Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- RDFGraph.h -----------------------------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // Target-independent, SSA-based data flow graph for register data flow (RDF) |
||
10 | // for a non-SSA program representation (e.g. post-RA machine code). |
||
11 | // |
||
12 | // |
||
13 | // *** Introduction |
||
14 | // |
||
15 | // The RDF graph is a collection of nodes, each of which denotes some element |
||
16 | // of the program. There are two main types of such elements: code and refe- |
||
17 | // rences. Conceptually, "code" is something that represents the structure |
||
18 | // of the program, e.g. basic block or a statement, while "reference" is an |
||
19 | // instance of accessing a register, e.g. a definition or a use. Nodes are |
||
20 | // connected with each other based on the structure of the program (such as |
||
21 | // blocks, instructions, etc.), and based on the data flow (e.g. reaching |
||
22 | // definitions, reached uses, etc.). The single-reaching-definition principle |
||
23 | // of SSA is generally observed, although, due to the non-SSA representation |
||
24 | // of the program, there are some differences between the graph and a "pure" |
||
25 | // SSA representation. |
||
26 | // |
||
27 | // |
||
28 | // *** Implementation remarks |
||
29 | // |
||
30 | // Since the graph can contain a large number of nodes, memory consumption |
||
31 | // was one of the major design considerations. As a result, there is a single |
||
32 | // base class NodeBase which defines all members used by all possible derived |
||
33 | // classes. The members are arranged in a union, and a derived class cannot |
||
34 | // add any data members of its own. Each derived class only defines the |
||
35 | // functional interface, i.e. member functions. NodeBase must be a POD, |
||
36 | // which implies that all of its members must also be PODs. |
||
37 | // Since nodes need to be connected with other nodes, pointers have been |
||
38 | // replaced with 32-bit identifiers: each node has an id of type NodeId. |
||
39 | // There are mapping functions in the graph that translate between actual |
||
40 | // memory addresses and the corresponding identifiers. |
||
41 | // A node id of 0 is equivalent to nullptr. |
||
42 | // |
||
43 | // |
||
44 | // *** Structure of the graph |
||
45 | // |
||
46 | // A code node is always a collection of other nodes. For example, a code |
||
47 | // node corresponding to a basic block will contain code nodes corresponding |
||
48 | // to instructions. In turn, a code node corresponding to an instruction will |
||
49 | // contain a list of reference nodes that correspond to the definitions and |
||
50 | // uses of registers in that instruction. The members are arranged into a |
||
51 | // circular list, which is yet another consequence of the effort to save |
||
52 | // memory: for each member node it should be possible to obtain its owner, |
||
53 | // and it should be possible to access all other members. There are other |
||
54 | // ways to accomplish that, but the circular list seemed the most natural. |
||
55 | // |
||
56 | // +- CodeNode -+ |
||
57 | // | | <---------------------------------------------------+ |
||
58 | // +-+--------+-+ | |
||
59 | // |FirstM |LastM | |
||
60 | // | +-------------------------------------+ | |
||
61 | // | | | |
||
62 | // V V | |
||
63 | // +----------+ Next +----------+ Next Next +----------+ Next | |
||
64 | // | |----->| |-----> ... ----->| |----->-+ |
||
65 | // +- Member -+ +- Member -+ +- Member -+ |
||
66 | // |
||
67 | // The order of members is such that related reference nodes (see below) |
||
68 | // should be contiguous on the member list. |
||
69 | // |
||
70 | // A reference node is a node that encapsulates an access to a register, |
||
71 | // in other words, data flowing into or out of a register. There are two |
||
72 | // major kinds of reference nodes: defs and uses. A def node will contain |
||
73 | // the id of the first reached use, and the id of the first reached def. |
||
74 | // Each def and use will contain the id of the reaching def, and also the |
||
75 | // id of the next reached def (for def nodes) or use (for use nodes). |
||
76 | // The "next node sharing the same reaching def" is denoted as "sibling". |
||
77 | // In summary: |
||
78 | // - Def node contains: reaching def, sibling, first reached def, and first |
||
79 | // reached use. |
||
80 | // - Use node contains: reaching def and sibling. |
||
81 | // |
||
82 | // +-- DefNode --+ |
||
83 | // | R2 = ... | <---+--------------------+ |
||
84 | // ++---------+--+ | | |
||
85 | // |Reached |Reached | | |
||
86 | // |Def |Use | | |
||
87 | // | | |Reaching |Reaching |
||
88 | // | V |Def |Def |
||
89 | // | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib |
||
90 | // | | ... = R2 |----->| ... = R2 |----> ... ----> 0 |
||
91 | // | +-------------+ +-------------+ |
||
92 | // V |
||
93 | // +-- DefNode --+ Sib |
||
94 | // | R2 = ... |----> ... |
||
