Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/CodeGen/RegisterBankInfo.h --------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | /// \file This file declares the API for the register bank info. |
||
10 | /// This API is responsible for handling the register banks. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_CODEGEN_REGISTERBANKINFO_H |
||
15 | #define LLVM_CODEGEN_REGISTERBANKINFO_H |
||
16 | |||
17 | #include "llvm/ADT/DenseMap.h" |
||
18 | #include "llvm/ADT/Hashing.h" |
||
19 | #include "llvm/ADT/SmallVector.h" |
||
20 | #include "llvm/ADT/iterator_range.h" |
||
21 | #include "llvm/CodeGen/Register.h" |
||
22 | #include "llvm/Support/ErrorHandling.h" |
||
23 | #include "llvm/Support/LowLevelTypeImpl.h" |
||
24 | #include <cassert> |
||
25 | #include <initializer_list> |
||
26 | #include <memory> |
||
27 | |||
28 | namespace llvm { |
||
29 | |||
30 | class MachineInstr; |
||
31 | class MachineRegisterInfo; |
||
32 | class raw_ostream; |
||
33 | class RegisterBank; |
||
34 | class TargetInstrInfo; |
||
35 | class TargetRegisterClass; |
||
36 | class TargetRegisterInfo; |
||
37 | |||
38 | /// Holds all the information related to register banks. |
||
39 | class RegisterBankInfo { |
||
40 | public: |
||
41 | /// Helper struct that represents how a value is partially mapped |
||
42 | /// into a register. |
||
43 | /// The StartIdx and Length represent what region of the orginal |
||
44 | /// value this partial mapping covers. |
||
45 | /// This can be represented as a Mask of contiguous bit starting |
||
46 | /// at StartIdx bit and spanning Length bits. |
||
47 | /// StartIdx is the number of bits from the less significant bits. |
||
48 | struct PartialMapping { |
||
49 | /// Number of bits at which this partial mapping starts in the |
||
50 | /// original value. The bits are counted from less significant |
||
51 | /// bits to most significant bits. |
||
52 | unsigned StartIdx; |
||
53 | |||
54 | /// Length of this mapping in bits. This is how many bits this |
||
55 | /// partial mapping covers in the original value: |
||
56 | /// from StartIdx to StartIdx + Length -1. |
||
57 | unsigned Length; |
||
58 | |||
59 | /// Register bank where the partial value lives. |
||
60 | const RegisterBank *RegBank; |
||
61 | |||
62 | PartialMapping() = default; |
||
63 | |||
64 | /// Provide a shortcut for quickly building PartialMapping. |
||
65 | PartialMapping(unsigned StartIdx, unsigned Length, |
||
66 | const RegisterBank &RegBank) |
||
67 | : StartIdx(StartIdx), Length(Length), RegBank(&RegBank) {} |
||
68 | |||
69 | /// \return the index of in the original value of the most |
||
70 | /// significant bit that this partial mapping covers. |
||
71 | unsigned getHighBitIdx() const { return StartIdx + Length - 1; } |
||
72 | |||
73 | /// Print this partial mapping on dbgs() stream. |
||
74 | void dump() const; |
||
75 | |||
76 | /// Print this partial mapping on \p OS; |
||
77 | void print(raw_ostream &OS) const; |
||
78 | |||
79 | /// Check that the Mask is compatible with the RegBank. |
||
80 | /// Indeed, if the RegBank cannot accomadate the "active bits" of the mask, |
||
81 | /// there is no way this mapping is valid. |
||
82 | /// |
||
83 | /// \note This method does not check anything when assertions are disabled. |
||
84 | /// |
||
85 | /// \return True is the check was successful. |
||
86 | bool verify() const; |
||
87 | }; |
||
88 | |||
89 | /// Helper struct that represents how a value is mapped through |
||
90 | /// different register banks. |
||
91 | /// |
||
92 | /// \note: So far we do not have any users of the complex mappings |
||
93 | /// (mappings with more than one partial mapping), but when we do, |
||
94 | /// we would have needed to duplicate partial mappings. |
||
95 | /// The alternative could be to use an array of pointers of partial |
||
96 | /// mapping (i.e., PartialMapping **BreakDown) and duplicate the |
||
97 | /// pointers instead. |
||
98 | /// |
||
99 | /// E.g., |
||
100 | /// Let say we have a 32-bit add and a <2 x 32-bit> vadd. We |
||
101 | /// can expand the |
||
102 | /// <2 x 32-bit> add into 2 x 32-bit add. |
||
103 | /// |
||
104 | /// Currently the TableGen-like file would look like: |
||
105 | /// \code |
||
106 | /// PartialMapping[] = { |
||
107 | /// /*32-bit add*/ {0, 32, GPR}, // Scalar entry repeated for first |
||
108 | /// // vec elt. |
||
109 | /// /*2x32-bit add*/ {0, 32, GPR}, {32, 32, GPR}, |
||
110 | /// /*<2x32-bit> vadd*/ {0, 64, VPR} |
||
