Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // The file defines the MachineFrameInfo class. |
||
10 | // |
||
11 | //===----------------------------------------------------------------------===// |
||
12 | |||
13 | #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H |
||
14 | #define LLVM_CODEGEN_MACHINEFRAMEINFO_H |
||
15 | |||
16 | #include "llvm/ADT/SmallVector.h" |
||
17 | #include "llvm/CodeGen/Register.h" |
||
18 | #include "llvm/CodeGen/TargetFrameLowering.h" |
||
19 | #include "llvm/Support/Alignment.h" |
||
20 | #include <cassert> |
||
21 | #include <vector> |
||
22 | |||
23 | namespace llvm { |
||
24 | class raw_ostream; |
||
25 | class MachineFunction; |
||
26 | class MachineBasicBlock; |
||
27 | class BitVector; |
||
28 | class AllocaInst; |
||
29 | |||
30 | /// The CalleeSavedInfo class tracks the information need to locate where a |
||
31 | /// callee saved register is in the current frame. |
||
32 | /// Callee saved reg can also be saved to a different register rather than |
||
33 | /// on the stack by setting DstReg instead of FrameIdx. |
||
34 | class CalleeSavedInfo { |
||
35 | Register Reg; |
||
36 | union { |
||
37 | int FrameIdx; |
||
38 | unsigned DstReg; |
||
39 | }; |
||
40 | /// Flag indicating whether the register is actually restored in the epilog. |
||
41 | /// In most cases, if a register is saved, it is also restored. There are |
||
42 | /// some situations, though, when this is not the case. For example, the |
||
43 | /// LR register on ARM is usually saved, but on exit from the function its |
||
44 | /// saved value may be loaded directly into PC. Since liveness tracking of |
||
45 | /// physical registers treats callee-saved registers are live outside of |
||
46 | /// the function, LR would be treated as live-on-exit, even though in these |
||
47 | /// scenarios it is not. This flag is added to indicate that the saved |
||
48 | /// register described by this object is not restored in the epilog. |
||
49 | /// The long-term solution is to model the liveness of callee-saved registers |
||
50 | /// by implicit uses on the return instructions, however, the required |
||
51 | /// changes in the ARM backend would be quite extensive. |
||
52 | bool Restored = true; |
||
53 | /// Flag indicating whether the register is spilled to stack or another |
||
54 | /// register. |
||
55 | bool SpilledToReg = false; |
||
56 | |||
57 | public: |
||
58 | explicit CalleeSavedInfo(unsigned R, int FI = 0) : Reg(R), FrameIdx(FI) {} |
||
59 | |||
60 | // Accessors. |
||
61 | Register getReg() const { return Reg; } |
||
62 | int getFrameIdx() const { return FrameIdx; } |
||
63 | unsigned getDstReg() const { return DstReg; } |
||
64 | void setFrameIdx(int FI) { |
||
65 | FrameIdx = FI; |
||
66 | SpilledToReg = false; |
||
67 | } |
||
68 | void setDstReg(Register SpillReg) { |
||
69 | DstReg = SpillReg; |
||
70 | SpilledToReg = true; |
||
71 | } |
||
72 | bool isRestored() const { return Restored; } |
||
73 | void setRestored(bool R) { Restored = R; } |
||
74 | bool isSpilledToReg() const { return SpilledToReg; } |
||
75 | }; |
||
76 | |||
77 | /// The MachineFrameInfo class represents an abstract stack frame until |
||
78 | /// prolog/epilog code is inserted. This class is key to allowing stack frame |
||
79 | /// representation optimizations, such as frame pointer elimination. It also |
||
80 | /// allows more mundane (but still important) optimizations, such as reordering |
||
81 | /// of abstract objects on the stack frame. |
||
82 | /// |
||
83 | /// To support this, the class assigns unique integer identifiers to stack |
||
84 | /// objects requested clients. These identifiers are negative integers for |
||
85 | /// fixed stack objects (such as arguments passed on the stack) or nonnegative |
||
86 | /// for objects that may be reordered. Instructions which refer to stack |
||
87 | /// objects use a special MO_FrameIndex operand to represent these frame |
||
88 | /// indexes. |
||