95 | // ++---------+--+ |
||
96 | // | | |
||
97 | // | | |
||
98 | // ... ... |
||
99 | // |
||
100 | // To get a full picture, the circular lists connecting blocks within a |
||
101 | // function, instructions within a block, etc. should be superimposed with |
||
102 | // the def-def, def-use links shown above. |
||
103 | // To illustrate this, consider a small example in a pseudo-assembly: |
||
104 | // foo: |
||
105 | // add r2, r0, r1 ; r2 = r0+r1 |
||
106 | // addi r0, r2, 1 ; r0 = r2+1 |
||
107 | // ret r0 ; return value in r0 |
||
108 | // |
||
109 | // The graph (in a format used by the debugging functions) would look like: |
||
110 | // |
||
111 | // DFG dump:[ |
||
112 | // f1: Function foo |
||
113 | // b2: === %bb.0 === preds(0), succs(0): |
||
114 | // p3: phi [d4<r0>(,d12,u9):] |
||
115 | // p5: phi [d6<r1>(,,u10):] |
||
116 | // s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):] |
||
117 | // s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):] |
||
118 | // s14: ret [u15<r0>(d12):] |
||
119 | // ] |
||
120 | // |
||
121 | // The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the |
||
122 | // kind of the node (i.e. f - function, b - basic block, p - phi, s - state- |
||
123 | // ment, d - def, u - use). |
||
124 | // The format of a def node is: |
||
125 | // dN<R>(rd,d,u):sib, |
||
126 | // where |
||
127 | // N - numeric node id, |
||
128 | // R - register being defined |
||
129 | // rd - reaching def, |
||
130 | // d - reached def, |
||
131 | // u - reached use, |
||
132 | // sib - sibling. |
||
133 | // The format of a use node is: |
||
134 | // uN<R>[!](rd):sib, |
||
135 | // where |
||
136 | // N - numeric node id, |
||
137 | // R - register being used, |
||
138 | // rd - reaching def, |
||
139 | // sib - sibling. |
||
140 | // Possible annotations (usually preceding the node id): |
||
141 | // + - preserving def, |
||
142 | // ~ - clobbering def, |
||
143 | // " - shadow ref (follows the node id), |
||
144 | // ! - fixed register (appears after register name). |
||
145 | // |
||
146 | // The circular lists are not explicit in the dump. |
||
147 | // |
||
148 | // |
||
149 | // *** Node attributes |
||
150 | // |
||
151 | // NodeBase has a member "Attrs", which is the primary way of determining |
||
152 | // the node's characteristics. The fields in this member decide whether |
||
153 | // the node is a code node or a reference node (i.e. node's "type"), then |
||
154 | // within each type, the "kind" determines what specifically this node |
||
155 | // represents. The remaining bits, "flags", contain additional information |
||
156 | // that is even more detailed than the "kind". |
||
157 | // CodeNode's kinds are: |
||
158 | // - Phi: Phi node, members are reference nodes. |
||
159 | // - Stmt: Statement, members are reference nodes. |
||
160 | // - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt). |
||
161 | // - Func: The whole function. The members are basic block nodes. |
||
162 | // RefNode's kinds are: |
||
163 | // - Use. |
||
164 | // - Def. |
||
165 | // |
||
166 | // Meaning of flags: |
||
167 | // - Preserving: applies only to defs. A preserving def is one that can |
||
168 | // preserve some of the original bits among those that are included in |
||
169 | // the register associated with that def. For example, if R0 is a 32-bit |
||
170 | // register, but a def can only change the lower 16 bits, then it will |
||
171 | // be marked as preserving. |
||
172 | // - Shadow: a reference that has duplicates holding additional reaching |
||
173 | // defs (see more below). |
||
174 | // - Clobbering: applied only to defs, indicates that the value generated |
||
175 | // by this def is unspecified. A typical example would be volatile registers |
||
176 | // after function calls. |
||
177 | // - Fixed: the register in this def/use cannot be replaced with any other |
||
178 | // register. A typical case would be a parameter register to a call, or |
||
179 | // the register with the return value from a function. |
||
180 | // - Undef: the register in this reference the register is assumed to have |
||
181 | // no pre-existing value, even if it appears to be reached by some def. |
||
182 | // This is typically used to prevent keeping registers artificially live |
||
183 | // in cases when they are defined via predicated instructions. For example: |
||
184 | // r0 = add-if-true cond, r10, r11 (1) |
||
185 | // r0 = add-if-false cond, r12, r13, implicit r0 (2) |
||
186 | // ... = r0 (3) |
||
187 | // Before (1), r0 is not intended to be live, and the use of r0 in (3) is |
||
188 | // not meant to be reached by any def preceding (1). However, since the |
||
189 | // defs in (1) and (2) are both preserving, these properties alone would |
||
190 | // imply that the use in (3) may indeed be reached by some prior def. |
||
191 | // Adding Undef flag to the def in (1) prevents that. The Undef flag |
||
192 | // may be applied to both defs and uses. |
||
193 | // - Dead: applies only to defs. The value coming out of a "dead" def is |
