSUnitWithoutPredecessors(const SUnit *SU); |
||
734 | |||
735 | /// Creates the initial topological ordering from the DAG to be scheduled. |
||
736 | void InitDAGTopologicalSorting(); |
||
737 | |||
738 | /// Returns an array of SUs that are both in the successor |
||
739 | /// subtree of StartSU and in the predecessor subtree of TargetSU. |
||
740 | /// StartSU and TargetSU are not in the array. |
||
741 | /// Success is false if TargetSU is not in the successor subtree of |
||
742 | /// StartSU, else it is true. |
||
743 | std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU, |
||
744 | bool &Success); |
||
745 | |||
746 | /// Checks if \p SU is reachable from \p TargetSU. |
||
747 | bool IsReachable(const SUnit *SU, const SUnit *TargetSU); |
||
748 | |||
749 | /// Returns true if addPred(TargetSU, SU) creates a cycle. |
||
750 | bool WillCreateCycle(SUnit *TargetSU, SUnit *SU); |
||
751 | |||
752 | /// Updates the topological ordering to accommodate an edge to be |
||
753 | /// added from SUnit \p X to SUnit \p Y. |
||
754 | void AddPred(SUnit *Y, SUnit *X); |
||
755 | |||
756 | /// Queues an update to the topological ordering to accommodate an edge to |
||
757 | /// be added from SUnit \p X to SUnit \p Y. |
||
758 | void AddPredQueued(SUnit *Y, SUnit *X); |
||
759 | |||
760 | /// Updates the topological ordering to accommodate an an edge to be |
||
761 | /// removed from the specified node \p N from the predecessors of the |
||
762 | /// current node \p M. |
||
763 | void RemovePred(SUnit *M, SUnit *N); |
||
764 | |||
765 | /// Mark the ordering as temporarily broken, after a new node has been |
||
766 | /// added. |
||
767 | void MarkDirty() { Dirty = true; } |
||
768 | |||
769 | typedef std::vector<int>::iterator iterator; |
||
770 | typedef std::vector<int>::const_iterator const_iterator; |
||
771 | iterator begin() { return Index2Node.begin(); } |
||
772 | const_iterator begin() const { return Index2Node.begin(); } |
||
773 | iterator end() { return Index2Node.end(); } |
||
774 | const_iterator end() const { return Index2Node.end(); } |
||
775 | |||
776 | typedef std::vector<int>::reverse_iterator reverse_iterator; |
||
777 | typedef std::vector<int>::const_reverse_iterator const_reverse_iterator; |
||
778 | reverse_iterator rbegin() { return Index2Node.rbegin(); } |
||
779 | const_reverse_iterator rbegin() const { return Index2Node.rbegin(); } |
||
780 | reverse_iterator rend() { return Index2Node.rend(); } |
||
781 | const_reverse_iterator rend() const { return Index2Node.rend(); } |
||
782 | }; |
||
783 | |||
784 | } // end namespace llvm |
||
785 | |||
786 | #endif // LLVM_CODEGEN_SCHEDULEDAG_H |