Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- RDFGraph.h -----------------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Target-independent, SSA-based data flow graph for register data flow (RDF)
10
// for a non-SSA program representation (e.g. post-RA machine code).
11
//
12
//
13
// *** Introduction
14
//
15
// The RDF graph is a collection of nodes, each of which denotes some element
16
// of the program. There are two main types of such elements: code and refe-
17
// rences. Conceptually, "code" is something that represents the structure
18
// of the program, e.g. basic block or a statement, while "reference" is an
19
// instance of accessing a register, e.g. a definition or a use. Nodes are
20
// connected with each other based on the structure of the program (such as
21
// blocks, instructions, etc.), and based on the data flow (e.g. reaching
22
// definitions, reached uses, etc.). The single-reaching-definition principle
23
// of SSA is generally observed, although, due to the non-SSA representation
24
// of the program, there are some differences between the graph and a "pure"
25
// SSA representation.
26
//
27
//
28
// *** Implementation remarks
29
//
30
// Since the graph can contain a large number of nodes, memory consumption
31
// was one of the major design considerations. As a result, there is a single
32
// base class NodeBase which defines all members used by all possible derived
33
// classes. The members are arranged in a union, and a derived class cannot
34
// add any data members of its own. Each derived class only defines the
35
// functional interface, i.e. member functions. NodeBase must be a POD,
36
// which implies that all of its members must also be PODs.
37
// Since nodes need to be connected with other nodes, pointers have been
38
// replaced with 32-bit identifiers: each node has an id of type NodeId.
39
// There are mapping functions in the graph that translate between actual
40
// memory addresses and the corresponding identifiers.
41
// A node id of 0 is equivalent to nullptr.
42
//
43
//
44
// *** Structure of the graph
45
//
46
// A code node is always a collection of other nodes. For example, a code
47
// node corresponding to a basic block will contain code nodes corresponding
48
// to instructions. In turn, a code node corresponding to an instruction will
49
// contain a list of reference nodes that correspond to the definitions and
50
// uses of registers in that instruction. The members are arranged into a
51
// circular list, which is yet another consequence of the effort to save
52
// memory: for each member node it should be possible to obtain its owner,
53
// and it should be possible to access all other members. There are other
54
// ways to accomplish that, but the circular list seemed the most natural.
55
//
56
// +- CodeNode -+
57
// |            | <---------------------------------------------------+
58
// +-+--------+-+                                                     |
59
//   |FirstM  |LastM                                                  |
60
//   |        +-------------------------------------+                 |
61
//   |                                              |                 |
62
//   V                                              V                 |
63
//  +----------+ Next +----------+ Next       Next +----------+ Next  |
64
//  |          |----->|          |-----> ... ----->|          |----->-+
65
//  +- Member -+      +- Member -+                 +- Member -+
66
//
67
// The order of members is such that related reference nodes (see below)
68
// should be contiguous on the member list.
69
//
70
// A reference node is a node that encapsulates an access to a register,
71
// in other words, data flowing into or out of a register. There are two
72
// major kinds of reference nodes: defs and uses. A def node will contain
73
// the id of the first reached use, and the id of the first reached def.
74
// Each def and use will contain the id of the reaching def, and also the
75
// id of the next reached def (for def nodes) or use (for use nodes).
76
// The "next node sharing the same reaching def" is denoted as "sibling".
77
// In summary:
78
// - Def node contains: reaching def, sibling, first reached def, and first
79
// reached use.
80
// - Use node contains: reaching def and sibling.
81
//
82
// +-- DefNode --+
83
// | R2 = ...    | <---+--------------------+
84
// ++---------+--+     |                    |
85
//  |Reached  |Reached |                    |
86
//  |Def      |Use     |                    |
87
//  |         |        |Reaching            |Reaching
88
//  |         V        |Def                 |Def
89
//  |      +-- UseNode --+ Sib  +-- UseNode --+ Sib       Sib
90
//  |      | ... = R2    |----->| ... = R2    |----> ... ----> 0
91
//  |      +-------------+      +-------------+
92
//  V
93
// +-- DefNode --+ Sib
94
// | R2 = ...    |----> ...
95
// ++---------+--+
96
//  |         |
97
//  |         |
98
// ...       ...
99
//
100
// To get a full picture, the circular lists connecting blocks within a
101
// function, instructions within a block, etc. should be superimposed with
102
// the def-def, def-use links shown above.
103
// To illustrate this, consider a small example in a pseudo-assembly:
104
// foo:
105
//   add r2, r0, r1   ; r2 = r0+r1
106
//   addi r0, r2, 1   ; r0 = r2+1
107
//   ret r0           ; return value in r0
108
//
109
// The graph (in a format used by the debugging functions) would look like:
