Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- ModuloSchedule.h - Software pipeline schedule expansion ------------===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // Software pipelining (SWP) is an instruction scheduling technique for loops |
||
10 | // that overlaps loop iterations and exploits ILP via compiler transformations. |
||
11 | // |
||
12 | // There are multiple methods for analyzing a loop and creating a schedule. |
||
13 | // An example algorithm is Swing Modulo Scheduling (implemented by the |
||
14 | // MachinePipeliner). The details of how a schedule is arrived at are irrelevant |
||
15 | // for the task of actually rewriting a loop to adhere to the schedule, which |
||
16 | // is what this file does. |
||
17 | // |
||
18 | // A schedule is, for every instruction in a block, a Cycle and a Stage. Note |
||
19 | // that we only support single-block loops, so "block" and "loop" can be used |
||
20 | // interchangably. |
||
21 | // |
||
22 | // The Cycle of an instruction defines a partial order of the instructions in |
||
23 | // the remapped loop. Instructions within a cycle must not consume the output |
||
24 | // of any instruction in the same cycle. Cycle information is assumed to have |
||
25 | // been calculated such that the processor will execute instructions in |
||
26 | // lock-step (for example in a VLIW ISA). |
||
27 | // |
||
28 | // The Stage of an instruction defines the mapping between logical loop |
||
29 | // iterations and pipelined loop iterations. An example (unrolled) pipeline |
||
30 | // may look something like: |
||
31 | // |
||
32 | // I0[0] Execute instruction I0 of iteration 0 |
||
33 | // I1[0], I0[1] Execute I0 of iteration 1 and I1 of iteration 1 |
||
34 | // I1[1], I0[2] |
||
35 | // I1[2], I0[3] |
||
36 | // |
||
37 | // In the schedule for this unrolled sequence we would say that I0 was scheduled |
||
38 | // in stage 0 and I1 in stage 1: |
||
39 | // |
||
40 | // loop: |
||
41 | // [stage 0] x = I0 |
||
42 | // [stage 1] I1 x (from stage 0) |
||
43 | // |
||
44 | // And to actually generate valid code we must insert a phi: |
||
45 | // |
||
46 | // loop: |
||
47 | // x' = phi(x) |
||
48 | // x = I0 |
||
49 | // I1 x' |
||
50 | // |
||
51 | // This is a simple example; the rules for how to generate correct code given |
||
52 | // an arbitrary schedule containing loop-carried values are complex. |
||
53 | // |
||
54 | // Note that these examples only mention the steady-state kernel of the |
||
55 | // generated loop; prologs and epilogs must be generated also that prime and |
||
56 | // flush the pipeline. Doing so is nontrivial. |
||
57 | // |
||
58 | //===----------------------------------------------------------------------===// |
||
59 | |||
60 | #ifndef LLVM_CODEGEN_MODULOSCHEDULE_H |
||
61 | #define LLVM_CODEGEN_MODULOSCHEDULE_H |
||
62 | |||
63 | #include "llvm/CodeGen/MachineFunction.h" |
||
64 | #include "llvm/CodeGen/MachineLoopUtils.h" |
||
65 | #include "llvm/CodeGen/TargetInstrInfo.h" |
||
66 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
||
67 | #include <deque> |
||
68 | #include <vector> |
||
69 | |||
70 | namespace llvm { |
||
71 | class MachineBasicBlock; |
||
72 | class MachineLoop; |
||
73 | class MachineRegisterInfo; |
||
74 | class MachineInstr; |
||
75 | class LiveIntervals; |
||
76 | |||
77 | /// Represents a schedule for a single-block loop. For every instruction we |
||
78 | /// maintain a Cycle and Stage. |
||
79 | class ModuloSchedule { |
||
80 | private: |
||
81 | /// The block containing the loop instructions. |
||
82 | MachineLoop *Loop; |
||
83 | |||
84 | /// The instructions to be generated, in total order. Cycle provides a partial |