||
194 | // assumed to be unused, even if the def appears to be reaching other defs |
||
195 | // or uses. The motivation for this flag comes from dead defs on function |
||
196 | // calls: there is no way to determine if such a def is dead without |
||
197 | // analyzing the target's ABI. Hence the graph should contain this info, |
||
198 | // as it is unavailable otherwise. On the other hand, a def without any |
||
199 | // uses on a typical instruction is not the intended target for this flag. |
||
200 | // |
||
201 | // *** Shadow references |
||
202 | // |
||
203 | // It may happen that a super-register can have two (or more) non-overlapping |
||
204 | // sub-registers. When both of these sub-registers are defined and followed |
||
205 | // by a use of the super-register, the use of the super-register will not |
||
206 | // have a unique reaching def: both defs of the sub-registers need to be |
||
207 | // accounted for. In such cases, a duplicate use of the super-register is |
||
208 | // added and it points to the extra reaching def. Both uses are marked with |
||
209 | // a flag "shadow". Example: |
||
210 | // Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap: |
||
211 | // set r0, 1 ; r0 = 1 |
||
212 | // set r1, 1 ; r1 = 1 |
||
213 | // addi t1, t0, 1 ; t1 = t0+1 |
||
214 | // |
||
215 | // The DFG: |
||
216 | // s1: set [d2<r0>(,,u9):] |
||
217 | // s3: set [d4<r1>(,,u10):] |
||
218 | // s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):] |
||
219 | // |
||
220 | // The statement s5 has two use nodes for t0: u7" and u9". The quotation |
||
221 | // mark " indicates that the node is a shadow. |
||
222 | // |
||
223 | |||
224 | #ifndef LLVM_CODEGEN_RDFGRAPH_H |
||
225 | #define LLVM_CODEGEN_RDFGRAPH_H |
||
226 | |||
227 | #include "RDFRegisters.h" |
||
228 | #include "llvm/ADT/SmallVector.h" |
||
229 | #include "llvm/MC/LaneBitmask.h" |
||
230 | #include "llvm/Support/Allocator.h" |
||
231 | #include "llvm/Support/MathExtras.h" |
||
232 | #include <cassert> |
||
233 | #include <cstdint> |
||
234 | #include <cstring> |
||
235 | #include <map> |
||
236 | #include <memory> |
||
237 | #include <set> |
||
238 | #include <unordered_map> |
||
239 | #include <utility> |
||
240 | #include <vector> |
||
241 | |||
242 | // RDF uses uint32_t to refer to registers. This is to ensure that the type |
||
243 | // size remains specific. In other places, registers are often stored using |
||
244 | // unsigned. |
||
245 | static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal"); |
||
246 | |||
247 | namespace llvm { |
||
248 | |||
249 | class MachineBasicBlock; |
||
250 | class MachineDominanceFrontier; |
||
251 | class MachineDominatorTree; |
||
252 | class MachineFunction; |
||
253 | class MachineInstr; |
||
254 | class MachineOperand; |
||
255 | class raw_ostream; |
||
256 | class TargetInstrInfo; |
||
257 | class TargetRegisterInfo; |
||
258 | |||
259 | namespace rdf { |
||
260 | |||
261 | using NodeId = uint32_t; |
||
262 | |||
263 | struct DataFlowGraph; |
||
264 | |||
265 | struct NodeAttrs { |
||
266 | enum : uint16_t { |
||
267 | None = 0x0000, // Nothing |
||
268 | |||
269 | // Types: 2 bits |
||
270 | TypeMask = 0x0003, |
||
271 | Code = 0x0001, // 01, Container |
||
272 | Ref = 0x0002, // 10, Reference |
||
273 | |||
274 | // Kind: 3 bits |
||
275 | KindMask = 0x0007 << 2, |
||
276 | Def = 0x0001 << 2, // 001 |
||
277 | Use = 0x0002 << 2, // 010 |
||
278 | Phi = 0x0003 << 2, // 011 |
||
279 | Stmt = 0x0004 << 2, // 100 |
||
280 | Block = 0x0005 << 2, // 101 |
||
281 | Func = 0x0006 << 2, // 110 |
||
282 | |||
283 | // Flags: 7 bits for now |
||
284 | FlagMask = 0x007F << 5, |
||
285 | Shadow = 0x0001 << 5, // 0000001, Has extra reaching defs. |
||
286 | Clobbering = 0x0002 << 5, // 0000010, Produces unspecified values. |
||
287 | PhiRef = 0x0004 << 5, // 0000100, Member of PhiNode. |
||
288 | Preserving = 0x0008 << 5, // 0001000, Def can keep original bits. |
||
289 | Fixed = 0x0010 << 5, // 0010000, Fixed register. |
||
290 | Undef = 0x0020 << 5, // 0100000, Has no pre-existing value. |
||
291 | Dead = 0x0040 << 5, // 1000000, Does not define a value. |
||
292 | }; |
||
293 | |||
294 | static uint16_t type(uint16_t T) { return T & TypeMask; } |
||
295 | static uint16_t kind(uint16_t T) { return T & KindMask; } |
||
296 | static uint16_t flags(uint16_t T) { return T & FlagMask; } |
||
297 | |||
298 | static uint16_t set_type(uint16_t A, uint16_t T) { |
||
299 | return (A & ~TypeMask) | T; |
||
300 | } |
||
301 | |||
302 | static uint16_t set_kind(uint16_t A, uint16_t K) { |
||
303 | return (A & ~KindMask) | K; |
||
304 | } |
||
305 | |||
306 | static uint16_t set_flags(uint16_t A, uint16_t F) { |
||
307 | return (A & ~FlagMask) | F; |
||
308 | } |
||
309 | |||
310 | // Test if A contains B. |
||
311 | static bool contains(uint16_t A, uint16_t B) { |
||
312 | if (type(A) != Code) |
||
313 | return false; |
||
314 | uint16_t KB = kind(B); |
||
315 | switch (kind(A)) { |
||
316 | case Func: |
||
317 | return KB == Block; |
||
318 | case Block: |