89 | /// |
||
90 | /// Because this class keeps track of all references to the stack frame, it |
||
91 | /// knows when a variable sized object is allocated on the stack. This is the |
||
92 | /// sole condition which prevents frame pointer elimination, which is an |
||
93 | /// important optimization on register-poor architectures. Because original |
||
94 | /// variable sized alloca's in the source program are the only source of |
||
95 | /// variable sized stack objects, it is safe to decide whether there will be |
||
96 | /// any variable sized objects before all stack objects are known (for |
||
97 | /// example, register allocator spill code never needs variable sized |
||
98 | /// objects). |
||
99 | /// |
||
100 | /// When prolog/epilog code emission is performed, the final stack frame is |
||
101 | /// built and the machine instructions are modified to refer to the actual |
||
102 | /// stack offsets of the object, eliminating all MO_FrameIndex operands from |
||
103 | /// the program. |
||
104 | /// |
||
105 | /// Abstract Stack Frame Information |
||
106 | class MachineFrameInfo { |
||
107 | public: |
||
108 | /// Stack Smashing Protection (SSP) rules require that vulnerable stack |
||
109 | /// allocations are located close the stack protector. |
||
110 | enum SSPLayoutKind { |
||
111 | SSPLK_None, ///< Did not trigger a stack protector. No effect on data |
||
112 | ///< layout. |
||
113 | SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size. Closest |
||
114 | ///< to the stack protector. |
||
115 | SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest |
||
116 | ///< to the stack protector. |
||
117 | SSPLK_AddrOf ///< The address of this allocation is exposed and |
||
118 | ///< triggered protection. 3rd closest to the protector. |
||
119 | }; |
||
120 | |||
121 | private: |
||
122 | // Represent a single object allocated on the stack. |
||
123 | struct StackObject { |
||
124 | // The offset of this object from the stack pointer on entry to |
||
125 | // the function. This field has no meaning for a variable sized element. |
||
126 | int64_t SPOffset; |
||
127 | |||
128 | // The size of this object on the stack. 0 means a variable sized object, |
||
129 | // ~0ULL means a dead object. |
||
130 | uint64_t Size; |
||
131 | |||
132 | // The required alignment of this stack slot. |
||
133 | Align Alignment; |
||
134 | |||
135 | // If true, the value of the stack object is set before |
||
136 | // entering the function and is not modified inside the function. By |
||
137 | // default, fixed objects are immutable unless marked otherwise. |
||
138 | bool isImmutable; |
||
139 | |||
140 | // If true the stack object is used as spill slot. It |
||
141 | // cannot alias any other memory objects. |
||
142 | bool isSpillSlot; |
||
143 | |||
144 | /// If true, this stack slot is used to spill a value (could be deopt |
||
145 | /// and/or GC related) over a statepoint. We know that the address of the |
||
146 | /// slot can't alias any LLVM IR value. This is very similar to a Spill |
||
147 | /// Slot, but is created by statepoint lowering is SelectionDAG, not the |
||
148 | /// register allocator. |
||
149 | bool isStatepointSpillSlot = false; |
||
150 | |||
151 | /// Identifier for stack memory type analagous to address space. If this is |
||
152 | /// non-0, the meaning is target defined. Offsets cannot be directly |
||
153 | /// compared between objects with different stack IDs. The object may not |
||
154 | /// necessarily reside in the same contiguous memory block as other stack |
||
155 | /// objects. Objects with differing stack IDs should not be merged or |
||
156 | /// replaced substituted for each other. |
||
157 | // |
||
158 | /// It is assumed a target uses consecutive, increasing stack IDs starting |
||
159 | /// from 1. |
||
160 | uint8_t StackID; |
||
161 | |||
162 | /// If this stack object is originated from an Alloca instruction |
||
163 | /// this value saves the original IR allocation. Can be NULL. |