110
//
111
//   DFG dump:[
112
//   f1: Function foo
113
//   b2: === %bb.0 === preds(0), succs(0):
114
//   p3: phi [d4<r0>(,d12,u9):]
115
//   p5: phi [d6<r1>(,,u10):]
116
//   s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
117
//   s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
118
//   s14: ret [u15<r0>(d12):]
119
//   ]
120
//
121
// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
122
// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
123
// ment, d - def, u - use).
124
// The format of a def node is:
125
//   dN<R>(rd,d,u):sib,
126
// where
127
//   N   - numeric node id,
128
//   R   - register being defined
129
//   rd  - reaching def,
130
//   d   - reached def,
131
//   u   - reached use,
132
//   sib - sibling.
133
// The format of a use node is:
134
//   uN<R>[!](rd):sib,
135
// where
136
//   N   - numeric node id,
137
//   R   - register being used,
138
//   rd  - reaching def,
139
//   sib - sibling.
140
// Possible annotations (usually preceding the node id):
141
//   +   - preserving def,
142
//   ~   - clobbering def,
143
//   "   - shadow ref (follows the node id),
144
//   !   - fixed register (appears after register name).
145
//
146
// The circular lists are not explicit in the dump.
147
//
148
//
149
// *** Node attributes
150
//
151
// NodeBase has a member "Attrs", which is the primary way of determining
152
// the node's characteristics. The fields in this member decide whether
153
// the node is a code node or a reference node (i.e. node's "type"), then
154
// within each type, the "kind" determines what specifically this node
155
// represents. The remaining bits, "flags", contain additional information
156
// that is even more detailed than the "kind".
157
// CodeNode's kinds are:
158
// - Phi:   Phi node, members are reference nodes.
159
// - Stmt:  Statement, members are reference nodes.
160
// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
161
// - Func:  The whole function. The members are basic block nodes.
162
// RefNode's kinds are:
163
// - Use.
164
// - Def.
165
//
166
// Meaning of flags:
167
// - Preserving: applies only to defs. A preserving def is one that can
168
//   preserve some of the original bits among those that are included in
169
//   the register associated with that def. For example, if R0 is a 32-bit
170
//   register, but a def can only change the lower 16 bits, then it will
171
//   be marked as preserving.
172
// - Shadow: a reference that has duplicates holding additional reaching
173
//   defs (see more below).
174
// - Clobbering: applied only to defs, indicates that the value generated
175
//   by this def is unspecified. A typical example would be volatile registers
176
//   after function calls.
177
// - Fixed: the register in this def/use cannot be replaced with any other
178
//   register. A typical case would be a parameter register to a call, or
179
//   the register with the return value from a function.
180
// - Undef: the register in this reference the register is assumed to have
181
//   no pre-existing value, even if it appears to be reached by some def.
182
//   This is typically used to prevent keeping registers artificially live
183
//   in cases when they are defined via predicated instructions. For example:
184
//     r0 = add-if-true cond, r10, r11                (1)
185
//     r0 = add-if-false cond, r12, r13, implicit r0  (2)
186
//     ... = r0                                       (3)
187
//   Before (1), r0 is not intended to be live, and the use of r0 in (3) is
188
//   not meant to be reached by any def preceding (1). However, since the
189
//   defs in (1) and (2) are both preserving, these properties alone would
190
//   imply that the use in (3) may indeed be reached by some prior def.
191
//   Adding Undef flag to the def in (1) prevents that. The Undef flag
192
//   may be applied to both defs and uses.
193
// - Dead: applies only to defs. The value coming out of a "dead" def is
194
//   assumed to be unused, even if the def appears to be reaching other defs
195
//   or uses. The motivation for this flag comes from dead defs on function
196
//   calls: there is no way to determine if such a def is dead without
197
//   analyzing the target's ABI. Hence the graph should contain this info,
198
//   as it is unavailable otherwise. On the other hand, a def without any
199
//   uses on a typical instruction is not the intended target for this flag.
200
//
201
// *** Shadow references
202
//
203
// It may happen that a super-register can have two (or more) non-overlapping
204
// sub-registers. When both of these sub-registers are defined and followed
205
// by a use of the super-register, the use of the super-register will not
206
// have a unique reaching def: both defs of the sub-registers need to be
207
// accounted for. In such cases, a duplicate use of the super-register is
208
// added and it points to the extra reaching def. Both uses are marked with
209
// a flag "shadow". Example:
210
// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
211
//   set r0, 1        ; r0 = 1
212
//   set r1, 1        ; r1 = 1
213
//   addi t1, t0, 1   ; t1 = t0+1
214
//
215
// The DFG:
216
//   s1: set [d2<r0>(,,u9):]
217
//   s3: set [d4<r1>(,,u10):]
218
//   s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
219
//
220
// The statement s5 has two use nodes for t0: u7" and u9". The quotation
221
// mark " indicates that the node is a shadow.
222
//
223
 