||
319 | return KB == Phi || KB == Stmt; |
||
320 | case Phi: |
||
321 | case Stmt: |
||
322 | return type(B) == Ref; |
||
323 | } |
||
324 | return false; |
||
325 | } |
||
326 | }; |
||
327 | |||
328 | struct BuildOptions { |
||
329 | enum : unsigned { |
||
330 | None = 0x00, |
||
331 | KeepDeadPhis = 0x01, // Do not remove dead phis during build. |
||
332 | }; |
||
333 | }; |
||
334 | |||
335 | template <typename T> struct NodeAddr { |
||
336 | NodeAddr() = default; |
||
337 | NodeAddr(T A, NodeId I) : Addr(A), Id(I) {} |
||
338 | |||
339 | // Type cast (casting constructor). The reason for having this class |
||
340 | // instead of std::pair. |
||
341 | template <typename S> NodeAddr(const NodeAddr<S> &NA) |
||
342 | : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {} |
||
343 | |||
344 | bool operator== (const NodeAddr<T> &NA) const { |
||
345 | assert((Addr == NA.Addr) == (Id == NA.Id)); |
||
346 | return Addr == NA.Addr; |
||
347 | } |
||
348 | bool operator!= (const NodeAddr<T> &NA) const { |
||
349 | return !operator==(NA); |
||
350 | } |
||
351 | |||
352 | T Addr = nullptr; |
||
353 | NodeId Id = 0; |
||
354 | }; |
||
355 | |||
356 | struct NodeBase; |
||
357 | |||
358 | // Fast memory allocation and translation between node id and node address. |
||
359 | // This is really the same idea as the one underlying the "bump pointer |
||
360 | // allocator", the difference being in the translation. A node id is |
||
361 | // composed of two components: the index of the block in which it was |
||
362 | // allocated, and the index within the block. With the default settings, |
||
363 | // where the number of nodes per block is 4096, the node id (minus 1) is: |
||
364 | // |
||
365 | // bit position: 11 0 |
||
366 | // +----------------------------+--------------+ |
||
367 | // | Index of the block |Index in block| |
||
368 | // +----------------------------+--------------+ |
||
369 | // |
||
370 | // The actual node id is the above plus 1, to avoid creating a node id of 0. |
||
371 | // |
||
372 | // This method significantly improved the build time, compared to using maps |
||
373 | // (std::unordered_map or DenseMap) to translate between pointers and ids. |
||
374 | struct NodeAllocator { |
||
375 | // Amount of storage for a single node. |
||
376 | enum { NodeMemSize = 32 }; |
||
377 | |||
378 | NodeAllocator(uint32_t NPB = 4096) |
||
379 | : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)), |
||
380 | IndexMask((1 << BitsPerIndex)-1) { |
||
381 | assert(isPowerOf2_32(NPB)); |
||
382 | } |
||
383 | |||
384 | NodeBase *ptr(NodeId N) const { |
||
385 | uint32_t N1 = N-1; |
||
386 | uint32_t BlockN = N1 >> BitsPerIndex; |
||
387 | uint32_t Offset = (N1 & IndexMask) * NodeMemSize; |
||
388 | return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset); |
||
389 | } |
||
390 | |||
391 | NodeId id(const NodeBase *P) const; |
||
392 | NodeAddr<NodeBase*> New(); |
||
393 | void clear(); |
||
394 | |||
395 | private: |
||
396 | void startNewBlock(); |
||
397 | bool needNewBlock(); |
||
398 | |||
399 | uint32_t makeId(uint32_t Block, uint32_t Index) const { |
||
400 | // Add 1 to the id, to avoid the id of 0, which is treated as "null". |
||
401 | return ((Block << BitsPerIndex) | Index) + 1; |
||
402 | } |
||
403 | |||
404 | const uint32_t NodesPerBlock; |
||
405 | const uint32_t BitsPerIndex; |
||
406 | const uint32_t IndexMask; |
||
407 | char *ActiveEnd = nullptr; |
||
408 | std::vector<char*> Blocks; |
||
409 | using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>; |
||
410 | AllocatorTy MemPool; |
||
411 | }; |
||
412 | |||
413 | using RegisterSet = std::set<RegisterRef>; |
||
414 | |||
415 | struct TargetOperandInfo { |
||
416 | TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {} |
||
417 | virtual ~TargetOperandInfo() = default; |
||
418 | |||
419 | virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const; |
||
420 | virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const; |
||
421 | virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const; |
||
422 | |||
423 | const TargetInstrInfo &TII; |
||
424 | }; |
||
425 | |||
426 | // Packed register reference. Only used for storage. |
||
427 | struct PackedRegisterRef { |
||
428 | RegisterId Reg; |
||
429 | uint32_t MaskId; |
||
430 | }; |
||
431 | |||
432 | struct LaneMaskIndex : private IndexedSet<LaneBitmask> { |
||
433 | LaneMaskIndex() = default; |
||
434 | |||
435 | LaneBitmask getLaneMaskForIndex(uint32_t K) const { |
||
436 | return K == 0 ? LaneBitmask::getAll() : get(K); |
||
437 | } |
||
438 | |||
439 | uint32_t getIndexForLaneMask(LaneBitmask LM) { |
||
440 | assert(LM.any()); |
||
441 | return LM.all() ? 0 : insert(LM); |
||
442 | } |
||
443 | |||
444 | uint32_t getIndexForLaneMask(LaneBitmask LM) const { |
||
445 | assert(LM.any()); |
||
446 | return LM.all() ? 0 : find(LM); |
||
447 | } |
||
448 | }; |
||
449 | |||
450 | struct NodeBase { |
||
451 | public: |
||
452 | // Make sure this is a POD. |
||
453 | NodeBase() = default; |
||
454 | |||