111 | /// }; // PartialMapping duplicated. |
||
112 | /// |
||
113 | /// ValueMapping[] { |
||
114 | /// /*plain 32-bit add*/ {&PartialMapping[0], 1}, |
||
115 | /// /*expanded vadd on 2xadd*/ {&PartialMapping[1], 2}, |
||
116 | /// /*plain <2x32-bit> vadd*/ {&PartialMapping[3], 1} |
||
117 | /// }; |
||
118 | /// \endcode |
||
119 | /// |
||
120 | /// With the array of pointer, we would have: |
||
121 | /// \code |
||
122 | /// PartialMapping[] = { |
||
123 | /// /*32-bit add lower */ { 0, 32, GPR}, |
||
124 | /// /*32-bit add upper */ {32, 32, GPR}, |
||
125 | /// /*<2x32-bit> vadd */ { 0, 64, VPR} |
||
126 | /// }; // No more duplication. |
||
127 | /// |
||
128 | /// BreakDowns[] = { |
||
129 | /// /*AddBreakDown*/ &PartialMapping[0], |
||
130 | /// /*2xAddBreakDown*/ &PartialMapping[0], &PartialMapping[1], |
||
131 | /// /*VAddBreakDown*/ &PartialMapping[2] |
||
132 | /// }; // Addresses of PartialMapping duplicated (smaller). |
||
133 | /// |
||
134 | /// ValueMapping[] { |
||
135 | /// /*plain 32-bit add*/ {&BreakDowns[0], 1}, |
||
136 | /// /*expanded vadd on 2xadd*/ {&BreakDowns[1], 2}, |
||
137 | /// /*plain <2x32-bit> vadd*/ {&BreakDowns[3], 1} |
||
138 | /// }; |
||
139 | /// \endcode |
||
140 | /// |
||
141 | /// Given that a PartialMapping is actually small, the code size |
||
142 | /// impact is actually a degradation. Moreover the compile time will |
||
143 | /// be hit by the additional indirection. |
||
144 | /// If PartialMapping gets bigger we may reconsider. |
||
145 | struct ValueMapping { |
||
146 | /// How the value is broken down between the different register banks. |
||
147 | const PartialMapping *BreakDown; |
||
148 | |||
149 | /// Number of partial mapping to break down this value. |
||
150 | unsigned NumBreakDowns; |
||
151 | |||
152 | /// The default constructor creates an invalid (isValid() == false) |
||
153 | /// instance. |
||
154 | ValueMapping() : ValueMapping(nullptr, 0) {} |
||
155 | |||
156 | /// Initialize a ValueMapping with the given parameter. |
||
157 | /// \p BreakDown needs to have a life time at least as long |
||
158 | /// as this instance. |
||
159 | ValueMapping(const PartialMapping *BreakDown, unsigned NumBreakDowns) |
||
160 | : BreakDown(BreakDown), NumBreakDowns(NumBreakDowns) {} |
||
161 | |||
162 | /// Iterators through the PartialMappings. |
||
163 | const PartialMapping *begin() const { return BreakDown; } |
||
164 | const PartialMapping *end() const { return BreakDown + NumBreakDowns; } |
||
165 | |||
166 | /// \return true if all partial mappings are the same size and register |
||
167 | /// bank. |
||
168 | bool partsAllUniform() const; |
||
169 | |||
170 | /// Check if this ValueMapping is valid. |
||
171 | bool isValid() const { return BreakDown && NumBreakDowns; } |
||
172 | |||
173 | /// Verify that this mapping makes sense for a value of |
||
174 | /// \p MeaningfulBitWidth. |
||
175 | /// \note This method does not check anything when assertions are disabled. |
||
176 | /// |
||
177 | /// \return True is the check was successful. |
||
178 | bool verify(unsigned MeaningfulBitWidth) const; |
||
179 | |||
180 | /// Print this on dbgs() stream. |
||
181 | void dump() const; |
||
182 | |||
183 | /// Print this on \p OS; |
||
184 | void print(raw_ostream &OS) const; |
||
185 | }; |
||
186 | |||
187 | /// Helper class that represents how the value of an instruction may be |
||
188 | /// mapped and what is the related cost of such mapping. |
||
189 | class InstructionMapping { |
||
190 | /// Identifier of the mapping. |
||
191 | /// This is used to communicate between the target and the optimizers |
||
192 | /// which mapping should be realized. |
||
193 | unsigned ID = InvalidMappingID; |
||
194 | |||
195 | /// Cost of this mapping. |
||
196 | unsigned Cost = 0; |
||
197 | |||
198 | /// Mapping of all the operands. |
||
199 | const ValueMapping *OperandsMapping = nullptr; |
||
200 | |||
201 | /// Number of operands. |
||
202 | unsigned NumOperands = 0; |
||
203 | |||
204 | const ValueMapping &getOperandMapping(unsigned i) { |
||
205 | assert(i < getNumOperands() && "Out of bound operand"); |
||
206 | return OperandsMapping[i]; |
||
207 | } |
||
208 | |||
209 | public: |
||
210 | /// Constructor for the mapping of an instruction. |
||
211 | /// \p NumOperands must be equal to number of all the operands of |
||
212 | /// the related instruction. |
||
213 | /// The rationale is that it is more efficient for the optimizers |
||
214 | /// to be able to assume that the mapping of the ith operand is |
