Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Reduction Rules.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
14
#define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
15
 
16
#include "Graph.h"
17
#include "Math.h"
18
#include "Solution.h"
19
#include <cassert>
20
#include <limits>
21
 
22
namespace llvm {
23
namespace PBQP {
24
 
25
  /// Reduce a node of degree one.
26
  ///
27
  /// Propagate costs from the given node, which must be of degree one, to its
28
  /// neighbor. Notify the problem domain.
29
  template <typename GraphT>
30
  void applyR1(GraphT &G, typename GraphT::NodeId NId) {
31
    using NodeId = typename GraphT::NodeId;
32
    using EdgeId = typename GraphT::EdgeId;
33
    using Vector = typename GraphT::Vector;
34
    using Matrix = typename GraphT::Matrix;
35
    using RawVector = typename GraphT::RawVector;
36
 
37
    assert(G.getNodeDegree(NId) == 1 &&
38
           "R1 applied to node with degree != 1.");
39
 
40
    EdgeId EId = *G.adjEdgeIds(NId).begin();
41
    NodeId MId = G.getEdgeOtherNodeId(EId, NId);
42
 
43
    const Matrix &ECosts = G.getEdgeCosts(EId);
44
    const Vector &XCosts = G.getNodeCosts(NId);
45
    RawVector YCosts = G.getNodeCosts(MId);
46
 
47
    // Duplicate a little to avoid transposing matrices.
48
    if (NId == G.getEdgeNode1Id(EId)) {
49
      for (unsigned j = 0; j < YCosts.getLength(); ++j) {
50
        PBQPNum Min = ECosts[0][j] + XCosts[0];
51
        for (unsigned i = 1; i < XCosts.getLength(); ++i) {
52
          PBQPNum C = ECosts[i][j] + XCosts[i];
53
          if (C < Min)
54
            Min = C;
55
        }
56
        YCosts[j] += Min;
57
      }
58
    } else {
59
      for (unsigned i = 0; i < YCosts.getLength(); ++i) {
60
        PBQPNum Min = ECosts[i][0] + XCosts[0];
61
        for (unsigned j = 1; j < XCosts.getLength(); ++j) {
62
          PBQPNum C = ECosts[i][j] + XCosts[j];
63
          if (C < Min)
64
            Min = C;
65
        }
66
        YCosts[i] += Min;
67
      }
68
    }
69
    G.setNodeCosts(MId, YCosts);
70
    G.disconnectEdge(EId, MId);
71
  }
72
 
73
  template <typename GraphT>
74
  void applyR2(GraphT &G, typename GraphT::NodeId NId) {
75
    using NodeId = typename GraphT::NodeId;
76
    using EdgeId = typename GraphT::EdgeId;
77
    using Vector = typename GraphT::Vector;
78
    using Matrix = typename GraphT::Matrix;
79
    using RawMatrix = typename GraphT::RawMatrix;
80
 
81
    assert(G.getNodeDegree(NId) == 2 &&
82
           "R2 applied to node with degree != 2.");
83
 
84
    const Vector &XCosts = G.getNodeCosts(NId);
85
 
86
    typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
87
    EdgeId YXEId = *AEItr,
88
           ZXEId = *(++AEItr);
89
 
90
    NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
91
           ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
92
 
93
    bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
94
         FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
95
 
96
    const Matrix *YXECosts = FlipEdge1 ?
97
      new Matrix(G.getEdgeCosts(YXEId).transpose()) :
98
      &G.getEdgeCosts(YXEId);
99
 
100
    const Matrix *ZXECosts = FlipEdge2 ?
101
      new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
102
      &G.getEdgeCosts(ZXEId);
103
 
104
    unsigned XLen = XCosts.getLength(),
105
      YLen = YXECosts->getRows(),
106
      ZLen = ZXECosts->getRows();
107
 