224
#ifndef LLVM_CODEGEN_RDFGRAPH_H
225
#define LLVM_CODEGEN_RDFGRAPH_H
226
 
227
#include "RDFRegisters.h"
228
#include "llvm/ADT/SmallVector.h"
229
#include "llvm/MC/LaneBitmask.h"
230
#include "llvm/Support/Allocator.h"
231
#include "llvm/Support/MathExtras.h"
232
#include <cassert>
233
#include <cstdint>
234
#include <cstring>
235
#include <map>
236
#include <memory>
237
#include <set>
238
#include <unordered_map>
239
#include <utility>
240
#include <vector>
241
 
242
// RDF uses uint32_t to refer to registers. This is to ensure that the type
243
// size remains specific. In other places, registers are often stored using
244
// unsigned.
245
static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
246
 
247
namespace llvm {
248
 
249
class MachineBasicBlock;
250
class MachineDominanceFrontier;
251
class MachineDominatorTree;
252
class MachineFunction;
253
class MachineInstr;
254
class MachineOperand;
255
class raw_ostream;
256
class TargetInstrInfo;
257
class TargetRegisterInfo;
258
 
259
namespace rdf {
260
 
261
  using NodeId = uint32_t;
262
 
263
  struct DataFlowGraph;
264
 
265
  struct NodeAttrs {
266
    enum : uint16_t {
267
      None          = 0x0000,   // Nothing
268
 
269
      // Types: 2 bits
270
      TypeMask      = 0x0003,
271
      Code          = 0x0001,   // 01, Container
272
      Ref           = 0x0002,   // 10, Reference
273
 
274
      // Kind: 3 bits
275
      KindMask      = 0x0007 << 2,
276
      Def           = 0x0001 << 2,  // 001
277
      Use           = 0x0002 << 2,  // 010
278
      Phi           = 0x0003 << 2,  // 011
279
      Stmt          = 0x0004 << 2,  // 100
280
      Block         = 0x0005 << 2,  // 101
281
      Func          = 0x0006 << 2,  // 110
282
 
283
      // Flags: 7 bits for now
284
      FlagMask      = 0x007F << 5,
285
      Shadow        = 0x0001 << 5,  // 0000001, Has extra reaching defs.
286
      Clobbering    = 0x0002 << 5,  // 0000010, Produces unspecified values.
287
      PhiRef        = 0x0004 << 5,  // 0000100, Member of PhiNode.
288
      Preserving    = 0x0008 << 5,  // 0001000, Def can keep original bits.
289
      Fixed         = 0x0010 << 5,  // 0010000, Fixed register.
290
      Undef         = 0x0020 << 5,  // 0100000, Has no pre-existing value.
291
      Dead          = 0x0040 << 5,  // 1000000, Does not define a value.
292
    };
293
 
294
    static uint16_t type(uint16_t T)  { return T & TypeMask; }
295
    static uint16_t kind(uint16_t T)  { return T & KindMask; }
296
    static uint16_t flags(uint16_t T) { return T & FlagMask; }
297
 
298
    static uint16_t set_type(uint16_t A, uint16_t T) {
299
      return (A & ~TypeMask) | T;
300
    }
301
 
302
    static uint16_t set_kind(uint16_t A, uint16_t K) {
303
      return (A & ~KindMask) | K;
304
    }
305
 
306
    static uint16_t set_flags(uint16_t A, uint16_t F) {
307
      return (A & ~FlagMask) | F;
308
    }
309
 