||
215 | /// at the index i. |
||
216 | InstructionMapping(unsigned ID, unsigned Cost, |
||
217 | const ValueMapping *OperandsMapping, |
||
218 | unsigned NumOperands) |
||
219 | : ID(ID), Cost(Cost), OperandsMapping(OperandsMapping), |
||
220 | NumOperands(NumOperands) {} |
||
221 | |||
222 | /// Default constructor. |
||
223 | /// Use this constructor to express that the mapping is invalid. |
||
224 | InstructionMapping() = default; |
||
225 | |||
226 | /// Get the cost. |
||
227 | unsigned getCost() const { return Cost; } |
||
228 | |||
229 | /// Get the ID. |
||
230 | unsigned getID() const { return ID; } |
||
231 | |||
232 | /// Get the number of operands. |
||
233 | unsigned getNumOperands() const { return NumOperands; } |
||
234 | |||
235 | /// Get the value mapping of the ith operand. |
||
236 | /// \pre The mapping for the ith operand has been set. |
||
237 | /// \pre The ith operand is a register. |
||
238 | const ValueMapping &getOperandMapping(unsigned i) const { |
||
239 | const ValueMapping &ValMapping = |
||
240 | const_cast<InstructionMapping *>(this)->getOperandMapping(i); |
||
241 | return ValMapping; |
||
242 | } |
||
243 | |||
244 | /// Set the mapping for all the operands. |
||
245 | /// In other words, OpdsMapping should hold at least getNumOperands |
||
246 | /// ValueMapping. |
||
247 | void setOperandsMapping(const ValueMapping *OpdsMapping) { |
||
248 | OperandsMapping = OpdsMapping; |
||
249 | } |
||
250 | |||
251 | /// Check whether this object is valid. |
||
252 | /// This is a lightweight check for obvious wrong instance. |
||
253 | bool isValid() const { |
||
254 | return getID() != InvalidMappingID && OperandsMapping; |
||
255 | } |
||
256 | |||
257 | /// Verifiy that this mapping makes sense for \p MI. |
||
258 | /// \pre \p MI must be connected to a MachineFunction. |
||
259 | /// |
||
260 | /// \note This method does not check anything when assertions are disabled. |
||
261 | /// |
||
262 | /// \return True is the check was successful. |
||
263 | bool verify(const MachineInstr &MI) const; |
||
264 | |||
265 | /// Print this on dbgs() stream. |
||
266 | void dump() const; |
||
267 | |||
268 | /// Print this on \p OS; |
||
269 | void print(raw_ostream &OS) const; |
||
270 | }; |
||
271 | |||
272 | /// Convenient type to represent the alternatives for mapping an |
||
273 | /// instruction. |
||
274 | /// \todo When we move to TableGen this should be an array ref. |
||
275 | using InstructionMappings = SmallVector<const InstructionMapping *, 4>; |
||
276 | |||
277 | /// Helper class used to get/create the virtual registers that will be used |
||
278 | /// to replace the MachineOperand when applying a mapping. |
||
279 | class OperandsMapper { |
||
280 | /// The OpIdx-th cell contains the index in NewVRegs where the VRegs of the |
||
281 | /// OpIdx-th operand starts. -1 means we do not have such mapping yet. |
||
282 | /// Note: We use a SmallVector to avoid heap allocation for most cases. |
||
283 | SmallVector<int, 8> OpToNewVRegIdx; |
||
284 | |||
285 | /// Hold the registers that will be used to map MI with InstrMapping. |
||
286 | SmallVector<Register, 8> NewVRegs; |
||
287 | |||
288 | /// Current MachineRegisterInfo, used to create new virtual registers. |
||
289 | MachineRegisterInfo &MRI; |
||
290 | |||
291 | /// Instruction being remapped. |
||
292 | MachineInstr &MI; |
||
293 | |||
294 | /// New mapping of the instruction. |
||
295 | const InstructionMapping &InstrMapping; |
||
296 | |||
297 | /// Constant value identifying that the index in OpToNewVRegIdx |
||
298 | /// for an operand has not been set yet. |
||
299 | static const int DontKnowIdx; |
||
300 | |||
301 | /// Get the range in NewVRegs to store all the partial |
||
302 | /// values for the \p OpIdx-th operand. |
||
303 | /// |
||
304 | /// \return The iterator range for the space created. |
||
305 | // |
||
306 | /// \pre getMI().getOperand(OpIdx).isReg() |
||
307 | iterator_range<SmallVectorImpl<Register>::iterator> |
||
308 | getVRegsMem(unsigned OpIdx); |
||
309 | |||
310 | /// Get the end iterator for a range starting at \p StartIdx and |
||
311 | /// spannig \p NumVal in NewVRegs. |
||
312 | /// \pre StartIdx + NumVal <= NewVRegs.size() |
||
313 | SmallVectorImpl<Register>::const_iterator |
||
314 | getNewVRegsEnd(unsigned StartIdx, unsigned NumVal) const; |
||
315 | SmallVectorImpl<Register>::iterator getNewVRegsEnd(unsigned StartIdx, |
||
316 | unsigned NumVal); |
||
317 | |||
318 | public: |
||