||
85 | /// order; the total order within cycles has been decided by the schedule |
||
86 | /// producer. |
||
87 | std::vector<MachineInstr *> ScheduledInstrs; |
||
88 | |||
89 | /// The cycle for each instruction. |
||
90 | DenseMap<MachineInstr *, int> Cycle; |
||
91 | |||
92 | /// The stage for each instruction. |
||
93 | DenseMap<MachineInstr *, int> Stage; |
||
94 | |||
95 | /// The number of stages in this schedule (Max(Stage) + 1). |
||
96 | int NumStages; |
||
97 | |||
98 | public: |
||
99 | /// Create a new ModuloSchedule. |
||
100 | /// \arg ScheduledInstrs The new loop instructions, in total resequenced |
||
101 | /// order. |
||
102 | /// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does |
||
103 | /// not need to start at zero. ScheduledInstrs must be partially ordered by |
||
104 | /// Cycle. |
||
105 | /// \arg Stage Stage index for all instructions in ScheduleInstrs. |
||
106 | ModuloSchedule(MachineFunction &MF, MachineLoop *Loop, |
||
107 | std::vector<MachineInstr *> ScheduledInstrs, |
||
108 | DenseMap<MachineInstr *, int> Cycle, |
||
109 | DenseMap<MachineInstr *, int> Stage) |
||
110 | : Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)), |
||
111 | Stage(std::move(Stage)) { |
||
112 | NumStages = 0; |
||
113 | for (auto &KV : this->Stage) |
||
114 | NumStages = std::max(NumStages, KV.second); |
||
115 | ++NumStages; |
||
116 | } |
||
117 | |||
118 | /// Return the single-block loop being scheduled. |
||
119 | MachineLoop *getLoop() const { return Loop; } |
||
120 | |||
121 | /// Return the number of stages contained in this schedule, which is the |
||
122 | /// largest stage index + 1. |
||
123 | int getNumStages() const { return NumStages; } |
||
124 | |||
125 | /// Return the first cycle in the schedule, which is the cycle index of the |
||
126 | /// first instruction. |
||
127 | int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; } |
||
128 | |||
129 | /// Return the final cycle in the schedule, which is the cycle index of the |
||
130 | /// last instruction. |
||
131 | int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; } |
||
132 | |||
133 | /// Return the stage that MI is scheduled in, or -1. |
||
134 | int getStage(MachineInstr *MI) { |
||
135 | auto I = Stage.find(MI); |
||
136 | return I == Stage.end() ? -1 : I->second; |
||
137 | } |
||
138 | |||
139 | /// Return the cycle that MI is scheduled at, or -1. |
||
140 | int getCycle(MachineInstr *MI) { |
||
141 | auto I = Cycle.find(MI); |
||
142 | return I == Cycle.end() ? -1 : I->second; |
||
143 | } |
||
144 | |||
145 | /// Set the stage of a newly created instruction. |
||
146 | void setStage(MachineInstr *MI, int MIStage) { |
||
147 | assert(Stage.count(MI) == 0); |
||
148 | Stage[MI] = MIStage; |
||
149 | } |
||
150 | |||
151 | /// Return the rescheduled instructions in order. |
||
152 | ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; } |
||
153 | |||
154 | void dump() { print(dbgs()); } |
||
155 | void print(raw_ostream &OS); |
||
156 | }; |
||
157 | |||
158 | /// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place, |
||
159 | /// rewriting the old loop and inserting prologs and epilogs as required. |
||
160 | class ModuloScheduleExpander { |
||
161 | public: |
||
162 | using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>; |
||
163 | |||
164 | private: |
||
165 | using ValueMapTy = DenseMap<unsigned, unsigned>; |
||
166 | using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; |
||
167 | using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; |
||
168 | |||
169 | ModuloSchedule &Schedule; |
||
170 | MachineFunction &MF; |
||
171 | const TargetSubtargetInfo &ST; |
||