108
    RawMatrix Delta(YLen, ZLen);
109
 
110
    for (unsigned i = 0; i < YLen; ++i) {
111
      for (unsigned j = 0; j < ZLen; ++j) {
112
        PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
113
        for (unsigned k = 1; k < XLen; ++k) {
114
          PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
115
          if (C < Min) {
116
            Min = C;
117
          }
118
        }
119
        Delta[i][j] = Min;
120
      }
121
    }
122
 
123
    if (FlipEdge1)
124
      delete YXECosts;
125
 
126
    if (FlipEdge2)
127
      delete ZXECosts;
128
 
129
    EdgeId YZEId = G.findEdge(YNId, ZNId);
130
 
131
    if (YZEId == G.invalidEdgeId()) {
132
      YZEId = G.addEdge(YNId, ZNId, Delta);
133
    } else {
134
      const Matrix &YZECosts = G.getEdgeCosts(YZEId);
135
      if (YNId == G.getEdgeNode1Id(YZEId)) {
136
        G.updateEdgeCosts(YZEId, Delta + YZECosts);
137
      } else {
138
        G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
139
      }
140
    }
141
 
142
    G.disconnectEdge(YXEId, YNId);
143
    G.disconnectEdge(ZXEId, ZNId);
144
 
145
    // TODO: Try to normalize newly added/modified edge.
146
  }
147
 
148
#ifndef NDEBUG
149
  // Does this Cost vector have any register options ?
150
  template <typename VectorT>
151
  bool hasRegisterOptions(const VectorT &V) {
152
    unsigned VL = V.getLength();
153
 
154
    // An empty or spill only cost vector does not provide any register option.
155
    if (VL <= 1)
156
      return false;
157
 
158
    // If there are registers in the cost vector, but all of them have infinite
159
    // costs, then ... there is no available register.
160
    for (unsigned i = 1; i < VL; ++i)
161
      if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
162
        return true;
163
 
164
    return false;
165
  }
166
#endif
167
 
168
  // Find a solution to a fully reduced graph by backpropagation.
169
  //
170
  // Given a graph and a reduction order, pop each node from the reduction
171
  // order and greedily compute a minimum solution based on the node costs, and
172
  // the dependent costs due to previously solved nodes.
173
  //
174
  // Note - This does not return the graph to its original (pre-reduction)
175
  //        state: the existing solvers destructively alter the node and edge
176
  //        costs. Given that, the backpropagate function doesn't attempt to
177
  //        replace the edges either, but leaves the graph in its reduced
178
  //        state.
179
  template <typename GraphT, typename StackT>
180
  Solution backpropagate(GraphT& G, StackT stack) {
181
    using NodeId = GraphBase::NodeId;
182
    using Matrix = typename GraphT::Matrix;
183
    using RawVector = typename GraphT::RawVector;
184
 
185
    Solution s;
186
 
187
    while (!stack.empty()) {
188
      NodeId NId = stack.back();
189
      stack.pop_back();
190
 
191
      RawVector v = G.getNodeCosts(NId);
192
 
193
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
194
      // Although a conservatively allocatable node can be allocated to a register,
195
      // spilling it may provide a lower cost solution. Assert here that spilling
196
      // is done by choice, not because there were no register available.
197
      if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
198
        assert(hasRegisterOptions(v) && "A conservatively allocatable node "
199
                                        "must have available register options");
200
#endif
201
 
202
      for (auto EId : G.adjEdgeIds(NId)) {
203
        const Matrix& edgeCosts = G.getEdgeCosts(EId);
204
        if (NId == G.getEdgeNode1Id(EId)) {
205
          NodeId mId = G.getEdgeNode2Id(EId);
206
          v += edgeCosts.getColAsVector(s.getSelection(mId));
207
        } else {
208
          NodeId mId = G.getEdgeNode1Id(EId);
209
          v += edgeCosts.getRowAsVector(s.getSelection(mId));
210
        }
211
      }
212
 
213
      s.setSelection(NId, v.minIndex());
214
    }
215
 
216
    return s;
217
  }
218
 
219
} // end namespace PBQP
220
} // end namespace llvm
221
 
222
#endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H