319 | /// Create an OperandsMapper that will hold the information to apply \p |
||
320 | /// InstrMapping to \p MI. |
||
321 | /// \pre InstrMapping.verify(MI) |
||
322 | OperandsMapper(MachineInstr &MI, const InstructionMapping &InstrMapping, |
||
323 | MachineRegisterInfo &MRI); |
||
324 | |||
325 | /// \name Getters. |
||
326 | /// @{ |
||
327 | /// The MachineInstr being remapped. |
||
328 | MachineInstr &getMI() const { return MI; } |
||
329 | |||
330 | /// The final mapping of the instruction. |
||
331 | const InstructionMapping &getInstrMapping() const { return InstrMapping; } |
||
332 | |||
333 | /// The MachineRegisterInfo we used to realize the mapping. |
||
334 | MachineRegisterInfo &getMRI() const { return MRI; } |
||
335 | /// @} |
||
336 | |||
337 | /// Create as many new virtual registers as needed for the mapping of the \p |
||
338 | /// OpIdx-th operand. |
||
339 | /// The number of registers is determined by the number of breakdown for the |
||
340 | /// related operand in the instruction mapping. |
||
341 | /// The type of the new registers is a plain scalar of the right size. |
||
342 | /// The proper type is expected to be set when the mapping is applied to |
||
343 | /// the instruction(s) that realizes the mapping. |
||
344 | /// |
||
345 | /// \pre getMI().getOperand(OpIdx).isReg() |
||
346 | /// |
||
347 | /// \post All the partial mapping of the \p OpIdx-th operand have been |
||
348 | /// assigned a new virtual register. |
||
349 | void createVRegs(unsigned OpIdx); |
||
350 | |||
351 | /// Set the virtual register of the \p PartialMapIdx-th partial mapping of |
||
352 | /// the OpIdx-th operand to \p NewVReg. |
||
353 | /// |
||
354 | /// \pre getMI().getOperand(OpIdx).isReg() |
||
355 | /// \pre getInstrMapping().getOperandMapping(OpIdx).BreakDown.size() > |
||
356 | /// PartialMapIdx |
||
357 | /// \pre NewReg != 0 |
||
358 | /// |
||
359 | /// \post the \p PartialMapIdx-th register of the value mapping of the \p |
||
360 | /// OpIdx-th operand has been set. |
||
361 | void setVRegs(unsigned OpIdx, unsigned PartialMapIdx, Register NewVReg); |
||
362 | |||
363 | /// Get all the virtual registers required to map the \p OpIdx-th operand of |
||
364 | /// the instruction. |
||
365 | /// |
||
366 | /// This return an empty range when createVRegs or setVRegs has not been |
||
367 | /// called. |
||
368 | /// The iterator may be invalidated by a call to setVRegs or createVRegs. |
||
369 | /// |
||
370 | /// When \p ForDebug is true, we will not check that the list of new virtual |
||
371 | /// registers does not contain uninitialized values. |
||
372 | /// |
||
373 | /// \pre getMI().getOperand(OpIdx).isReg() |
||
374 | /// \pre ForDebug || All partial mappings have been set a register |
||
375 | iterator_range<SmallVectorImpl<Register>::const_iterator> |
||
376 | getVRegs(unsigned OpIdx, bool ForDebug = false) const; |
||
377 | |||
378 | /// Print this operands mapper on dbgs() stream. |
||
379 | void dump() const; |
||
380 | |||
381 | /// Print this operands mapper on \p OS stream. |
||
382 | void print(raw_ostream &OS, bool ForDebug = false) const; |
||
383 | }; |
||
384 | |||
385 | protected: |
||
386 | /// Hold the set of supported register banks. |
||
387 | RegisterBank **RegBanks; |
||
388 | |||
389 | /// Total number of register banks. |
||
390 | unsigned NumRegBanks; |
||
391 | |||
392 | /// Keep dynamically allocated PartialMapping in a separate map. |
||
393 | /// This shouldn't be needed when everything gets TableGen'ed. |
||
394 | mutable DenseMap<unsigned, std::unique_ptr<const PartialMapping>> |
||
395 | MapOfPartialMappings; |
||
396 | |||
397 | /// Keep dynamically allocated ValueMapping in a separate map. |
||
398 | /// This shouldn't be needed when everything gets TableGen'ed. |
||
399 | mutable DenseMap<unsigned, std::unique_ptr<const ValueMapping>> |
||
400 | MapOfValueMappings; |
||
401 | |||
402 | /// Keep dynamically allocated array of ValueMapping in a separate map. |
||
403 | /// This shouldn't be needed when everything gets TableGen'ed. |
||
404 | mutable DenseMap<unsigned, std::unique_ptr<ValueMapping[]>> |
||
405 | MapOfOperandsMappings; |
||
406 | |||
407 | /// Keep dynamically allocated InstructionMapping in a separate map. |
||
408 | /// This shouldn't be needed when everything gets TableGen'ed. |
||
409 | mutable DenseMap<unsigned, std::unique_ptr<const InstructionMapping>> |
||
410 | MapOfInstructionMappings; |
||
411 | |||
412 | /// Getting the minimal register class of a physreg is expensive. |