310
    // Test if A contains B.
311
    static bool contains(uint16_t A, uint16_t B) {
312
      if (type(A) != Code)
313
        return false;
314
      uint16_t KB = kind(B);
315
      switch (kind(A)) {
316
        case Func:
317
          return KB == Block;
318
        case Block:
319
          return KB == Phi || KB == Stmt;
320
        case Phi:
321
        case Stmt:
322
          return type(B) == Ref;
323
      }
324
      return false;
325
    }
326
  };
327
 
328
  struct BuildOptions {
329
    enum : unsigned {
330
      None          = 0x00,
331
      KeepDeadPhis  = 0x01,   // Do not remove dead phis during build.
332
    };
333
  };
334
 
335
  template <typename T> struct NodeAddr {
336
    NodeAddr() = default;
337
    NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
338
 
339
    // Type cast (casting constructor). The reason for having this class
340
    // instead of std::pair.
341
    template <typename S> NodeAddr(const NodeAddr<S> &NA)
342
      : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
343
 
344
    bool operator== (const NodeAddr<T> &NA) const {
345
      assert((Addr == NA.Addr) == (Id == NA.Id));
346
      return Addr == NA.Addr;
347
    }
348
    bool operator!= (const NodeAddr<T> &NA) const {
349
      return !operator==(NA);
350
    }
351
 
352
    T Addr = nullptr;
353
    NodeId Id = 0;
354
  };
355
 
356
  struct NodeBase;
357
 
358
  // Fast memory allocation and translation between node id and node address.
359
  // This is really the same idea as the one underlying the "bump pointer
360
  // allocator", the difference being in the translation. A node id is
361
  // composed of two components: the index of the block in which it was
362
  // allocated, and the index within the block. With the default settings,
363
  // where the number of nodes per block is 4096, the node id (minus 1) is:
364
  //
365
  // bit position:                11             0
366
  // +----------------------------+--------------+
367
  // | Index of the block         |Index in block|
368
  // +----------------------------+--------------+
369
  //
370
  // The actual node id is the above plus 1, to avoid creating a node id of 0.
371
  //
372
  // This method significantly improved the build time, compared to using maps
373
  // (std::unordered_map or DenseMap) to translate between pointers and ids.
374
  struct NodeAllocator {
375
    // Amount of storage for a single node.
376
    enum { NodeMemSize = 32 };
377
 
378
    NodeAllocator(uint32_t NPB = 4096)
379
        : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
380
          IndexMask((1 << BitsPerIndex)-1) {
381
      assert(isPowerOf2_32(NPB));
382
    }
383
 
384
    NodeBase *ptr(NodeId N) const {
385
      uint32_t N1 = N-1;
386
      uint32_t BlockN = N1 >> BitsPerIndex;
387
      uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
388
      return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
389
    }
390
 
391
    NodeId id(const NodeBase *P) const;
392
    NodeAddr<NodeBase*> New();
393
    void clear();
394
 
395
  private:
396
    void startNewBlock();
397
    bool needNewBlock();
398
 
399
    uint32_t makeId(uint32_t Block, uint32_t Index) const {
400
      // Add 1 to the id, to avoid the id of 0, which is treated as "null".
401
      return ((Block << BitsPerIndex) | Index) + 1;
402
    }
403
 
404
    const uint32_t NodesPerBlock;
405
    const uint32_t BitsPerIndex;
406
    const uint32_t IndexMask;
407
    char *ActiveEnd = nullptr;
408
    std::vector<char*> Blocks;
409
    using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>;
410
    AllocatorTy MemPool;
411
  };
412
 
413
  using RegisterSet = std::set<RegisterRef>;
414
 
415
  struct TargetOperandInfo {
416
    TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
417
    virtual ~TargetOperandInfo() = default;
418
 
419
    virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
420
    virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
421
    virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
422
 
423
    const TargetInstrInfo &TII;
424
  };
425
 
426
  // Packed register reference. Only used for storage.
427
  struct PackedRegisterRef {
428
    RegisterId Reg;
429
    uint32_t MaskId;
430
  };
431
 
432
  struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
433
    LaneMaskIndex() = default;
434
 
435
    LaneBitmask getLaneMaskForIndex(uint32_t K) const {
436
      return K == 0 ? LaneBitmask::getAll() : get(K);
437
    }
438
 
439
    uint32_t getIndexForLaneMask(LaneBitmask LM) {
440
      assert(LM.any());
441
      return LM.all() ? 0 : insert(LM);
442
    }
443
 
