Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- ModuloSchedule.h - Software pipeline schedule expansion ------------===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // Software pipelining (SWP) is an instruction scheduling technique for loops |
||
| 10 | // that overlaps loop iterations and exploits ILP via compiler transformations. |
||
| 11 | // |
||
| 12 | // There are multiple methods for analyzing a loop and creating a schedule. |
||
| 13 | // An example algorithm is Swing Modulo Scheduling (implemented by the |
||
| 14 | // MachinePipeliner). The details of how a schedule is arrived at are irrelevant |
||
| 15 | // for the task of actually rewriting a loop to adhere to the schedule, which |
||
| 16 | // is what this file does. |
||
| 17 | // |
||
| 18 | // A schedule is, for every instruction in a block, a Cycle and a Stage. Note |
||
| 19 | // that we only support single-block loops, so "block" and "loop" can be used |
||
| 20 | // interchangably. |
||
| 21 | // |
||
| 22 | // The Cycle of an instruction defines a partial order of the instructions in |
||
| 23 | // the remapped loop. Instructions within a cycle must not consume the output |
||
| 24 | // of any instruction in the same cycle. Cycle information is assumed to have |
||
| 25 | // been calculated such that the processor will execute instructions in |
||
| 26 | // lock-step (for example in a VLIW ISA). |
||
| 27 | // |
||
| 28 | // The Stage of an instruction defines the mapping between logical loop |
||
| 29 | // iterations and pipelined loop iterations. An example (unrolled) pipeline |
||
| 30 | // may look something like: |
||
| 31 | // |
||
| 32 | // I0[0] Execute instruction I0 of iteration 0 |
||
| 33 | // I1[0], I0[1] Execute I0 of iteration 1 and I1 of iteration 1 |
||
| 34 | // I1[1], I0[2] |
||
| 35 | // I1[2], I0[3] |
||
| 36 | // |
||
| 37 | // In the schedule for this unrolled sequence we would say that I0 was scheduled |
||
| 38 | // in stage 0 and I1 in stage 1: |
||
| 39 | // |
||
| 40 | // loop: |
||
| 41 | // [stage 0] x = I0 |
||
| 42 | // [stage 1] I1 x (from stage 0) |
||
| 43 | // |
||
| 44 | // And to actually generate valid code we must insert a phi: |
||
| 45 | // |
||
| 46 | // loop: |
||
| 47 | // x' = phi(x) |
||
| 48 | // x = I0 |
||
| 49 | // I1 x' |
||
| 50 | // |
||
| 51 | // This is a simple example; the rules for how to generate correct code given |
||
| 52 | // an arbitrary schedule containing loop-carried values are complex. |
||
| 53 | // |
||
| 54 | // Note that these examples only mention the steady-state kernel of the |
||
| 55 | // generated loop; prologs and epilogs must be generated also that prime and |
||
| 56 | // flush the pipeline. Doing so is nontrivial. |
||
| 57 | // |
||
| 58 | //===----------------------------------------------------------------------===// |
||
| 59 | |||
| 60 | #ifndef LLVM_CODEGEN_MODULOSCHEDULE_H |
||
| 61 | #define LLVM_CODEGEN_MODULOSCHEDULE_H |
||
| 62 | |||
| 63 | #include "llvm/CodeGen/MachineFunction.h" |
||
| 64 | #include "llvm/CodeGen/MachineLoopUtils.h" |
||
| 65 | #include "llvm/CodeGen/TargetInstrInfo.h" |
||
| 66 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
||
| 67 | #include <deque> |
||
| 68 | #include <vector> |
||
| 69 | |||
| 70 | namespace llvm { |
||
| 71 | class MachineBasicBlock; |
||
| 72 | class MachineLoop; |
||
| 73 | class MachineRegisterInfo; |
||
| 74 | class MachineInstr; |
||
| 75 | class LiveIntervals; |
||
| 76 | |||
| 77 | /// Represents a schedule for a single-block loop. For every instruction we |
||
| 78 | /// maintain a Cycle and Stage. |
||
| 79 | class ModuloSchedule { |
||
| 80 | private: |
||
| 81 | /// The block containing the loop instructions. |
||
| 82 | MachineLoop *Loop; |
||
| 83 | |||
| 84 | /// The instructions to be generated, in total order. Cycle provides a partial |
||