||
413 | /// Cache this information as we get it. |
||
414 | mutable DenseMap<unsigned, const TargetRegisterClass *> PhysRegMinimalRCs; |
||
415 | |||
416 | /// Create a RegisterBankInfo that can accommodate up to \p NumRegBanks |
||
417 | /// RegisterBank instances. |
||
418 | RegisterBankInfo(RegisterBank **RegBanks, unsigned NumRegBanks); |
||
419 | |||
420 | /// This constructor is meaningless. |
||
421 | /// It just provides a default constructor that can be used at link time |
||
422 | /// when GlobalISel is not built. |
||
423 | /// That way, targets can still inherit from this class without doing |
||
424 | /// crazy gymnastic to avoid link time failures. |
||
425 | /// \note That works because the constructor is inlined. |
||
426 | RegisterBankInfo() { |
||
427 | llvm_unreachable("This constructor should not be executed"); |
||
428 | } |
||
429 | |||
430 | /// Get the register bank identified by \p ID. |
||
431 | RegisterBank &getRegBank(unsigned ID) { |
||
432 | assert(ID < getNumRegBanks() && "Accessing an unknown register bank"); |
||
433 | return *RegBanks[ID]; |
||
434 | } |
||
435 | |||
436 | /// Get the MinimalPhysRegClass for Reg. |
||
437 | /// \pre Reg is a physical register. |
||
438 | const TargetRegisterClass & |
||
439 | getMinimalPhysRegClass(Register Reg, const TargetRegisterInfo &TRI) const; |
||
440 | |||
441 | /// Try to get the mapping of \p MI. |
||
442 | /// See getInstrMapping for more details on what a mapping represents. |
||
443 | /// |
||
444 | /// Unlike getInstrMapping the returned InstructionMapping may be invalid |
||
445 | /// (isValid() == false). |
||
446 | /// This means that the target independent code is not smart enough |
||
447 | /// to get the mapping of \p MI and thus, the target has to provide the |
||
448 | /// information for \p MI. |
||
449 | /// |
||
450 | /// This implementation is able to get the mapping of: |
||
451 | /// - Target specific instructions by looking at the encoding constraints. |
||
452 | /// - Any instruction if all the register operands have already been assigned |
||
453 | /// a register, a register class, or a register bank. |
||
454 | /// - Copies and phis if at least one of the operands has been assigned a |
||
455 | /// register, a register class, or a register bank. |
||
456 | /// In other words, this method will likely fail to find a mapping for |
||
457 | /// any generic opcode that has not been lowered by target specific code. |
||
458 | const InstructionMapping &getInstrMappingImpl(const MachineInstr &MI) const; |
||
459 | |||
460 | /// Get the uniquely generated PartialMapping for the |
||
461 | /// given arguments. |
||
462 | const PartialMapping &getPartialMapping(unsigned StartIdx, unsigned Length, |
||
463 | const RegisterBank &RegBank) const; |
||
464 | |||
465 | /// \name Methods to get a uniquely generated ValueMapping. |
||
466 | /// @{ |
||
467 | |||
468 | /// The most common ValueMapping consists of a single PartialMapping. |
||
469 | /// Feature a method for that. |
||
470 | const ValueMapping &getValueMapping(unsigned StartIdx, unsigned Length, |
||
471 | const RegisterBank &RegBank) const; |
||
472 | |||
473 | /// Get the ValueMapping for the given arguments. |
||
474 | const ValueMapping &getValueMapping(const PartialMapping *BreakDown, |
||
475 | unsigned NumBreakDowns) const; |
||
476 | /// @} |
||
477 | |||
478 | /// \name Methods to get a uniquely generated array of ValueMapping. |
||
479 | /// @{ |
||
480 | |||
481 | /// Get the uniquely generated array of ValueMapping for the |
||
482 | /// elements of between \p Begin and \p End. |
||
483 | /// |
||
484 | /// Elements that are nullptr will be replaced by |
||
485 | /// invalid ValueMapping (ValueMapping::isValid == false). |
||
486 | /// |
||
487 | /// \pre The pointers on ValueMapping between \p Begin and \p End |
||
488 | /// must uniquely identify a ValueMapping. Otherwise, there is no |
||
489 | /// guarantee that the return instance will be unique, i.e., another |
||
490 | /// OperandsMapping could have the same content. |
||
491 | template <typename Iterator> |
||
492 | const ValueMapping *getOperandsMapping(Iterator Begin, Iterator End) const; |
||
493 | |||
494 | /// Get the uniquely generated array of ValueMapping for the |
||
495 | /// elements of \p OpdsMapping. |
||
496 | /// |
||
497 | /// Elements of \p OpdsMapping that are nullptr will be replaced by |
||
498 | /// invalid ValueMapping (ValueMapping::isValid == false). |