||
164 | const AllocaInst *Alloca; |
||
165 | |||
166 | // If true, the object was mapped into the local frame |
||
167 | // block and doesn't need additional handling for allocation beyond that. |
||
168 | bool PreAllocated = false; |
||
169 | |||
170 | // If true, an LLVM IR value might point to this object. |
||
171 | // Normally, spill slots and fixed-offset objects don't alias IR-accessible |
||
172 | // objects, but there are exceptions (on PowerPC, for example, some byval |
||
173 | // arguments have ABI-prescribed offsets). |
||
174 | bool isAliased; |
||
175 | |||
176 | /// If true, the object has been zero-extended. |
||
177 | bool isZExt = false; |
||
178 | |||
179 | /// If true, the object has been sign-extended. |
||
180 | bool isSExt = false; |
||
181 | |||
182 | uint8_t SSPLayout = SSPLK_None; |
||
183 | |||
184 | StackObject(uint64_t Size, Align Alignment, int64_t SPOffset, |
||
185 | bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca, |
||
186 | bool IsAliased, uint8_t StackID = 0) |
||
187 | : SPOffset(SPOffset), Size(Size), Alignment(Alignment), |
||
188 | isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), StackID(StackID), |
||
189 | Alloca(Alloca), isAliased(IsAliased) {} |
||
190 | }; |
||
191 | |||
192 | /// The alignment of the stack. |
||
193 | Align StackAlignment; |
||
194 | |||
195 | /// Can the stack be realigned. This can be false if the target does not |
||
196 | /// support stack realignment, or if the user asks us not to realign the |
||
197 | /// stack. In this situation, overaligned allocas are all treated as dynamic |
||
198 | /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC |
||
199 | /// lowering. All non-alloca stack objects have their alignment clamped to the |
||
200 | /// base ABI stack alignment. |
||
201 | /// FIXME: There is room for improvement in this case, in terms of |
||
202 | /// grouping overaligned allocas into a "secondary stack frame" and |
||
203 | /// then only use a single alloca to allocate this frame and only a |
||
204 | /// single virtual register to access it. Currently, without such an |
||
205 | /// optimization, each such alloca gets its own dynamic realignment. |
||
206 | bool StackRealignable; |
||
207 | |||
208 | /// Whether the function has the \c alignstack attribute. |
||
209 | bool ForcedRealign; |
||
210 | |||
211 | /// The list of stack objects allocated. |
||
212 | std::vector<StackObject> Objects; |
||
213 | |||
214 | /// This contains the number of fixed objects contained on |
||
215 | /// the stack. Because fixed objects are stored at a negative index in the |
||
216 | /// Objects list, this is also the index to the 0th object in the list. |
||
217 | unsigned NumFixedObjects = 0; |
||
218 | |||
219 | /// This boolean keeps track of whether any variable |
||
220 | /// sized objects have been allocated yet. |
||
221 | bool HasVarSizedObjects = false; |
||
222 | |||
223 | /// This boolean keeps track of whether there is a call |
||
224 | /// to builtin \@llvm.frameaddress. |
||
225 | bool FrameAddressTaken = false; |
||
226 | |||
227 | /// This boolean keeps track of whether there is a call |
||
228 | /// to builtin \@llvm.returnaddress. |
||
229 | bool ReturnAddressTaken = false; |
||
230 | |||
231 | /// This boolean keeps track of whether there is a call |
||
232 | /// to builtin \@llvm.experimental.stackmap. |
||
233 | bool HasStackMap = false; |
||
234 | |||
235 | /// This boolean keeps track of whether there is a call |
||
236 | /// to builtin \@llvm.experimental.patchpoint. |
||
237 | bool HasPatchPoint = false; |
||
238 | |||
239 | /// The prolog/epilog code inserter calculates the final stack |
||
240 | /// offsets for all of the fixed size objects, updating the Objects list |
||
241 | /// above. It then updates StackSize to contain the number of bytes that need |
||
242 | /// to be allocated on entry to the function. |
||
243 | uint64_t StackSize = 0; |
||
244 | |||