444
    uint32_t getIndexForLaneMask(LaneBitmask LM) const {
445
      assert(LM.any());
446
      return LM.all() ? 0 : find(LM);
447
    }
448
  };
449
 
450
  struct NodeBase {
451
  public:
452
    // Make sure this is a POD.
453
    NodeBase() = default;
454
 
455
    uint16_t getType()  const { return NodeAttrs::type(Attrs); }
456
    uint16_t getKind()  const { return NodeAttrs::kind(Attrs); }
457
    uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
458
    NodeId   getNext()  const { return Next; }
459
 
460
    uint16_t getAttrs() const { return Attrs; }
461
    void setAttrs(uint16_t A) { Attrs = A; }
462
    void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
463
 
464
    // Insert node NA after "this" in the circular chain.
465
    void append(NodeAddr<NodeBase*> NA);
466
 
467
    // Initialize all members to 0.
468
    void init() { memset(this, 0, sizeof *this); }
469
 
470
    void setNext(NodeId N) { Next = N; }
471
 
472
  protected:
473
    uint16_t Attrs;
474
    uint16_t Reserved;
475
    NodeId Next;                // Id of the next node in the circular chain.
476
    // Definitions of nested types. Using anonymous nested structs would make
477
    // this class definition clearer, but unnamed structs are not a part of
478
    // the standard.
479
    struct Def_struct  {
480
      NodeId DD, DU;          // Ids of the first reached def and use.
481
    };
482
    struct PhiU_struct  {
483
      NodeId PredB;           // Id of the predecessor block for a phi use.
484
    };
485
    struct Code_struct {
486
      void *CP;               // Pointer to the actual code.
487
      NodeId FirstM, LastM;   // Id of the first member and last.
488
    };
489
    struct Ref_struct {
490
      NodeId RD, Sib;         // Ids of the reaching def and the sibling.
491
      union {
492
        Def_struct Def;
493
        PhiU_struct PhiU;
494
      };
495
      union {
496
        MachineOperand *Op;   // Non-phi refs point to a machine operand.
497
        PackedRegisterRef PR; // Phi refs store register info directly.
498
      };
499
    };
500
 
501
    // The actual payload.
502
    union {
503
      Ref_struct Ref;
504
      Code_struct Code;
505
    };
506
  };
507
  // The allocator allocates chunks of 32 bytes for each node. The fact that
508
  // each node takes 32 bytes in memory is used for fast translation between
509
  // the node id and the node address.
510
  static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
511
        "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
512
 
513
  using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>;
514
  using NodeSet = std::set<NodeId>;
515
 
516
  struct RefNode : public NodeBase {
517
    RefNode() = default;
518
 
519
    RegisterRef getRegRef(const DataFlowGraph &G) const;
520
 
521
    MachineOperand &getOp() {
522
      assert(!(getFlags() & NodeAttrs::PhiRef));
523
      return *Ref.Op;
524
    }
525
 
526
    void setRegRef(RegisterRef RR, DataFlowGraph &G);
527
    void setRegRef(MachineOperand *Op, DataFlowGraph &G);
528
 
529
    NodeId getReachingDef() const {
530
      return Ref.RD;
531
    }
532
    void setReachingDef(NodeId RD) {
533
      Ref.RD = RD;
534
    }
535
 
536
    NodeId getSibling() const {
537
      return Ref.Sib;
538
    }
539
    void setSibling(NodeId Sib) {
540
      Ref.Sib = Sib;
541
    }
542
 
543
    bool isUse() const {
544
      assert(getType() == NodeAttrs::Ref);
545
      return getKind() == NodeAttrs::Use;
546
    }
547
 
548
    bool isDef() const {
549
      assert(getType() == NodeAttrs::Ref);
550
      return getKind() == NodeAttrs::Def;
551
    }
552
 
553
    template <typename Predicate>
554
    NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
555
        const DataFlowGraph &G);
556
    NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
557
  };
558
 
559
  struct DefNode : public RefNode {
560
    NodeId getReachedDef() const {
561
      return Ref.Def.DD;
562
    }
563
    void setReachedDef(NodeId D) {
564
      Ref.Def.DD = D;
565
    }
566
    NodeId getReachedUse() const {
567
      return Ref.Def.DU;
568
    }
569
    void setReachedUse(NodeId U) {
570
      Ref.Def.DU = U;
571
    }
572
 
573
    void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
574
  };
575
 
576
  struct UseNode : public RefNode {
577
    void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
578
  };
579
 