455 | uint16_t getType() const { return NodeAttrs::type(Attrs); } |
||
456 | uint16_t getKind() const { return NodeAttrs::kind(Attrs); } |
||
457 | uint16_t getFlags() const { return NodeAttrs::flags(Attrs); } |
||
458 | NodeId getNext() const { return Next; } |
||
459 | |||
460 | uint16_t getAttrs() const { return Attrs; } |
||
461 | void setAttrs(uint16_t A) { Attrs = A; } |
||
462 | void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); } |
||
463 | |||
464 | // Insert node NA after "this" in the circular chain. |
||
465 | void append(NodeAddr<NodeBase*> NA); |
||
466 | |||
467 | // Initialize all members to 0. |
||
468 | void init() { memset(this, 0, sizeof *this); } |
||
469 | |||
470 | void setNext(NodeId N) { Next = N; } |
||
471 | |||
472 | protected: |
||
473 | uint16_t Attrs; |
||
474 | uint16_t Reserved; |
||
475 | NodeId Next; // Id of the next node in the circular chain. |
||
476 | // Definitions of nested types. Using anonymous nested structs would make |
||
477 | // this class definition clearer, but unnamed structs are not a part of |
||
478 | // the standard. |
||
479 | struct Def_struct { |
||
480 | NodeId DD, DU; // Ids of the first reached def and use. |
||
481 | }; |
||
482 | struct PhiU_struct { |
||
483 | NodeId PredB; // Id of the predecessor block for a phi use. |
||
484 | }; |
||
485 | struct Code_struct { |
||
486 | void *CP; // Pointer to the actual code. |
||
487 | NodeId FirstM, LastM; // Id of the first member and last. |
||
488 | }; |
||
489 | struct Ref_struct { |
||
490 | NodeId RD, Sib; // Ids of the reaching def and the sibling. |
||
491 | union { |
||
492 | Def_struct Def; |
||
493 | PhiU_struct PhiU; |
||
494 | }; |
||
495 | union { |
||
496 | MachineOperand *Op; // Non-phi refs point to a machine operand. |
||
497 | PackedRegisterRef PR; // Phi refs store register info directly. |
||
498 | }; |
||
499 | }; |
||
500 | |||
501 | // The actual payload. |
||
502 | union { |
||
503 | Ref_struct Ref; |
||
504 | Code_struct Code; |
||
505 | }; |
||
506 | }; |
||
507 | // The allocator allocates chunks of 32 bytes for each node. The fact that |
||
508 | // each node takes 32 bytes in memory is used for fast translation between |
||
509 | // the node id and the node address. |
||
510 | static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize, |
||
511 | "NodeBase must be at most NodeAllocator::NodeMemSize bytes"); |
||
512 | |||
513 | using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>; |
||
514 | using NodeSet = std::set<NodeId>; |
||
515 | |||
516 | struct RefNode : public NodeBase { |
||
517 | RefNode() = default; |
||
518 | |||
519 | RegisterRef getRegRef(const DataFlowGraph &G) const; |
||
520 | |||
521 | MachineOperand &getOp() { |
||
522 | assert(!(getFlags() & NodeAttrs::PhiRef)); |
||
523 | return *Ref.Op; |
||
524 | } |
||
525 | |||
526 | void setRegRef(RegisterRef RR, DataFlowGraph &G); |
||
527 | void setRegRef(MachineOperand *Op, DataFlowGraph &G); |
||
528 | |||
529 | NodeId getReachingDef() const { |
||
530 | return Ref.RD; |
||
531 | } |
||
532 | void setReachingDef(NodeId RD) { |
||
533 | Ref.RD = RD; |
||
534 | } |
||
535 | |||
536 | NodeId getSibling() const { |
||
537 | return Ref.Sib; |
||
538 | } |
||
539 | void setSibling(NodeId Sib) { |
||
540 | Ref.Sib = Sib; |
||
541 | } |
||
542 | |||
543 | bool isUse() const { |
||
544 | assert(getType() == NodeAttrs::Ref); |
||
545 | return getKind() == NodeAttrs::Use; |
||
546 | } |
||
547 | |||
548 | bool isDef() const { |
||
549 | assert(getType() == NodeAttrs::Ref); |
||
550 | return getKind() == NodeAttrs::Def; |
||
551 | } |
||
552 | |||
553 | template <typename Predicate> |
||
554 | NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly, |
||
555 | const DataFlowGraph &G); |
||
556 | NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G); |
||
557 | }; |
||
558 | |||
559 | struct DefNode : public RefNode { |
||
560 | NodeId getReachedDef() const { |
||
561 | return Ref.Def.DD; |
||
562 | } |
||
563 | void setReachedDef(NodeId D) { |
||
564 | Ref.Def.DD = D; |
||
565 | } |
||
566 | NodeId getReachedUse() const { |
||
567 | return Ref.Def.DU; |
||
568 | } |
||
569 | void setReachedUse(NodeId U) { |
||
570 | Ref.Def.DU = U; |
||
571 | } |
||
572 | |||
573 | void linkToDef(NodeId Self, NodeAddr<DefNode*> DA); |
||
574 | }; |
||
575 | |||
576 | struct UseNode : public RefNode { |
||
577 | void linkToDef(NodeId Self, NodeAddr<DefNode*> DA); |
||
578 | }; |
||
579 | |||
580 | struct PhiUseNode : public UseNode { |
||
581 | NodeId getPredecessor() const { |
||
582 | assert(getFlags() & NodeAttrs::PhiRef); |
||
583 | return Ref.PhiU.PredB; |
||
584 | } |
||
585 | void setPredecessor(NodeId B) { |
||
586 | assert(getFlags() & NodeAttrs::PhiRef); |
||
587 | Ref.PhiU.PredB = B; |
||
588 | } |
||
589 | }; |
||
590 | |||
591 | struct CodeNode : public NodeBase { |
||
592 | template <typename T> T getCode() const { |
||
593 | return static_cast<T>(Code.CP); |
||
594 | } |
||
595 | void setCode(void *C) { |
||
596 | Code.CP = C; |
||
597 | } |
||
598 | |||