245 | /// The amount that a frame offset needs to be adjusted to |
||
246 | /// have the actual offset from the stack/frame pointer. The exact usage of |
||
247 | /// this is target-dependent, but it is typically used to adjust between |
||
248 | /// SP-relative and FP-relative offsets. E.G., if objects are accessed via |
||
249 | /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set |
||
250 | /// to the distance between the initial SP and the value in FP. For many |
||
251 | /// targets, this value is only used when generating debug info (via |
||
252 | /// TargetRegisterInfo::getFrameIndexReference); when generating code, the |
||
253 | /// corresponding adjustments are performed directly. |
||
254 | int OffsetAdjustment = 0; |
||
255 | |||
256 | /// The prolog/epilog code inserter may process objects that require greater |
||
257 | /// alignment than the default alignment the target provides. |
||
258 | /// To handle this, MaxAlignment is set to the maximum alignment |
||
259 | /// needed by the objects on the current frame. If this is greater than the |
||
260 | /// native alignment maintained by the compiler, dynamic alignment code will |
||
261 | /// be needed. |
||
262 | /// |
||
263 | Align MaxAlignment; |
||
264 | |||
265 | /// Set to true if this function adjusts the stack -- e.g., |
||
266 | /// when calling another function. This is only valid during and after |
||
267 | /// prolog/epilog code insertion. |
||
268 | bool AdjustsStack = false; |
||
269 | |||
270 | /// Set to true if this function has any function calls. |
||
271 | bool HasCalls = false; |
||
272 | |||
273 | /// The frame index for the stack protector. |
||
274 | int StackProtectorIdx = -1; |
||
275 | |||
276 | /// The frame index for the function context. Used for SjLj exceptions. |
||
277 | int FunctionContextIdx = -1; |
||
278 | |||
279 | /// This contains the size of the largest call frame if the target uses frame |
||
280 | /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo |
||
281 | /// class). This information is important for frame pointer elimination. |
||
282 | /// It is only valid during and after prolog/epilog code insertion. |
||
283 | unsigned MaxCallFrameSize = ~0u; |
||
284 | |||
285 | /// The number of bytes of callee saved registers that the target wants to |
||
286 | /// report for the current function in the CodeView S_FRAMEPROC record. |
||
287 | unsigned CVBytesOfCalleeSavedRegisters = 0; |
||
288 | |||
289 | /// The prolog/epilog code inserter fills in this vector with each |
||
290 | /// callee saved register saved in either the frame or a different |
||
291 | /// register. Beyond its use by the prolog/ epilog code inserter, |
||
292 | /// this data is used for debug info and exception handling. |
||
293 | std::vector<CalleeSavedInfo> CSInfo; |
||
294 | |||
295 | /// Has CSInfo been set yet? |
||
296 | bool CSIValid = false; |
||
297 | |||
298 | /// References to frame indices which are mapped |
||
299 | /// into the local frame allocation block. <FrameIdx, LocalOffset> |
||
300 | SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects; |
||
301 | |||
302 | /// Size of the pre-allocated local frame block. |
||
303 | int64_t LocalFrameSize = 0; |
||
304 | |||
305 | /// Required alignment of the local object blob, which is the strictest |
||
306 | /// alignment of any object in it. |
||
307 | Align LocalFrameMaxAlign; |
||
308 | |||
309 | /// Whether the local object blob needs to be allocated together. If not, |
||
310 | /// PEI should ignore the isPreAllocated flags on the stack objects and |
||
311 | /// just allocate them normally. |
||
312 | bool UseLocalStackAllocationBlock = false; |
||
313 | |||
314 | /// True if the function dynamically adjusts the stack pointer through some |
||
315 | /// opaque mechanism like inline assembly or Win32 EH. |
||
316 | bool HasOpaqueSPAdjustment = false; |
||
317 | |||
318 | /// True if the function contains operations which will lower down to |
||