| 85 | /// order; the total order within cycles has been decided by the schedule |
||
| 86 | /// producer. |
||
| 87 | std::vector<MachineInstr *> ScheduledInstrs; |
||
| 88 | |||
| 89 | /// The cycle for each instruction. |
||
| 90 | DenseMap<MachineInstr *, int> Cycle; |
||
| 91 | |||
| 92 | /// The stage for each instruction. |
||
| 93 | DenseMap<MachineInstr *, int> Stage; |
||
| 94 | |||
| 95 | /// The number of stages in this schedule (Max(Stage) + 1). |
||
| 96 | int NumStages; |
||
| 97 | |||
| 98 | public: |
||
| 99 | /// Create a new ModuloSchedule. |
||
| 100 | /// \arg ScheduledInstrs The new loop instructions, in total resequenced |
||
| 101 | /// order. |
||
| 102 | /// \arg Cycle Cycle index for all instructions in ScheduledInstrs. Cycle does |
||
| 103 | /// not need to start at zero. ScheduledInstrs must be partially ordered by |
||
| 104 | /// Cycle. |
||
| 105 | /// \arg Stage Stage index for all instructions in ScheduleInstrs. |
||
| 106 | ModuloSchedule(MachineFunction &MF, MachineLoop *Loop, |
||
| 107 | std::vector<MachineInstr *> ScheduledInstrs, |
||
| 108 | DenseMap<MachineInstr *, int> Cycle, |
||
| 109 | DenseMap<MachineInstr *, int> Stage) |
||
| 110 | : Loop(Loop), ScheduledInstrs(ScheduledInstrs), Cycle(std::move(Cycle)), |
||
| 111 | Stage(std::move(Stage)) { |
||
| 112 | NumStages = 0; |
||
| 113 | for (auto &KV : this->Stage) |
||
| 114 | NumStages = std::max(NumStages, KV.second); |
||
| 115 | ++NumStages; |
||
| 116 | } |
||
| 117 | |||
| 118 | /// Return the single-block loop being scheduled. |
||
| 119 | MachineLoop *getLoop() const { return Loop; } |
||
| 120 | |||
| 121 | /// Return the number of stages contained in this schedule, which is the |
||
| 122 | /// largest stage index + 1. |
||
| 123 | int getNumStages() const { return NumStages; } |
||
| 124 | |||
| 125 | /// Return the first cycle in the schedule, which is the cycle index of the |
||
| 126 | /// first instruction. |
||
| 127 | int getFirstCycle() { return Cycle[ScheduledInstrs.front()]; } |
||
| 128 | |||
| 129 | /// Return the final cycle in the schedule, which is the cycle index of the |
||
| 130 | /// last instruction. |
||
| 131 | int getFinalCycle() { return Cycle[ScheduledInstrs.back()]; } |
||
| 132 | |||
| 133 | /// Return the stage that MI is scheduled in, or -1. |
||
| 134 | int getStage(MachineInstr *MI) { |
||
| 135 | auto I = Stage.find(MI); |
||
| 136 | return I == Stage.end() ? -1 : I->second; |
||
| 137 | } |
||
| 138 | |||
| 139 | /// Return the cycle that MI is scheduled at, or -1. |
||
| 140 | int getCycle(MachineInstr *MI) { |
||
| 141 | auto I = Cycle.find(MI); |
||
| 142 | return I == Cycle.end() ? -1 : I->second; |
||
| 143 | } |
||
| 144 | |||
| 145 | /// Set the stage of a newly created instruction. |
||
| 146 | void setStage(MachineInstr *MI, int MIStage) { |
||
| 147 | assert(Stage.count(MI) == 0); |
||
| 148 | Stage[MI] = MIStage; |
||
| 149 | } |
||
| 150 | |||
| 151 | /// Return the rescheduled instructions in order. |
||
| 152 | ArrayRef<MachineInstr *> getInstructions() { return ScheduledInstrs; } |
||
| 153 | |||
| 154 | void dump() { print(dbgs()); } |
||
| 155 | void print(raw_ostream &OS); |
||
| 156 | }; |
||
| 157 | |||
| 158 | /// The ModuloScheduleExpander takes a ModuloSchedule and expands it in-place, |
||
| 159 | /// rewriting the old loop and inserting prologs and epilogs as required. |
||
| 160 | class ModuloScheduleExpander { |
||
| 161 | public: |
||
| 162 | using InstrChangesTy = DenseMap<MachineInstr *, std::pair<unsigned, int64_t>>; |
||
| 163 | |||
| 164 | private: |
||
| 165 | using ValueMapTy = DenseMap<unsigned, unsigned>; |
||
| 166 | using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; |
||
| 167 | using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; |
||
| 168 | |||
| 169 | ModuloSchedule &Schedule; |
||
| 170 | MachineFunction &MF; |
||