172 | MachineRegisterInfo &MRI; |
||
173 | const TargetInstrInfo *TII; |
||
174 | LiveIntervals &LIS; |
||
175 | |||
176 | MachineBasicBlock *BB; |
||
177 | MachineBasicBlock *Preheader; |
||
178 | MachineBasicBlock *NewKernel = nullptr; |
||
179 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo; |
||
180 | |||
181 | /// Map for each register and the max difference between its uses and def. |
||
182 | /// The first element in the pair is the max difference in stages. The |
||
183 | /// second is true if the register defines a Phi value and loop value is |
||
184 | /// scheduled before the Phi. |
||
185 | std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; |
||
186 | |||
187 | /// Instructions to change when emitting the final schedule. |
||
188 | InstrChangesTy InstrChanges; |
||
189 | |||
190 | void generatePipelinedLoop(); |
||
191 | void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB, |
||
192 | ValueMapTy *VRMap, MBBVectorTy &PrologBBs); |
||
193 | void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB, |
||
194 | MachineBasicBlock *OrigBB, ValueMapTy *VRMap, |
||
195 | ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs, |
||
196 | MBBVectorTy &PrologBBs); |
||
197 | void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
||
198 | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
||
199 | ValueMapTy *VRMap, InstrMapTy &InstrMap, |
||
200 | unsigned LastStageNum, unsigned CurStageNum, |
||
201 | bool IsLast); |
||
202 | void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
||
203 | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
||
204 | ValueMapTy *VRMap, ValueMapTy *VRMapPhi, |
||
205 | InstrMapTy &InstrMap, unsigned LastStageNum, |
||
206 | unsigned CurStageNum, bool IsLast); |
||
207 | void removeDeadInstructions(MachineBasicBlock *KernelBB, |
||
208 | MBBVectorTy &EpilogBBs); |
||
209 | void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs); |
||
210 | void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs, |
||
211 | MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, |
||
212 | ValueMapTy *VRMap); |
||
213 | bool computeDelta(MachineInstr &MI, unsigned &Delta); |
||
214 | void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, |
||
215 | unsigned Num); |
||
216 | MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, |
||
217 | unsigned InstStageNum); |
||
218 | MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, |
||
219 | unsigned InstStageNum); |
||
220 | void updateInstruction(MachineInstr *NewMI, bool LastDef, |
||
221 | unsigned CurStageNum, unsigned InstrStageNum, |
||
222 | ValueMapTy *VRMap); |
||
223 | MachineInstr *findDefInLoop(unsigned Reg); |
||
224 | unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, |
||
225 | unsigned LoopStage, ValueMapTy *VRMap, |
||
226 | MachineBasicBlock *BB); |
||
227 | void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, |
||
228 | ValueMapTy *VRMap, InstrMapTy &InstrMap); |
||
229 | void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap, |
||
230 | unsigned CurStageNum, unsigned PhiNum, |
||
231 | MachineInstr *Phi, unsigned OldReg, |
||
232 | unsigned NewReg, unsigned PrevReg = 0); |
||
233 | bool isLoopCarried(MachineInstr &Phi); |
||
234 | |||
235 | /// Return the max. number of stages/iterations that can occur between a |
||
236 | /// register definition and its uses. |
||
237 | unsigned getStagesForReg(int Reg, unsigned CurStage) { |
||
238 | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
||
239 | if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 && |
||
240 | Stages.second) |
||
241 | return 1; |
||
242 | return Stages.first; |
||
243 | } |
||
244 | |||