319 | /// instructions which manipulate the stack pointer. |
||
320 | bool HasCopyImplyingStackAdjustment = false; |
||
321 | |||
322 | /// True if the function contains a call to the llvm.vastart intrinsic. |
||
323 | bool HasVAStart = false; |
||
324 | |||
325 | /// True if this is a varargs function that contains a musttail call. |
||
326 | bool HasMustTailInVarArgFunc = false; |
||
327 | |||
328 | /// True if this function contains a tail call. If so immutable objects like |
||
329 | /// function arguments are no longer so. A tail call *can* override fixed |
||
330 | /// stack objects like arguments so we can't treat them as immutable. |
||
331 | bool HasTailCall = false; |
||
332 | |||
333 | /// Not null, if shrink-wrapping found a better place for the prologue. |
||
334 | MachineBasicBlock *Save = nullptr; |
||
335 | /// Not null, if shrink-wrapping found a better place for the epilogue. |
||
336 | MachineBasicBlock *Restore = nullptr; |
||
337 | |||
338 | /// Size of the UnsafeStack Frame |
||
339 | uint64_t UnsafeStackSize = 0; |
||
340 | |||
341 | public: |
||
342 | explicit MachineFrameInfo(Align StackAlignment, bool StackRealignable, |
||
343 | bool ForcedRealign) |
||
344 | : StackAlignment(StackAlignment), |
||
345 | StackRealignable(StackRealignable), ForcedRealign(ForcedRealign) {} |
||
346 | |||
347 | MachineFrameInfo(const MachineFrameInfo &) = delete; |
||
348 | |||
349 | /// Return true if there are any stack objects in this function. |
||
350 | bool hasStackObjects() const { return !Objects.empty(); } |
||
351 | |||
352 | /// This method may be called any time after instruction |
||
353 | /// selection is complete to determine if the stack frame for this function |
||
354 | /// contains any variable sized objects. |
||
355 | bool hasVarSizedObjects() const { return HasVarSizedObjects; } |
||
356 | |||
357 | /// Return the index for the stack protector object. |
||
358 | int getStackProtectorIndex() const { return StackProtectorIdx; } |
||
359 | void setStackProtectorIndex(int I) { StackProtectorIdx = I; } |
||
360 | bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; } |
||
361 | |||
362 | /// Return the index for the function context object. |
||
363 | /// This object is used for SjLj exceptions. |
||
364 | int getFunctionContextIndex() const { return FunctionContextIdx; } |
||
365 | void setFunctionContextIndex(int I) { FunctionContextIdx = I; } |
||
366 | bool hasFunctionContextIndex() const { return FunctionContextIdx != -1; } |
||
367 | |||
368 | /// This method may be called any time after instruction |
||
369 | /// selection is complete to determine if there is a call to |
||
370 | /// \@llvm.frameaddress in this function. |
||
371 | bool isFrameAddressTaken() const { return FrameAddressTaken; } |
||
372 | void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; } |
||
373 | |||
374 | /// This method may be called any time after |
||
375 | /// instruction selection is complete to determine if there is a call to |
||
376 | /// \@llvm.returnaddress in this function. |
||
377 | bool isReturnAddressTaken() const { return ReturnAddressTaken; } |
||
378 | void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; } |
||
379 | |||
380 | /// This method may be called any time after instruction |
||
381 | /// selection is complete to determine if there is a call to builtin |
||
382 | /// \@llvm.experimental.stackmap. |
||
383 | bool hasStackMap() const { return HasStackMap; } |
||
384 | void setHasStackMap(bool s = true) { HasStackMap = s; } |
||
385 | |||
386 | /// This method may be called any time after instruction |
||
387 | /// selection is complete to determine if there is a call to builtin |
||
388 | /// \@llvm.experimental.patchpoint. |
||
389 | bool hasPatchPoint() const { return HasPatchPoint; } |
||
390 | void setHasPatchPoint(bool s = true) { HasPatchPoint = s; } |
||
391 | |||
392 | /// Return true if this function requires a split stack prolog, even if it |
||