580
  struct PhiUseNode : public UseNode {
581
    NodeId getPredecessor() const {
582
      assert(getFlags() & NodeAttrs::PhiRef);
583
      return Ref.PhiU.PredB;
584
    }
585
    void setPredecessor(NodeId B) {
586
      assert(getFlags() & NodeAttrs::PhiRef);
587
      Ref.PhiU.PredB = B;
588
    }
589
  };
590
 
591
  struct CodeNode : public NodeBase {
592
    template <typename T> T getCode() const {
593
      return static_cast<T>(Code.CP);
594
    }
595
    void setCode(void *C) {
596
      Code.CP = C;
597
    }
598
 
599
    NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
600
    NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
601
    void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
602
    void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
603
        const DataFlowGraph &G);
604
    void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
605
 
606
    NodeList members(const DataFlowGraph &G) const;
607
    template <typename Predicate>
608
    NodeList members_if(Predicate P, const DataFlowGraph &G) const;
609
  };
610
 
611
  struct InstrNode : public CodeNode {
612
    NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
613
  };
614
 
615
  struct PhiNode : public InstrNode {
616
    MachineInstr *getCode() const {
617
      return nullptr;
618
    }
619
  };
620
 
621
  struct StmtNode : public InstrNode {
622
    MachineInstr *getCode() const {
623
      return CodeNode::getCode<MachineInstr*>();
624
    }
625
  };
626
 
627
  struct BlockNode : public CodeNode {
628
    MachineBasicBlock *getCode() const {
629
      return CodeNode::getCode<MachineBasicBlock*>();
630
    }
631
 
632
    void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
633
  };
634
 
635
  struct FuncNode : public CodeNode {
636
    MachineFunction *getCode() const {
637
      return CodeNode::getCode<MachineFunction*>();
638
    }
639
 
640
    NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
641
        const DataFlowGraph &G) const;
642
    NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
643
  };
644
 
645
  struct DataFlowGraph {
646
    DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
647
        const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
648
        const MachineDominanceFrontier &mdf);
649
    DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
650
        const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
651
        const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);
652
 
653
    NodeBase *ptr(NodeId N) const;
654
    template <typename T> T ptr(NodeId N) const {
655
      return static_cast<T>(ptr(N));
656
    }
657
 
658
    NodeId id(const NodeBase *P) const;
659
 
660
    template <typename T> NodeAddr<T> addr(NodeId N) const {
661
      return { ptr<T>(N), N };
662
    }
663
 
664
    NodeAddr<FuncNode*> getFunc() const { return Func; }
665
    MachineFunction &getMF() const { return MF; }
666
    const TargetInstrInfo &getTII() const { return TII; }
667
    const TargetRegisterInfo &getTRI() const { return TRI; }
668
    const PhysicalRegisterInfo &getPRI() const { return PRI; }
669
    const MachineDominatorTree &getDT() const { return MDT; }
670
    const MachineDominanceFrontier &getDF() const { return MDF; }
671
    const RegisterAggr &getLiveIns() const { return LiveIns; }
672
 
673
    struct DefStack {
674
      DefStack() = default;
675
 
676
      bool empty() const { return Stack.empty() || top() == bottom(); }
677
 
678
    private:
679
      using value_type = NodeAddr<DefNode *>;
680
      struct Iterator {
681
        using value_type = DefStack::value_type;
682
 
683
        Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
684
        Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
685
 
686
        value_type operator*() const {
687
          assert(Pos >= 1);
688
          return DS.Stack[Pos-1];
689
        }
690
        const value_type *operator->() const {
691
          assert(Pos >= 1);
692
          return &DS.Stack[Pos-1];
693
        }
694
        bool operator==(const Iterator &It) const { return Pos == It.Pos; }
695
        bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
696
 
697
      private:
698
        friend struct DefStack;
699
 
700
        Iterator(const DefStack &S, bool Top);
701
 
702
        // Pos-1 is the index in the StorageType object that corresponds to
703
        // the top of the DefStack.
704
        const DefStack &DS;
705
        unsigned Pos;
706
      };
707
 
708
    public:
709
      using iterator = Iterator;
710
 
711
      iterator top() const { return Iterator(*this, true); }
712
      iterator bottom() const { return Iterator(*this, false); }
713
      unsigned size() const;
714
 
715
      void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
716
      void pop();
717
      void start_block(NodeId N);
718
      void clear_block(NodeId N);
719
 