| 171 | const TargetSubtargetInfo &ST; |
||
| 172 | MachineRegisterInfo &MRI; |
||
| 173 | const TargetInstrInfo *TII; |
||
| 174 | LiveIntervals &LIS; |
||
| 175 | |||
| 176 | MachineBasicBlock *BB; |
||
| 177 | MachineBasicBlock *Preheader; |
||
| 178 | MachineBasicBlock *NewKernel = nullptr; |
||
| 179 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo; |
||
| 180 | |||
| 181 | /// Map for each register and the max difference between its uses and def. |
||
| 182 | /// The first element in the pair is the max difference in stages. The |
||
| 183 | /// second is true if the register defines a Phi value and loop value is |
||
| 184 | /// scheduled before the Phi. |
||
| 185 | std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; |
||
| 186 | |||
| 187 | /// Instructions to change when emitting the final schedule. |
||
| 188 | InstrChangesTy InstrChanges; |
||
| 189 | |||
| 190 | void generatePipelinedLoop(); |
||
| 191 | void generateProlog(unsigned LastStage, MachineBasicBlock *KernelBB, |
||
| 192 | ValueMapTy *VRMap, MBBVectorTy &PrologBBs); |
||
| 193 | void generateEpilog(unsigned LastStage, MachineBasicBlock *KernelBB, |
||
| 194 | MachineBasicBlock *OrigBB, ValueMapTy *VRMap, |
||
| 195 | ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs, |
||
| 196 | MBBVectorTy &PrologBBs); |
||
| 197 | void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
||
| 198 | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
||
| 199 | ValueMapTy *VRMap, InstrMapTy &InstrMap, |
||
| 200 | unsigned LastStageNum, unsigned CurStageNum, |
||
| 201 | bool IsLast); |
||
| 202 | void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
||
| 203 | MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
||
| 204 | ValueMapTy *VRMap, ValueMapTy *VRMapPhi, |
||
| 205 | InstrMapTy &InstrMap, unsigned LastStageNum, |
||
| 206 | unsigned CurStageNum, bool IsLast); |
||
| 207 | void removeDeadInstructions(MachineBasicBlock *KernelBB, |
||
| 208 | MBBVectorTy &EpilogBBs); |
||
| 209 | void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs); |
||
| 210 | void addBranches(MachineBasicBlock &PreheaderBB, MBBVectorTy &PrologBBs, |
||
| 211 | MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, |
||
| 212 | ValueMapTy *VRMap); |
||
| 213 | bool computeDelta(MachineInstr &MI, unsigned &Delta); |
||
| 214 | void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, |
||
| 215 | unsigned Num); |
||
| 216 | MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, |
||
| 217 | unsigned InstStageNum); |
||
| 218 | MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, |
||
| 219 | unsigned InstStageNum); |
||
| 220 | void updateInstruction(MachineInstr *NewMI, bool LastDef, |
||
| 221 | unsigned CurStageNum, unsigned InstrStageNum, |
||
| 222 | ValueMapTy *VRMap); |
||
| 223 | MachineInstr *findDefInLoop(unsigned Reg); |
||
| 224 | unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, |
||
| 225 | unsigned LoopStage, ValueMapTy *VRMap, |
||
| 226 | MachineBasicBlock *BB); |
||
| 227 | void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, |
||
| 228 | ValueMapTy *VRMap, InstrMapTy &InstrMap); |
||
| 229 | void rewriteScheduledInstr(MachineBasicBlock *BB, InstrMapTy &InstrMap, |
||
| 230 | unsigned CurStageNum, unsigned PhiNum, |
||
| 231 | MachineInstr *Phi, unsigned OldReg, |
||
| 232 | unsigned NewReg, unsigned PrevReg = 0); |
||
| 233 | bool isLoopCarried(MachineInstr &Phi); |
||
| 234 | |||
| 235 | /// Return the max. number of stages/iterations that can occur between a |
||
| 236 | /// register definition and its uses. |
||
| 237 | unsigned getStagesForReg(int Reg, unsigned CurStage) { |
||
| 238 | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
||
| 239 | if ((int)CurStage > Schedule.getNumStages() - 1 && Stages.first == 0 && |
||
| 240 | Stages.second) |
||
| 241 | return 1; |
||
| 242 | return Stages.first; |