||
499 | const ValueMapping *getOperandsMapping( |
||
500 | const SmallVectorImpl<const ValueMapping *> &OpdsMapping) const; |
||
501 | |||
502 | /// Get the uniquely generated array of ValueMapping for the |
||
503 | /// given arguments. |
||
504 | /// |
||
505 | /// Arguments that are nullptr will be replaced by invalid |
||
506 | /// ValueMapping (ValueMapping::isValid == false). |
||
507 | const ValueMapping *getOperandsMapping( |
||
508 | std::initializer_list<const ValueMapping *> OpdsMapping) const; |
||
509 | /// @} |
||
510 | |||
511 | /// \name Methods to get a uniquely generated InstructionMapping. |
||
512 | /// @{ |
||
513 | |||
514 | private: |
||
515 | /// Method to get a uniquely generated InstructionMapping. |
||
516 | const InstructionMapping & |
||
517 | getInstructionMappingImpl(bool IsInvalid, unsigned ID = InvalidMappingID, |
||
518 | unsigned Cost = 0, |
||
519 | const ValueMapping *OperandsMapping = nullptr, |
||
520 | unsigned NumOperands = 0) const; |
||
521 | |||
522 | public: |
||
523 | /// Method to get a uniquely generated InstructionMapping. |
||
524 | const InstructionMapping & |
||
525 | getInstructionMapping(unsigned ID, unsigned Cost, |
||
526 | const ValueMapping *OperandsMapping, |
||
527 | unsigned NumOperands) const { |
||
528 | return getInstructionMappingImpl(/*IsInvalid*/ false, ID, Cost, |
||
529 | OperandsMapping, NumOperands); |
||
530 | } |
||
531 | |||
532 | /// Method to get a uniquely generated invalid InstructionMapping. |
||
533 | const InstructionMapping &getInvalidInstructionMapping() const { |
||
534 | return getInstructionMappingImpl(/*IsInvalid*/ true); |
||
535 | } |
||
536 | /// @} |
||
537 | |||
538 | /// Get the register bank for the \p OpIdx-th operand of \p MI form |
||
539 | /// the encoding constraints, if any. |
||
540 | /// |
||
541 | /// \return A register bank that covers the register class of the |
||
542 | /// related encoding constraints or nullptr if \p MI did not provide |
||
543 | /// enough information to deduce it. |
||
544 | const RegisterBank * |
||
545 | getRegBankFromConstraints(const MachineInstr &MI, unsigned OpIdx, |
||
546 | const TargetInstrInfo &TII, |
||
547 | const MachineRegisterInfo &MRI) const; |
||
548 | |||
549 | /// Helper method to apply something that is like the default mapping. |
||
550 | /// Basically, that means that \p OpdMapper.getMI() is left untouched |
||
551 | /// aside from the reassignment of the register operand that have been |
||
552 | /// remapped. |
||
553 | /// |
||
554 | /// The type of all the new registers that have been created by the |
||
555 | /// mapper are properly remapped to the type of the original registers |
||
556 | /// they replace. In other words, the semantic of the instruction does |
||
557 | /// not change, only the register banks. |
||
558 | /// |
||
559 | /// If the mapping of one of the operand spans several registers, this |
||
560 | /// method will abort as this is not like a default mapping anymore. |
||
561 | /// |
||
562 | /// \pre For OpIdx in {0..\p OpdMapper.getMI().getNumOperands()) |
||
563 | /// the range OpdMapper.getVRegs(OpIdx) is empty or of size 1. |
||
564 | static void applyDefaultMapping(const OperandsMapper &OpdMapper); |
||
565 | |||
566 | /// See ::applyMapping. |
||
567 | virtual void applyMappingImpl(const OperandsMapper &OpdMapper) const { |
||
568 | llvm_unreachable("The target has to implement that part"); |
||
569 | } |
||
570 | |||
571 | public: |
||
572 | virtual ~RegisterBankInfo() = default; |
||
573 | |||
574 | /// Get the register bank identified by \p ID. |
||
575 | const RegisterBank &getRegBank(unsigned ID) const { |
||
576 | return const_cast<RegisterBankInfo *>(this)->getRegBank(ID); |
||
577 | } |
||
578 | |||
579 | /// Get the register bank of \p Reg. |
||
580 | /// If Reg has not been assigned a register, a register class, |
||
581 | /// or a register bank, then this returns nullptr. |
||
582 | /// |
||
583 | /// \pre Reg != 0 (NoRegister) |
||
584 | const RegisterBank *getRegBank(Register Reg, const MachineRegisterInfo &MRI, |
||
585 | const TargetRegisterInfo &TRI) const; |
||
586 | |||
587 | /// Get the total number of register banks. |
||
588 | unsigned getNumRegBanks() const { return NumRegBanks; } |
||
589 | |||
590 | /// Get a register bank that covers \p RC. |
||
591 | /// |
||
592 | /// \pre \p RC is a user-defined register class (as opposed as one |
||
593 | /// generated by TableGen). |
||
594 | /// |
||