720
    private:
721
      friend struct Iterator;
722
 
723
      using StorageType = std::vector<value_type>;
724
 
725
      bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
726
        return (P.Addr == nullptr) && (N == 0 || P.Id == N);
727
      }
728
 
729
      unsigned nextUp(unsigned P) const;
730
      unsigned nextDown(unsigned P) const;
731
 
732
      StorageType Stack;
733
    };
734
 
735
    // Make this std::unordered_map for speed of accessing elements.
736
    // Map: Register (physical or virtual) -> DefStack
737
    using DefStackMap = std::unordered_map<RegisterId, DefStack>;
738
 
739
    void build(unsigned Options = BuildOptions::None);
740
    void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
741
    void markBlock(NodeId B, DefStackMap &DefM);
742
    void releaseBlock(NodeId B, DefStackMap &DefM);
743
 
744
    PackedRegisterRef pack(RegisterRef RR) {
745
      return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
746
    }
747
    PackedRegisterRef pack(RegisterRef RR) const {
748
      return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
749
    }
750
    RegisterRef unpack(PackedRegisterRef PR) const {
751
      return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId));
752
    }
753
 
754
    RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
755
    RegisterRef makeRegRef(const MachineOperand &Op) const;
756
 
757
    NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
758
        NodeAddr<RefNode*> RA) const;
759
    NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
760
        NodeAddr<RefNode*> RA, bool Create);
761
    NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
762
        NodeAddr<RefNode*> RA) const;
763
 
764
    NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
765
        NodeAddr<RefNode*> RA) const;
766
 
767
    NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const {
768
      return BlockNodes.at(BB);
769
    }
770
 
771
    void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
772
      unlinkUseDF(UA);
773
      if (RemoveFromOwner)
774
        removeFromOwner(UA);
775
    }
776
 
777
    void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
778
      unlinkDefDF(DA);
779
      if (RemoveFromOwner)
780
        removeFromOwner(DA);
781
    }
782
 
783
    // Some useful filters.
784
    template <uint16_t Kind>
785
    static bool IsRef(const NodeAddr<NodeBase*> BA) {
786
      return BA.Addr->getType() == NodeAttrs::Ref &&
787
             BA.Addr->getKind() == Kind;
788
    }
789
 
790
    template <uint16_t Kind>
791
    static bool IsCode(const NodeAddr<NodeBase*> BA) {
792
      return BA.Addr->getType() == NodeAttrs::Code &&
793
             BA.Addr->getKind() == Kind;
794
    }
795
 
796
    static bool IsDef(const NodeAddr<NodeBase*> BA) {
797
      return BA.Addr->getType() == NodeAttrs::Ref &&
798
             BA.Addr->getKind() == NodeAttrs::Def;
799
    }
800
 
801
    static bool IsUse(const NodeAddr<NodeBase*> BA) {
802
      return BA.Addr->getType() == NodeAttrs::Ref &&
803
             BA.Addr->getKind() == NodeAttrs::Use;
804
    }
805
 
806
    static bool IsPhi(const NodeAddr<NodeBase*> BA) {
807
      return BA.Addr->getType() == NodeAttrs::Code &&
808
             BA.Addr->getKind() == NodeAttrs::Phi;
809
    }
810
 
811
    static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
812
      uint16_t Flags = DA.Addr->getFlags();
813
      return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
814
    }
815
 
816
  private:
817
    void reset();
818
 
819
    RegisterSet getLandingPadLiveIns() const;
820
 
821
    NodeAddr<NodeBase*> newNode(uint16_t Attrs);
822
    NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
823
    NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
824
        MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
825
    NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
826
        RegisterRef RR, NodeAddr<BlockNode*> PredB,
827
        uint16_t Flags = NodeAttrs::PhiRef);
828
    NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
829
        MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
830
    NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
831
        RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
832
    NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
833
    NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
834
        MachineInstr *MI);
835
    NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
836
        MachineBasicBlock *BB);
837
    NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
838
 
839
    template <typename Predicate>
840
    std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
841
    locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
842
        Predicate P) const;
843
 
844
    using BlockRefsMap = std::map<NodeId, RegisterSet>;
845
 
846
    void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
847
    void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA);
848
    void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
849
        NodeAddr<BlockNode*> BA);
850
    void removeUnusedPhis();
851
 