||
| 243 | } |
||
| 244 | |||
| 245 | /// The number of stages for a Phi is a little different than other |
||
| 246 | /// instructions. The minimum value computed in RegToStageDiff is 1 |
||
| 247 | /// because we assume the Phi is needed for at least 1 iteration. |
||
| 248 | /// This is not the case if the loop value is scheduled prior to the |
||
| 249 | /// Phi in the same stage. This function returns the number of stages |
||
| 250 | /// or iterations needed between the Phi definition and any uses. |
||
| 251 | unsigned getStagesForPhi(int Reg) { |
||
| 252 | std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
||
| 253 | if (Stages.second) |
||
| 254 | return Stages.first; |
||
| 255 | return Stages.first - 1; |
||
| 256 | } |
||
| 257 | |||
| 258 | public: |
||
| 259 | /// Create a new ModuloScheduleExpander. |
||
| 260 | /// \arg InstrChanges Modifications to make to instructions with memory |
||
| 261 | /// operands. |
||
| 262 | /// FIXME: InstrChanges is opaque and is an implementation detail of an |
||
| 263 | /// optimization in MachinePipeliner that crosses abstraction boundaries. |
||
| 264 | ModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S, |
||
| 265 | LiveIntervals &LIS, InstrChangesTy InstrChanges) |
||
| 266 | : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()), |
||
| 267 | TII(ST.getInstrInfo()), LIS(LIS), |
||
| 268 | InstrChanges(std::move(InstrChanges)) {} |
||
| 269 | |||
| 270 | /// Performs the actual expansion. |
||
| 271 | void expand(); |
||
| 272 | /// Performs final cleanup after expansion. |
||
| 273 | void cleanup(); |
||
| 274 | |||
| 275 | /// Returns the newly rewritten kernel block, or nullptr if this was |
||
| 276 | /// optimized away. |
||
| 277 | MachineBasicBlock *getRewrittenKernel() { return NewKernel; } |
||
| 278 | }; |
||
| 279 | |||
| 280 | /// A reimplementation of ModuloScheduleExpander. It works by generating a |
||
| 281 | /// standalone kernel loop and peeling out the prologs and epilogs. |
||
| 282 | class PeelingModuloScheduleExpander { |
||
| 283 | public: |
||
| 284 | PeelingModuloScheduleExpander(MachineFunction &MF, ModuloSchedule &S, |
||
| 285 | LiveIntervals *LIS) |
||
| 286 | : Schedule(S), MF(MF), ST(MF.getSubtarget()), MRI(MF.getRegInfo()), |
||
| 287 | TII(ST.getInstrInfo()), LIS(LIS) {} |
||
| 288 | |||
| 289 | void expand(); |
||
| 290 | |||
| 291 | /// Runs ModuloScheduleExpander and treats it as a golden input to validate |
||
| 292 | /// aspects of the code generated by PeelingModuloScheduleExpander. |
||
| 293 | void validateAgainstModuloScheduleExpander(); |
||
| 294 | |||
| 295 | protected: |
||
| 296 | ModuloSchedule &Schedule; |
||
| 297 | MachineFunction &MF; |
||
| 298 | const TargetSubtargetInfo &ST; |
||
| 299 | MachineRegisterInfo &MRI; |
||
| 300 | const TargetInstrInfo *TII; |
||
| 301 | LiveIntervals *LIS; |
||
| 302 | |||
| 303 | /// The original loop block that gets rewritten in-place. |
||
| 304 | MachineBasicBlock *BB; |
||
| 305 | /// The original loop preheader. |
||
| 306 | MachineBasicBlock *Preheader; |
||
| 307 | /// All prolog and epilog blocks. |
||
| 308 | SmallVector<MachineBasicBlock *, 4> Prologs, Epilogs; |
||
| 309 | /// For every block, the stages that are produced. |
||
| 310 | DenseMap<MachineBasicBlock *, BitVector> LiveStages; |
||
| 311 | /// For every block, the stages that are available. A stage can be available |
||
| 312 | /// but not produced (in the epilog) or produced but not available (in the |
||
| 313 | /// prolog). |
||
| 314 | DenseMap<MachineBasicBlock *, BitVector> AvailableStages; |
||
| 315 | /// When peeling the epilogue keep track of the distance between the phi |
||
| 316 | /// nodes and the kernel. |
||
| 317 | DenseMap<MachineInstr *, unsigned> PhiNodeLoopIteration; |
||
| 318 | |||
| 319 | /// CanonicalMIs and BlockMIs form a bidirectional map between any of the |