595 | /// \note The mapping RC -> RegBank could be built while adding the |
||
596 | /// coverage for the register banks. However, we do not do it, because, |
||
597 | /// at least for now, we only need this information for register classes |
||
598 | /// that are used in the description of instruction. In other words, |
||
599 | /// there are just a handful of them and we do not want to waste space. |
||
600 | /// |
||
601 | /// \todo This should be TableGen'ed. |
||
602 | virtual const RegisterBank & |
||
603 | getRegBankFromRegClass(const TargetRegisterClass &RC, LLT Ty) const { |
||
604 | llvm_unreachable("The target must override this method"); |
||
605 | } |
||
606 | |||
607 | /// Get the cost of a copy from \p B to \p A, or put differently, |
||
608 | /// get the cost of A = COPY B. Since register banks may cover |
||
609 | /// different size, \p Size specifies what will be the size in bits |
||
610 | /// that will be copied around. |
||
611 | /// |
||
612 | /// \note Since this is a copy, both registers have the same size. |
||
613 | virtual unsigned copyCost(const RegisterBank &A, const RegisterBank &B, |
||
614 | unsigned Size) const { |
||
615 | // Optimistically assume that copies are coalesced. I.e., when |
||
616 | // they are on the same bank, they are free. |
||
617 | // Otherwise assume a non-zero cost of 1. The targets are supposed |
||
618 | // to override that properly anyway if they care. |
||
619 | return &A != &B; |
||
620 | } |
||
621 | |||
622 | /// \returns true if emitting a copy from \p Src to \p Dst is impossible. |
||
623 | bool cannotCopy(const RegisterBank &Dst, const RegisterBank &Src, |
||
624 | unsigned Size) const { |
||
625 | return copyCost(Dst, Src, Size) == std::numeric_limits<unsigned>::max(); |
||
626 | } |
||
627 | |||
628 | /// Get the cost of using \p ValMapping to decompose a register. This is |
||
629 | /// similar to ::copyCost, except for cases where multiple copy-like |
||
630 | /// operations need to be inserted. If the register is used as a source |
||
631 | /// operand and already has a bank assigned, \p CurBank is non-null. |
||
632 | virtual unsigned |
||
633 | getBreakDownCost(const ValueMapping &ValMapping, |
||
634 | const RegisterBank *CurBank = nullptr) const { |
||
635 | return std::numeric_limits<unsigned>::max(); |
||
636 | } |
||
637 | |||
638 | /// Constrain the (possibly generic) virtual register \p Reg to \p RC. |
||
639 | /// |
||
640 | /// \pre \p Reg is a virtual register that either has a bank or a class. |
||
641 | /// \returns The constrained register class, or nullptr if there is none. |
||
642 | /// \note This is a generic variant of MachineRegisterInfo::constrainRegClass |
||
643 | /// \note Use MachineRegisterInfo::constrainRegAttrs instead for any non-isel |
||
644 | /// purpose, including non-select passes of GlobalISel |
||
645 | static const TargetRegisterClass * |
||
646 | constrainGenericRegister(Register Reg, const TargetRegisterClass &RC, |
||
647 | MachineRegisterInfo &MRI); |
||
648 | |||
649 | /// Identifier used when the related instruction mapping instance |
||
650 | /// is generated by target independent code. |
||
651 | /// Make sure not to use that identifier to avoid possible collision. |
||
652 | static const unsigned DefaultMappingID; |
||
653 | |||
654 | /// Identifier used when the related instruction mapping instance |
||
655 | /// is generated by the default constructor. |
||
656 | /// Make sure not to use that identifier. |
||
657 | static const unsigned InvalidMappingID; |
||
658 | |||
659 | /// Get the mapping of the different operands of \p MI |
||
660 | /// on the register bank. |
||
661 | /// This mapping should be the direct translation of \p MI. |
||
662 | /// In other words, when \p MI is mapped with the returned mapping, |
||
663 | /// only the register banks of the operands of \p MI need to be updated. |
||
664 | /// In particular, neither the opcode nor the type of \p MI needs to be |
||
665 | /// updated for this direct mapping. |
||
666 | /// |
||
667 | /// The target independent implementation gives a mapping based on |
||
668 | /// the register classes for the target specific opcode. |
||
669 | /// It uses the ID RegisterBankInfo::DefaultMappingID for that mapping. |
||
670 | /// Make sure you do not use that ID for the alternative mapping |
||
671 | /// for MI. See getInstrAlternativeMappings for the alternative |
||
672 | /// mappings. |
||
673 | /// |
||
674 | /// For instance, if \p MI is a vector add, the mapping should |
||