599 | NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const; |
||
600 | NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const; |
||
601 | void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G); |
||
602 | void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, |
||
603 | const DataFlowGraph &G); |
||
604 | void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G); |
||
605 | |||
606 | NodeList members(const DataFlowGraph &G) const; |
||
607 | template <typename Predicate> |
||
608 | NodeList members_if(Predicate P, const DataFlowGraph &G) const; |
||
609 | }; |
||
610 | |||
611 | struct InstrNode : public CodeNode { |
||
612 | NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G); |
||
613 | }; |
||
614 | |||
615 | struct PhiNode : public InstrNode { |
||
616 | MachineInstr *getCode() const { |
||
617 | return nullptr; |
||
618 | } |
||
619 | }; |
||
620 | |||
621 | struct StmtNode : public InstrNode { |
||
622 | MachineInstr *getCode() const { |
||
623 | return CodeNode::getCode<MachineInstr*>(); |
||
624 | } |
||
625 | }; |
||
626 | |||
627 | struct BlockNode : public CodeNode { |
||
628 | MachineBasicBlock *getCode() const { |
||
629 | return CodeNode::getCode<MachineBasicBlock*>(); |
||
630 | } |
||
631 | |||
632 | void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G); |
||
633 | }; |
||
634 | |||
635 | struct FuncNode : public CodeNode { |
||
636 | MachineFunction *getCode() const { |
||
637 | return CodeNode::getCode<MachineFunction*>(); |
||
638 | } |
||
639 | |||
640 | NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB, |
||
641 | const DataFlowGraph &G) const; |
||
642 | NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G); |
||
643 | }; |
||
644 | |||
645 | struct DataFlowGraph { |
||
646 | DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
||
647 | const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, |
||
648 | const MachineDominanceFrontier &mdf); |
||
649 | DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
||
650 | const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, |
||
651 | const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi); |
||
652 | |||
653 | NodeBase *ptr(NodeId N) const; |
||
654 | template <typename T> T ptr(NodeId N) const { |
||
655 | return static_cast<T>(ptr(N)); |
||
656 | } |
||
657 | |||
658 | NodeId id(const NodeBase *P) const; |
||
659 | |||
660 | template <typename T> NodeAddr<T> addr(NodeId N) const { |
||
661 | return { ptr<T>(N), N }; |
||
662 | } |
||
663 | |||
664 | NodeAddr<FuncNode*> getFunc() const { return Func; } |
||
665 | MachineFunction &getMF() const { return MF; } |
||
666 | const TargetInstrInfo &getTII() const { return TII; } |
||
667 | const TargetRegisterInfo &getTRI() const { return TRI; } |
||
668 | const PhysicalRegisterInfo &getPRI() const { return PRI; } |
||
669 | const MachineDominatorTree &getDT() const { return MDT; } |
||
670 | const MachineDominanceFrontier &getDF() const { return MDF; } |
||
671 | const RegisterAggr &getLiveIns() const { return LiveIns; } |
||
672 | |||
673 | struct DefStack { |
||
674 | DefStack() = default; |
||
675 | |||
676 | bool empty() const { return Stack.empty() || top() == bottom(); } |
||
677 | |||
678 | private: |
||
679 | using value_type = NodeAddr<DefNode *>; |
||
680 | struct Iterator { |
||
681 | using value_type = DefStack::value_type; |
||
682 | |||
683 | Iterator &up() { Pos = DS.nextUp(Pos); return *this; } |
||
684 | Iterator &down() { Pos = DS.nextDown(Pos); return *this; } |
||
685 | |||
686 | value_type operator*() const { |
||
687 | assert(Pos >= 1); |
||
688 | return DS.Stack[Pos-1]; |
||
689 | } |
||
690 | const value_type *operator->() const { |
||
691 | assert(Pos >= 1); |
||
692 | return &DS.Stack[Pos-1]; |
||
693 | } |
||
694 | bool operator==(const Iterator &It) const { return Pos == It.Pos; } |
||
695 | bool operator!=(const Iterator &It) const { return Pos != It.Pos; } |
||
696 | |||
697 | private: |
||
698 | friend struct DefStack; |
||
699 | |||
700 | Iterator(const DefStack &S, bool Top); |
||
701 | |||
702 | // Pos-1 is the index in the StorageType object that corresponds to |
||
703 | // the top of the DefStack. |
||
704 | const DefStack &DS; |
||
705 | unsigned Pos; |
||
706 | }; |
||
707 | |||
708 | public: |
||
709 | using iterator = Iterator; |
||
710 | |||
711 | iterator top() const { return Iterator(*this, true); } |
||
712 | iterator bottom() const { return Iterator(*this, false); } |
||
713 | unsigned size() const; |
||
714 | |||
715 | void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); } |
||
716 | void pop(); |
||
717 | void start_block(NodeId N); |
||
718 | void clear_block(NodeId N); |
||
719 | |||
720 | private: |
||
721 | friend struct Iterator; |
||
722 | |||
723 | using StorageType = std::vector<value_type>; |
||
724 | |||
725 | bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const { |
||
726 | return (P.Addr == nullptr) && (N == 0 || P.Id == N); |
||
727 | } |
||
728 | |||
729 | unsigned nextUp(unsigned P) const; |
||
730 | unsigned nextDown(unsigned P) const; |