245 | /// The number of stages for a Phi is a little different than other |
||
246 | /// instructions. The minimum value computed in RegToStageDiff is 1 |
||
247 | /// because we assume the Phi is needed for at least 1 iteration. |
||
248 | /// This is not the case if the loop value is scheduled prior to the |
||
249 | /// Phi in the same stage. This function returns the number of stages |
||
250 | /// or iterations needed between the Phi definition and any uses. |
||
251 | unsigned getStagesForPhi(int Reg) { |
||
252 | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
||
253 | if (Stages.second) |
||
254 | return Stages.first; |
||
255 | return Stages.first - 1; |
||
256 | } |
||
257 | |||
258 | public: |
||
259 | /// Create a new ModuloScheduleExpander. |
||
260 | /// \arg InstrChanges Modifications to make to instructions with memory |
||
261 | /// operands. |
||
262 | /// FIXME: InstrChanges is opaque and is an implementation detail of an |
||
263 | /// optimization in MachinePipeliner that crosses abstraction boundaries. |
||
264 | ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S, |
||
265 | LiveIntervals &LIS, InstrChangesTy InstrChanges) |
||
266 | : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()), |
||
267 | TII(ST.getInstrInfo()), LIS(LIS), |
||
268 | InstrChanges(std::move(InstrChanges)) {} |
||
269 | |||
270 | /// Performs the actual expansion. |
||
271 | void expand(); |
||
272 | /// Performs final cleanup after expansion. |
||
273 | void cleanup(); |
||
274 | |||
275 | /// Returns the newly rewritten kernel block, or nullptr if this was |
||
276 | /// optimized away. |
||
277 | MachineBasicBlock *getRewrittenKernel() { return NewKernel; } |
||
278 | }; |
||
279 | |||
280 | /// A reimplementation of ModuloScheduleExpander. It works by generating a |
||
281 | /// standalone kernel loop and peeling out the prologs and epilogs. |
||
282 | class PeelingModuloScheduleExpander { |
||
283 | public: |
||
284 | PeelingModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S, |
||
285 | LiveIntervals *LIS) |
||
286 | : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()), |
||
287 | TII(ST.getInstrInfo()), LIS(LIS) {} |
||
288 | |||
289 | void expand(); |
||
290 | |||
291 | /// Runs ModuloScheduleExpander and treats it as a golden input to validate |
||
292 | /// aspects of the code generated by PeelingModuloScheduleExpander. |
||
293 | void validateAgainstModuloScheduleExpander(); |
||
294 | |||
295 | protected: |
||
296 | ModuloSchedule &Schedule; |
||
297 | MachineFunction &MF; |
||
298 | const TargetSubtargetInfo &ST; |
||
299 | MachineRegisterInfo &MRI; |
||
300 | const TargetInstrInfo *TII; |
||
301 | LiveIntervals *LIS; |
||
302 | |||
303 | /// The original loop block that gets rewritten in-place. |
||
304 | MachineBasicBlock *BB; |
||
305 | /// The original loop preheader. |
||
306 | MachineBasicBlock *Preheader; |
||
307 | /// All prolog and epilog blocks. |
||
308 | SmallVector<MachineBasicBlock *, 4> Prologs, Epilogs; |
||
309 | /// For every block, the stages that are produced. |
||
310 | DenseMap<MachineBasicBlock *, BitVector> LiveStages; |
||
311 | /// For every block, the stages that are available. A stage can be available |
||
312 | /// but not produced (in the epilog) or produced but not available (in the |
||
313 | /// prolog). |
||
314 | DenseMap<MachineBasicBlock *, BitVector> AvailableStages; |
||
315 | /// When peeling the epilogue keep track of the distance between the phi |
||
316 | /// nodes and the kernel. |
||
317 | DenseMap<MachineInstr *, unsigned> PhiNodeLoopIteration; |
||
318 | |||
319 | /// CanonicalMIs and BlockMIs form a bidirectional map between any of the |
||