675 | /// not be a scalarization of the add. |
||
676 | /// |
||
677 | /// \post returnedVal.verify(MI). |
||
678 | /// |
||
679 | /// \note If returnedVal does not verify MI, this would probably mean |
||
680 | /// that the target does not support that instruction. |
||
681 | virtual const InstructionMapping & |
||
682 | getInstrMapping(const MachineInstr &MI) const; |
||
683 | |||
684 | /// Get the alternative mappings for \p MI. |
||
685 | /// Alternative in the sense different from getInstrMapping. |
||
686 | virtual InstructionMappings |
||
687 | getInstrAlternativeMappings(const MachineInstr &MI) const; |
||
688 | |||
689 | /// Get the possible mapping for \p MI. |
||
690 | /// A mapping defines where the different operands may live and at what cost. |
||
691 | /// For instance, let us consider: |
||
692 | /// v0(16) = G_ADD <2 x i8> v1, v2 |
||
693 | /// The possible mapping could be: |
||
694 | /// |
||
695 | /// {/*ID*/VectorAdd, /*Cost*/1, /*v0*/{(0xFFFF, VPR)}, /*v1*/{(0xFFFF, VPR)}, |
||
696 | /// /*v2*/{(0xFFFF, VPR)}} |
||
697 | /// {/*ID*/ScalarAddx2, /*Cost*/2, /*v0*/{(0x00FF, GPR),(0xFF00, GPR)}, |
||
698 | /// /*v1*/{(0x00FF, GPR),(0xFF00, GPR)}, |
||
699 | /// /*v2*/{(0x00FF, GPR),(0xFF00, GPR)}} |
||
700 | /// |
||
701 | /// \note The first alternative of the returned mapping should be the |
||
702 | /// direct translation of \p MI current form. |
||
703 | /// |
||
704 | /// \post !returnedVal.empty(). |
||
705 | InstructionMappings getInstrPossibleMappings(const MachineInstr &MI) const; |
||
706 | |||
707 | /// Apply \p OpdMapper.getInstrMapping() to \p OpdMapper.getMI(). |
||
708 | /// After this call \p OpdMapper.getMI() may not be valid anymore. |
||
709 | /// \p OpdMapper.getInstrMapping().getID() carries the information of |
||
710 | /// what has been chosen to map \p OpdMapper.getMI(). This ID is set |
||
711 | /// by the various getInstrXXXMapping method. |
||
712 | /// |
||
713 | /// Therefore, getting the mapping and applying it should be kept in |
||
714 | /// sync. |
||
715 | void applyMapping(const OperandsMapper &OpdMapper) const { |
||
716 | // The only mapping we know how to handle is the default mapping. |
||
717 | if (OpdMapper.getInstrMapping().getID() == DefaultMappingID) |
||
718 | return applyDefaultMapping(OpdMapper); |
||
719 | // For other mapping, the target needs to do the right thing. |
||
720 | // If that means calling applyDefaultMapping, fine, but this |
||
721 | // must be explicitly stated. |
||
722 | applyMappingImpl(OpdMapper); |
||
723 | } |
||
724 | |||
725 | /// Get the size in bits of \p Reg. |
||
726 | /// Utility method to get the size of any registers. Unlike |
||
727 | /// MachineRegisterInfo::getSize, the register does not need to be a |
||
728 | /// virtual register. |
||
729 | /// |
||
730 | /// \pre \p Reg != 0 (NoRegister). |
||
731 | unsigned getSizeInBits(Register Reg, const MachineRegisterInfo &MRI, |
||
732 | const TargetRegisterInfo &TRI) const; |
||
733 | |||
734 | /// Check that information hold by this instance make sense for the |
||
735 | /// given \p TRI. |
||
736 | /// |
||
737 | /// \note This method does not check anything when assertions are disabled. |
||
738 | /// |
||
739 | /// \return True is the check was successful. |
||
740 | bool verify(const TargetRegisterInfo &TRI) const; |
||
741 | }; |
||
742 | |||
743 | inline raw_ostream & |
||
744 | operator<<(raw_ostream &OS, |
||
745 | const RegisterBankInfo::PartialMapping &PartMapping) { |
||
746 | PartMapping.print(OS); |
||
747 | return OS; |
||
748 | } |
||
749 | |||
750 | inline raw_ostream & |
||
751 | operator<<(raw_ostream &OS, const RegisterBankInfo::ValueMapping &ValMapping) { |
||
752 | ValMapping.print(OS); |
||
753 | return OS; |
||
754 | } |
||
755 | |||
756 | inline raw_ostream & |
||
757 | operator<<(raw_ostream &OS, |
||
758 | const RegisterBankInfo::InstructionMapping &InstrMapping) { |
||
759 | InstrMapping.print(OS); |
||
760 | return OS; |
||
761 | } |
||
762 | |||
763 | inline raw_ostream & |
||
764 | operator<<(raw_ostream &OS, const RegisterBankInfo::OperandsMapper &OpdMapper) { |
||
765 | OpdMapper.print(OS, /*ForDebug*/ false); |
||
766 | return OS; |
||
767 | } |
||
768 | |||
769 | /// Hashing function for PartialMapping. |
||
770 | /// It is required for the hashing of ValueMapping. |
||
771 | hash_code hash_value(const RegisterBankInfo::PartialMapping &PartMapping); |
||
772 | |||
773 | } // end namespace llvm |
||
774 | |||
775 | #endif // LLVM_CODEGEN_REGISTERBANKINFO_H |