||
731 | |||
732 | StorageType Stack; |
||
733 | }; |
||
734 | |||
735 | // Make this std::unordered_map for speed of accessing elements. |
||
736 | // Map: Register (physical or virtual) -> DefStack |
||
737 | using DefStackMap = std::unordered_map<RegisterId, DefStack>; |
||
738 | |||
739 | void build(unsigned Options = BuildOptions::None); |
||
740 | void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM); |
||
741 | void markBlock(NodeId B, DefStackMap &DefM); |
||
742 | void releaseBlock(NodeId B, DefStackMap &DefM); |
||
743 | |||
744 | PackedRegisterRef pack(RegisterRef RR) { |
||
745 | return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) }; |
||
746 | } |
||
747 | PackedRegisterRef pack(RegisterRef RR) const { |
||
748 | return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) }; |
||
749 | } |
||
750 | RegisterRef unpack(PackedRegisterRef PR) const { |
||
751 | return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId)); |
||
752 | } |
||
753 | |||
754 | RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const; |
||
755 | RegisterRef makeRegRef(const MachineOperand &Op) const; |
||
756 | |||
757 | NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA, |
||
758 | NodeAddr<RefNode*> RA) const; |
||
759 | NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA, |
||
760 | NodeAddr<RefNode*> RA, bool Create); |
||
761 | NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA, |
||
762 | NodeAddr<RefNode*> RA) const; |
||
763 | |||
764 | NodeList getRelatedRefs(NodeAddr<InstrNode*> IA, |
||
765 | NodeAddr<RefNode*> RA) const; |
||
766 | |||
767 | NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const { |
||
768 | return BlockNodes.at(BB); |
||
769 | } |
||
770 | |||
771 | void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) { |
||
772 | unlinkUseDF(UA); |
||
773 | if (RemoveFromOwner) |
||
774 | removeFromOwner(UA); |
||
775 | } |
||
776 | |||
777 | void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) { |
||
778 | unlinkDefDF(DA); |
||
779 | if (RemoveFromOwner) |
||
780 | removeFromOwner(DA); |
||
781 | } |
||
782 | |||
783 | // Some useful filters. |
||
784 | template <uint16_t Kind> |
||
785 | static bool IsRef(const NodeAddr<NodeBase*> BA) { |
||
786 | return BA.Addr->getType() == NodeAttrs::Ref && |
||
787 | BA.Addr->getKind() == Kind; |
||
788 | } |
||
789 | |||
790 | template <uint16_t Kind> |
||
791 | static bool IsCode(const NodeAddr<NodeBase*> BA) { |
||
792 | return BA.Addr->getType() == NodeAttrs::Code && |
||
793 | BA.Addr->getKind() == Kind; |
||
794 | } |
||
795 | |||
796 | static bool IsDef(const NodeAddr<NodeBase*> BA) { |
||
797 | return BA.Addr->getType() == NodeAttrs::Ref && |
||
798 | BA.Addr->getKind() == NodeAttrs::Def; |
||
799 | } |
||
800 | |||
801 | static bool IsUse(const NodeAddr<NodeBase*> BA) { |
||
802 | return BA.Addr->getType() == NodeAttrs::Ref && |
||
803 | BA.Addr->getKind() == NodeAttrs::Use; |
||
804 | } |
||
805 | |||
806 | static bool IsPhi(const NodeAddr<NodeBase*> BA) { |
||
807 | return BA.Addr->getType() == NodeAttrs::Code && |
||
808 | BA.Addr->getKind() == NodeAttrs::Phi; |
||
809 | } |
||
810 | |||
811 | static bool IsPreservingDef(const NodeAddr<DefNode*> DA) { |
||
812 | uint16_t Flags = DA.Addr->getFlags(); |
||
813 | return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef); |
||
814 | } |
||
815 | |||
816 | private: |
||
817 | void reset(); |
||
818 | |||
819 | RegisterSet getLandingPadLiveIns() const; |
||
820 | |||
821 | NodeAddr<NodeBase*> newNode(uint16_t Attrs); |
||
822 | NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B); |
||
823 | NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner, |
||
824 | MachineOperand &Op, uint16_t Flags = NodeAttrs::None); |
||
825 | NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner, |
||
826 | RegisterRef RR, NodeAddr<BlockNode*> PredB, |
||
827 | uint16_t Flags = NodeAttrs::PhiRef); |
||
828 | NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner, |
||
829 | MachineOperand &Op, uint16_t Flags = NodeAttrs::None); |
||
830 | NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner, |
||
831 | RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef); |
||
832 | NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner); |
||
833 | NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner, |
||
834 | MachineInstr *MI); |
||
835 | NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner, |
||
836 | MachineBasicBlock *BB); |
||
837 | NodeAddr<FuncNode*> newFunc(MachineFunction *MF); |
||
838 | |||
839 | template <typename Predicate> |
||
840 | std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> |
||
841 | locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, |
||
842 | Predicate P) const; |
||
843 | |||
844 | using BlockRefsMap = std::map<NodeId, RegisterSet>; |
||
845 | |||
846 | void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In); |
||
847 | void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA); |
||
848 | void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, |
||