393 | /// uses no stack space. This is only meaningful for functions where |
||
394 | /// MachineFunction::shouldSplitStack() returns true. |
||
395 | // |
||
396 | // For non-leaf functions we have to allow for the possibility that the call |
||
397 | // is to a non-split function, as in PR37807. This function could also take |
||
398 | // the address of a non-split function. When the linker tries to adjust its |
||
399 | // non-existent prologue, it would fail with an error. Mark the object file so |
||
400 | // that such failures are not errors. See this Go language bug-report |
||
401 | // https://go-review.googlesource.com/c/go/+/148819/ |
||
402 | bool needsSplitStackProlog() const { |
||
403 | return getStackSize() != 0 || hasTailCall(); |
||
404 | } |
||
405 | |||
406 | /// Return the minimum frame object index. |
||
407 | int getObjectIndexBegin() const { return -NumFixedObjects; } |
||
408 | |||
409 | /// Return one past the maximum frame object index. |
||
410 | int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; } |
||
411 | |||
412 | /// Return the number of fixed objects. |
||
413 | unsigned getNumFixedObjects() const { return NumFixedObjects; } |
||
414 | |||
415 | /// Return the number of objects. |
||
416 | unsigned getNumObjects() const { return Objects.size(); } |
||
417 | |||
418 | /// Map a frame index into the local object block |
||
419 | void mapLocalFrameObject(int ObjectIndex, int64_t Offset) { |
||
420 | LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset)); |
||
421 | Objects[ObjectIndex + NumFixedObjects].PreAllocated = true; |
||
422 | } |
||
423 | |||
424 | /// Get the local offset mapping for a for an object. |
||
425 | std::pair<int, int64_t> getLocalFrameObjectMap(int i) const { |
||
426 | assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() && |
||
427 | "Invalid local object reference!"); |
||
428 | return LocalFrameObjects[i]; |
||
429 | } |
||
430 | |||
431 | /// Return the number of objects allocated into the local object block. |
||
432 | int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); } |
||
433 | |||
434 | /// Set the size of the local object blob. |
||
435 | void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; } |
||
436 | |||
437 | /// Get the size of the local object blob. |
||
438 | int64_t getLocalFrameSize() const { return LocalFrameSize; } |
||
439 | |||
440 | /// Required alignment of the local object blob, |
||
441 | /// which is the strictest alignment of any object in it. |
||
442 | void setLocalFrameMaxAlign(Align Alignment) { |
||
443 | LocalFrameMaxAlign = Alignment; |
||
444 | } |
||
445 | |||
446 | /// Return the required alignment of the local object blob. |
||
447 | Align getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; } |
||
448 | |||
449 | /// Get whether the local allocation blob should be allocated together or |
||
450 | /// let PEI allocate the locals in it directly. |
||
451 | bool getUseLocalStackAllocationBlock() const { |
||
452 | return UseLocalStackAllocationBlock; |
||
453 | } |
||
454 | |||
455 | /// setUseLocalStackAllocationBlock - Set whether the local allocation blob |
||
456 | /// should be allocated together or let PEI allocate the locals in it |
||
457 | /// directly. |
||
458 | void setUseLocalStackAllocationBlock(bool v) { |
||
459 | UseLocalStackAllocationBlock = v; |
||
460 | } |
||
461 | |||
462 | /// Return true if the object was pre-allocated into the local block. |
||
463 | bool isObjectPreAllocated(int ObjectIdx) const { |
||
464 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
465 | "Invalid Object Idx!"); |
||
466 | return Objects[ObjectIdx+NumFixedObjects].PreAllocated; |
||
467 | } |
||
468 | |||
469 | /// Return the size of the specified object. |
||
470 | int64_t getObjectSize(int ObjectIdx) const { |
||
471 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
472 | "Invalid Object Idx!"); |
||
473 | return Objects[ObjectIdx+NumFixedObjects].Size; |
||
474 | } |
||
475 | |||