320 | /// loop kernel clones. |
||
321 | DenseMap<MachineInstr *, MachineInstr *> CanonicalMIs; |
||
322 | DenseMap<std::pair<MachineBasicBlock *, MachineInstr *>, MachineInstr *> |
||
323 | BlockMIs; |
||
324 | |||
325 | /// State passed from peelKernel to peelPrologAndEpilogs(). |
||
326 | std::deque<MachineBasicBlock *> PeeledFront, PeeledBack; |
||
327 | /// Illegal phis that need to be deleted once we re-link stages. |
||
328 | SmallVector<MachineInstr *, 4> IllegalPhisToDelete; |
||
329 | |||
330 | /// Converts BB from the original loop body to the rewritten, pipelined |
||
331 | /// steady-state. |
||
332 | void rewriteKernel(); |
||
333 | |||
334 | /// Peels one iteration of the rewritten kernel (BB) in the specified |
||
335 | /// direction. |
||
336 | MachineBasicBlock *peelKernel(LoopPeelDirection LPD); |
||
337 | // Delete instructions whose stage is less than MinStage in the given basic |
||
338 | // block. |
||
339 | void filterInstructions(MachineBasicBlock *MB, int MinStage); |
||
340 | // Move instructions of the given stage from sourceBB to DestBB. Remap the phi |
||
341 | // instructions to keep a valid IR. |
||
342 | void moveStageBetweenBlocks(MachineBasicBlock *DestBB, |
||
343 | MachineBasicBlock *SourceBB, unsigned Stage); |
||
344 | /// Peel the kernel forwards and backwards to produce prologs and epilogs, |
||
345 | /// and stitch them together. |
||
346 | void peelPrologAndEpilogs(); |
||
347 | /// All prolog and epilog blocks are clones of the kernel, so any produced |
||
348 | /// register in one block has an corollary in all other blocks. |
||
349 | Register getEquivalentRegisterIn(Register Reg, MachineBasicBlock *BB); |
||
350 | /// Change all users of MI, if MI is predicated out |
||
351 | /// (LiveStages[MI->getParent()] == false). |
||
352 | void rewriteUsesOf(MachineInstr *MI); |
||
353 | /// Insert branches between prologs, kernel and epilogs. |
||
354 | void fixupBranches(); |
||
355 | /// Create a poor-man's LCSSA by cloning only the PHIs from the kernel block |
||
356 | /// to a block dominated by all prologs and epilogs. This allows us to treat |
||
357 | /// the loop exiting block as any other kernel clone. |
||
358 | MachineBasicBlock *CreateLCSSAExitingBlock(); |
||
359 | /// Helper to get the stage of an instruction in the schedule. |
||
360 | unsigned getStage(MachineInstr *MI) { |
||
361 | if (CanonicalMIs.count(MI)) |
||
362 | MI = CanonicalMIs[MI]; |
||
363 | return Schedule.getStage(MI); |
||
364 | } |
||
365 | /// Helper function to find the right canonical register for a phi instruction |
||
366 | /// coming from a peeled out prologue. |
||
367 | Register getPhiCanonicalReg(MachineInstr* CanonicalPhi, MachineInstr* Phi); |
||
368 | /// Target loop info before kernel peeling. |
||
369 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo; |
||
370 | }; |
||
371 | |||
372 | /// Expander that simply annotates each scheduled instruction with a post-instr |
||
373 | /// symbol that can be consumed by the ModuloScheduleTest pass. |
||
374 | /// |
||
375 | /// The post-instr symbol is a way of annotating an instruction that can be |
||
376 | /// roundtripped in MIR. The syntax is: |
||
377 | /// MYINST %0, post-instr-symbol <mcsymbol Stage-1_Cycle-5> |
||
378 | class ModuloScheduleTestAnnotater { |
||
379 | MachineFunction &MF; |
||
380 | ModuloSchedule &S; |
||
381 | |||
382 | public: |
||
383 | ModuloScheduleTestAnnotater(MachineFunction &MF, ModuloSchedule &S) |
||
384 | : MF(MF), S(S) {} |
||
385 | |||
386 | /// Performs the annotation. |
||
387 | void annotate(); |
||
388 | }; |
||
389 | |||
390 | } // end namespace llvm |
||
391 | |||
392 | #endif // LLVM_CODEGEN_MODULOSCHEDULE_H |