||
| 320 | /// loop kernel clones. |
||
| 321 | DenseMap<MachineInstr *, MachineInstr *> CanonicalMIs; |
||
| 322 | DenseMap<std::pair<MachineBasicBlock *, MachineInstr *>, MachineInstr *> |
||
| 323 | BlockMIs; |
||
| 324 | |||
| 325 | /// State passed from peelKernel to peelPrologAndEpilogs(). |
||
| 326 | std::deque<MachineBasicBlock *> PeeledFront, PeeledBack; |
||
| 327 | /// Illegal phis that need to be deleted once we re-link stages. |
||
| 328 | SmallVector<MachineInstr *, 4> IllegalPhisToDelete; |
||
| 329 | |||
| 330 | /// Converts BB from the original loop body to the rewritten, pipelined |
||
| 331 | /// steady-state. |
||
| 332 | void rewriteKernel(); |
||
| 333 | |||
| 334 | /// Peels one iteration of the rewritten kernel (BB) in the specified |
||
| 335 | /// direction. |
||
| 336 | MachineBasicBlock *peelKernel(LoopPeelDirection LPD); |
||
| 337 | // Delete instructions whose stage is less than MinStage in the given basic |
||
| 338 | // block. |
||
| 339 | void filterInstructions(MachineBasicBlock *MB, int MinStage); |
||
| 340 | // Move instructions of the given stage from sourceBB to DestBB. Remap the phi |
||
| 341 | // instructions to keep a valid IR. |
||
| 342 | void moveStageBetweenBlocks(MachineBasicBlock *DestBB, |
||
| 343 | MachineBasicBlock *SourceBB, unsigned Stage); |
||
| 344 | /// Peel the kernel forwards and backwards to produce prologs and epilogs, |
||
| 345 | /// and stitch them together. |
||
| 346 | void peelPrologAndEpilogs(); |
||
| 347 | /// All prolog and epilog blocks are clones of the kernel, so any produced |
||
| 348 | /// register in one block has an corollary in all other blocks. |
||
| 349 | Register getEquivalentRegisterIn(Register Reg, MachineBasicBlock *BB); |
||
| 350 | /// Change all users of MI, if MI is predicated out |
||
| 351 | /// (LiveStages[MI->getParent()] == false). |
||
| 352 | void rewriteUsesOf(MachineInstr *MI); |
||
| 353 | /// Insert branches between prologs, kernel and epilogs. |
||
| 354 | void fixupBranches(); |
||
| 355 | /// Create a poor-man's LCSSA by cloning only the PHIs from the kernel block |
||
| 356 | /// to a block dominated by all prologs and epilogs. This allows us to treat |
||
| 357 | /// the loop exiting block as any other kernel clone. |
||
| 358 | MachineBasicBlock *CreateLCSSAExitingBlock(); |
||
| 359 | /// Helper to get the stage of an instruction in the schedule. |
||
| 360 | unsigned getStage(MachineInstr *MI) { |
||
| 361 | if (CanonicalMIs.count(MI)) |
||
| 362 | MI = CanonicalMIs[MI]; |
||
| 363 | return Schedule.getStage(MI); |
||
| 364 | } |
||
| 365 | /// Helper function to find the right canonical register for a phi instruction |
||
| 366 | /// coming from a peeled out prologue. |
||
| 367 | Register getPhiCanonicalReg(MachineInstr* CanonicalPhi, MachineInstr* Phi); |
||
| 368 | /// Target loop info before kernel peeling. |
||
| 369 | std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> LoopInfo; |
||
| 370 | }; |
||
| 371 | |||
| 372 | /// Expander that simply annotates each scheduled instruction with a post-instr |
||
| 373 | /// symbol that can be consumed by the ModuloScheduleTest pass. |
||
| 374 | /// |
||
| 375 | /// The post-instr symbol is a way of annotating an instruction that can be |
||
| 376 | /// roundtripped in MIR. The syntax is: |
||
| 377 | /// MYINST %0, post-instr-symbol <mcsymbol Stage-1_Cycle-5> |
||
| 378 | class ModuloScheduleTestAnnotater { |
||
| 379 | MachineFunction &MF; |
||
| 380 | ModuloSchedule &S; |
||
| 381 | |||
| 382 | public: |
||
| 383 | ModuloScheduleTestAnnotater(MachineFunction &MF, ModuloSchedule &S) |
||
| 384 | : MF(MF), S(S) {} |
||
| 385 | |||
| 386 | /// Performs the annotation. |
||
| 387 | void annotate(); |
||
| 388 | }; |
||
| 389 | |||
| 390 | } // end namespace llvm |
||
| 391 | |||
| 392 | #endif // LLVM_CODEGEN_MODULOSCHEDULE_H |