476 | /// Change the size of the specified stack object. |
||
477 | void setObjectSize(int ObjectIdx, int64_t Size) { |
||
478 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
479 | "Invalid Object Idx!"); |
||
480 | Objects[ObjectIdx+NumFixedObjects].Size = Size; |
||
481 | } |
||
482 | |||
483 | /// Return the alignment of the specified stack object. |
||
484 | Align getObjectAlign(int ObjectIdx) const { |
||
485 | assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && |
||
486 | "Invalid Object Idx!"); |
||
487 | return Objects[ObjectIdx + NumFixedObjects].Alignment; |
||
488 | } |
||
489 | |||
490 | /// Should this stack ID be considered in MaxAlignment. |
||
491 | bool contributesToMaxAlignment(uint8_t StackID) { |
||
492 | return StackID == TargetStackID::Default || |
||
493 | StackID == TargetStackID::ScalableVector; |
||
494 | } |
||
495 | |||
496 | /// setObjectAlignment - Change the alignment of the specified stack object. |
||
497 | void setObjectAlignment(int ObjectIdx, Align Alignment) { |
||
498 | assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && |
||
499 | "Invalid Object Idx!"); |
||
500 | Objects[ObjectIdx + NumFixedObjects].Alignment = Alignment; |
||
501 | |||
502 | // Only ensure max alignment for the default and scalable vector stack. |
||
503 | uint8_t StackID = getStackID(ObjectIdx); |
||
504 | if (contributesToMaxAlignment(StackID)) |
||
505 | ensureMaxAlignment(Alignment); |
||
506 | } |
||
507 | |||
508 | /// Return the underlying Alloca of the specified |
||
509 | /// stack object if it exists. Returns 0 if none exists. |
||
510 | const AllocaInst* getObjectAllocation(int ObjectIdx) const { |
||
511 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
512 | "Invalid Object Idx!"); |
||
513 | return Objects[ObjectIdx+NumFixedObjects].Alloca; |
||
514 | } |
||
515 | |||
516 | /// Remove the underlying Alloca of the specified stack object if it |
||
517 | /// exists. This generally should not be used and is for reduction tooling. |
||
518 | void clearObjectAllocation(int ObjectIdx) { |
||
519 | assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && |
||
520 | "Invalid Object Idx!"); |
||
521 | Objects[ObjectIdx + NumFixedObjects].Alloca = nullptr; |
||
522 | } |
||
523 | |||
524 | /// Return the assigned stack offset of the specified object |
||
525 | /// from the incoming stack pointer. |
||
526 | int64_t getObjectOffset(int ObjectIdx) const { |
||
527 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
528 | "Invalid Object Idx!"); |
||
529 | assert(!isDeadObjectIndex(ObjectIdx) && |
||
530 | "Getting frame offset for a dead object?"); |
||
531 | return Objects[ObjectIdx+NumFixedObjects].SPOffset; |
||
532 | } |
||
533 | |||
534 | bool isObjectZExt(int ObjectIdx) const { |
||
535 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
536 | "Invalid Object Idx!"); |
||
537 | return Objects[ObjectIdx+NumFixedObjects].isZExt; |
||
538 | } |
||
539 | |||
540 | void setObjectZExt(int ObjectIdx, bool IsZExt) { |
||
541 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
542 | "Invalid Object Idx!"); |
||
543 | Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt; |
||
544 | } |
||
545 | |||
546 | bool isObjectSExt(int ObjectIdx) const { |
||
547 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
548 | "Invalid Object Idx!"); |
||
549 | return Objects[ObjectIdx+NumFixedObjects].isSExt; |
||
550 | } |
||
551 | |||
552 | void setObjectSExt(int ObjectIdx, bool IsSExt) { |
||
553 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
554 | "Invalid Object Idx!"); |
||
555 | Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt; |
||
556 | } |
||
557 | |||
558 | /// Set the stack frame offset of the specified object. The |
||
559 | /// offset is relative to the stack pointer on entry to the function. |
||
560 | void setObjectOffset(int ObjectIdx, int64_t SPOffset) { |
||
561 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
562 | "Invalid Object Idx!"); |
||