849 | NodeAddr<BlockNode*> BA); |
||
850 | void removeUnusedPhis(); |
||
851 | |||
852 | void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM); |
||
853 | void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM); |
||
854 | template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA, |
||
855 | NodeAddr<T> TA, DefStack &DS); |
||
856 | template <typename Predicate> void linkStmtRefs(DefStackMap &DefM, |
||
857 | NodeAddr<StmtNode*> SA, Predicate P); |
||
858 | void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA); |
||
859 | |||
860 | void unlinkUseDF(NodeAddr<UseNode*> UA); |
||
861 | void unlinkDefDF(NodeAddr<DefNode*> DA); |
||
862 | |||
863 | void removeFromOwner(NodeAddr<RefNode*> RA) { |
||
864 | NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this); |
||
865 | IA.Addr->removeMember(RA, *this); |
||
866 | } |
||
867 | |||
868 | // Default TOI object, if not given in the constructor. |
||
869 | std::unique_ptr<TargetOperandInfo> DefaultTOI; |
||
870 | |||
871 | MachineFunction &MF; |
||
872 | const TargetInstrInfo &TII; |
||
873 | const TargetRegisterInfo &TRI; |
||
874 | const PhysicalRegisterInfo PRI; |
||
875 | const MachineDominatorTree &MDT; |
||
876 | const MachineDominanceFrontier &MDF; |
||
877 | const TargetOperandInfo &TOI; |
||
878 | |||
879 | RegisterAggr LiveIns; |
||
880 | NodeAddr<FuncNode*> Func; |
||
881 | NodeAllocator Memory; |
||
882 | // Local map: MachineBasicBlock -> NodeAddr<BlockNode*> |
||
883 | std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes; |
||
884 | // Lane mask map. |
||
885 | LaneMaskIndex LMI; |
||
886 | }; // struct DataFlowGraph |
||
887 | |||
888 | template <typename Predicate> |
||
889 | NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P, |
||
890 | bool NextOnly, const DataFlowGraph &G) { |
||
891 | // Get the "Next" reference in the circular list that references RR and |
||
892 | // satisfies predicate "Pred". |
||
893 | auto NA = G.addr<NodeBase*>(getNext()); |
||
894 | |||
895 | while (NA.Addr != this) { |
||
896 | if (NA.Addr->getType() == NodeAttrs::Ref) { |
||
897 | NodeAddr<RefNode*> RA = NA; |
||
898 | if (RA.Addr->getRegRef(G) == RR && P(NA)) |
||
899 | return NA; |
||
900 | if (NextOnly) |
||
901 | break; |
||
902 | NA = G.addr<NodeBase*>(NA.Addr->getNext()); |
||
903 | } else { |
||
904 | // We've hit the beginning of the chain. |
||
905 | assert(NA.Addr->getType() == NodeAttrs::Code); |
||
906 | NodeAddr<CodeNode*> CA = NA; |
||
907 | NA = CA.Addr->getFirstMember(G); |
||
908 | } |
||
909 | } |
||
910 | // Return the equivalent of "nullptr" if such a node was not found. |
||
911 | return NodeAddr<RefNode*>(); |
||
912 | } |
||
913 | |||
914 | template <typename Predicate> |
||
915 | NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const { |
||
916 | NodeList MM; |
||
917 | auto M = getFirstMember(G); |
||
918 | if (M.Id == 0) |
||
919 | return MM; |
||
920 | |||
921 | while (M.Addr != this) { |
||
922 | if (P(M)) |
||
923 | MM.push_back(M); |
||
924 | M = G.addr<NodeBase*>(M.Addr->getNext()); |
||
925 | } |
||
926 | return MM; |
||
927 | } |
||
928 | |||
929 | template <typename T> |
||
930 | struct Print { |
||
931 | Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {} |
||
932 | |||
933 | const T &Obj; |
||
934 | const DataFlowGraph &G; |
||
935 | }; |
||
936 | |||
937 | template <typename T> Print(const T &, const DataFlowGraph &) -> Print<T>; |
||
938 | |||
939 | template <typename T> |
||
940 | struct PrintNode : Print<NodeAddr<T>> { |
||
941 | PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g) |
||
942 | : Print<NodeAddr<T>>(x, g) {} |
||
943 | }; |
||
944 | |||
945 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P); |
||
946 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P); |
||
947 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P); |
||
948 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P); |
||
949 | raw_ostream &operator<<(raw_ostream &OS, |
||
950 | const Print<NodeAddr<PhiUseNode *>> &P); |
||
951 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P); |
||
952 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P); |
||
953 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P); |
||
954 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P); |
||
955 | raw_ostream &operator<<(raw_ostream &OS, |
||
956 | const Print<NodeAddr<StmtNode *>> &P); |
||
957 | raw_ostream &operator<<(raw_ostream &OS, |
||
958 | const Print<NodeAddr<InstrNode *>> &P); |
||
959 | raw_ostream &operator<<(raw_ostream &OS, |
||
960 | const Print<NodeAddr<BlockNode *>> &P); |
||
961 | raw_ostream &operator<<(raw_ostream &OS, |
||
962 | const Print<NodeAddr<FuncNode *>> &P); |
||
963 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P); |
||
964 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P); |
||
965 | raw_ostream &operator<<(raw_ostream &OS, |
||
966 | const Print<DataFlowGraph::DefStack> &P); |
||
967 | |||
968 | } // end namespace rdf |
||
969 | |||
970 | } // end namespace llvm |
||
971 | |||
972 | #endif // LLVM_CODEGEN_RDFGRAPH_H |