852
    void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM);
853
    void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
854
    template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
855
        NodeAddr<T> TA, DefStack &DS);
856
    template <typename Predicate> void linkStmtRefs(DefStackMap &DefM,
857
        NodeAddr<StmtNode*> SA, Predicate P);
858
    void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
859
 
860
    void unlinkUseDF(NodeAddr<UseNode*> UA);
861
    void unlinkDefDF(NodeAddr<DefNode*> DA);
862
 
863
    void removeFromOwner(NodeAddr<RefNode*> RA) {
864
      NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
865
      IA.Addr->removeMember(RA, *this);
866
    }
867
 
868
    // Default TOI object, if not given in the constructor.
869
    std::unique_ptr<TargetOperandInfo> DefaultTOI;
870
 
871
    MachineFunction &MF;
872
    const TargetInstrInfo &TII;
873
    const TargetRegisterInfo &TRI;
874
    const PhysicalRegisterInfo PRI;
875
    const MachineDominatorTree &MDT;
876
    const MachineDominanceFrontier &MDF;
877
    const TargetOperandInfo &TOI;
878
 
879
    RegisterAggr LiveIns;
880
    NodeAddr<FuncNode*> Func;
881
    NodeAllocator Memory;
882
    // Local map:  MachineBasicBlock -> NodeAddr<BlockNode*>
883
    std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
884
    // Lane mask map.
885
    LaneMaskIndex LMI;
886
  };  // struct DataFlowGraph
887
 
888
  template <typename Predicate>
889
  NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
890
        bool NextOnly, const DataFlowGraph &G) {
891
    // Get the "Next" reference in the circular list that references RR and
892
    // satisfies predicate "Pred".
893
    auto NA = G.addr<NodeBase*>(getNext());
894
 
895
    while (NA.Addr != this) {
896
      if (NA.Addr->getType() == NodeAttrs::Ref) {
897
        NodeAddr<RefNode*> RA = NA;
898
        if (RA.Addr->getRegRef(G) == RR && P(NA))
899
          return NA;
900
        if (NextOnly)
901
          break;
902
        NA = G.addr<NodeBase*>(NA.Addr->getNext());
903
      } else {
904
        // We've hit the beginning of the chain.
905
        assert(NA.Addr->getType() == NodeAttrs::Code);
906
        NodeAddr<CodeNode*> CA = NA;
907
        NA = CA.Addr->getFirstMember(G);
908
      }
909
    }
910
    // Return the equivalent of "nullptr" if such a node was not found.
911
    return NodeAddr<RefNode*>();
912
  }
913
 
914
  template <typename Predicate>
915
  NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
916
    NodeList MM;
917
    auto M = getFirstMember(G);
918
    if (M.Id == 0)
919
      return MM;
920
 
921
    while (M.Addr != this) {
922
      if (P(M))
923
        MM.push_back(M);
924
      M = G.addr<NodeBase*>(M.Addr->getNext());
925
    }
926
    return MM;
927
  }
928
 
929
  template <typename T>
930
  struct Print {
931
    Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
932
 
933
    const T &Obj;
934
    const DataFlowGraph &G;
935
  };
936
 
937
  template <typename T> Print(const T &, const DataFlowGraph &) -> Print<T>;
938
 
939
  template <typename T>
940
  struct PrintNode : Print<NodeAddr<T>> {
941
    PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
942
      : Print<NodeAddr<T>>(x, g) {}
943
  };
944
 
945
  raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P);
946
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P);
947
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P);
948
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P);
949
  raw_ostream &operator<<(raw_ostream &OS,
950
                          const Print<NodeAddr<PhiUseNode *>> &P);
951
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P);
952
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P);
953
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P);
954
  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P);
955
  raw_ostream &operator<<(raw_ostream &OS,
956
                          const Print<NodeAddr<StmtNode *>> &P);
957
  raw_ostream &operator<<(raw_ostream &OS,
958
                          const Print<NodeAddr<InstrNode *>> &P);
959
  raw_ostream &operator<<(raw_ostream &OS,
960
                          const Print<NodeAddr<BlockNode *>> &P);
961
  raw_ostream &operator<<(raw_ostream &OS,
962
                          const Print<NodeAddr<FuncNode *>> &P);
963
  raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P);
964
  raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P);
965
  raw_ostream &operator<<(raw_ostream &OS,
966
                          const Print<DataFlowGraph::DefStack> &P);
967
 
968
} // end namespace rdf
969
 
970
} // end namespace llvm
971
 
972
#endif // LLVM_CODEGEN_RDFGRAPH_H