563 | assert(!isDeadObjectIndex(ObjectIdx) && |
||
564 | "Setting frame offset for a dead object?"); |
||
565 | Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset; |
||
566 | } |
||
567 | |||
568 | SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const { |
||
569 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
570 | "Invalid Object Idx!"); |
||
571 | return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout; |
||
572 | } |
||
573 | |||
574 | void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) { |
||
575 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
576 | "Invalid Object Idx!"); |
||
577 | assert(!isDeadObjectIndex(ObjectIdx) && |
||
578 | "Setting SSP layout for a dead object?"); |
||
579 | Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind; |
||
580 | } |
||
581 | |||
582 | /// Return the number of bytes that must be allocated to hold |
||
583 | /// all of the fixed size frame objects. This is only valid after |
||
584 | /// Prolog/Epilog code insertion has finalized the stack frame layout. |
||
585 | uint64_t getStackSize() const { return StackSize; } |
||
586 | |||
587 | /// Set the size of the stack. |
||
588 | void setStackSize(uint64_t Size) { StackSize = Size; } |
||
589 | |||
590 | /// Estimate and return the size of the stack frame. |
||
591 | uint64_t estimateStackSize(const MachineFunction &MF) const; |
||
592 | |||
593 | /// Return the correction for frame offsets. |
||
594 | int getOffsetAdjustment() const { return OffsetAdjustment; } |
||
595 | |||
596 | /// Set the correction for frame offsets. |
||
597 | void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; } |
||
598 | |||
599 | /// Return the alignment in bytes that this function must be aligned to, |
||
600 | /// which is greater than the default stack alignment provided by the target. |
||
601 | Align getMaxAlign() const { return MaxAlignment; } |
||
602 | |||
603 | /// Make sure the function is at least Align bytes aligned. |
||
604 | void ensureMaxAlignment(Align Alignment); |
||
605 | |||
606 | /// Return true if this function adjusts the stack -- e.g., |
||
607 | /// when calling another function. This is only valid during and after |
||
608 | /// prolog/epilog code insertion. |
||
609 | bool adjustsStack() const { return AdjustsStack; } |
||
610 | void setAdjustsStack(bool V) { AdjustsStack = V; } |
||
611 | |||
612 | /// Return true if the current function has any function calls. |
||
613 | bool hasCalls() const { return HasCalls; } |
||
614 | void setHasCalls(bool V) { HasCalls = V; } |
||
615 | |||
616 | /// Returns true if the function contains opaque dynamic stack adjustments. |
||
617 | bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; } |
||
618 | void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; } |
||
619 | |||
620 | /// Returns true if the function contains operations which will lower down to |
||
621 | /// instructions which manipulate the stack pointer. |
||
622 | bool hasCopyImplyingStackAdjustment() const { |
||
623 | return HasCopyImplyingStackAdjustment; |
||
624 | } |
||
625 | void setHasCopyImplyingStackAdjustment(bool B) { |
||
626 | HasCopyImplyingStackAdjustment = B; |
||
627 | } |
||
628 | |||
629 | /// Returns true if the function calls the llvm.va_start intrinsic. |
||
630 | bool hasVAStart() const { return HasVAStart; } |
||
631 | void setHasVAStart(bool B) { HasVAStart = B; } |
||
632 | |||
633 | /// Returns true if the function is variadic and contains a musttail call. |
||
634 | bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; } |
||
635 | void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; } |
||
636 | |||
637 | /// Returns true if the function contains a tail call. |
||
638 | bool hasTailCall() const { return HasTailCall; } |
||
639 | void setHasTailCall(bool V = true) { HasTailCall = V; } |
||
640 | |||
641 | /// Computes the maximum size of a callframe and the AdjustsStack property. |
||
642 | /// This only works for targets defining |
||
643 | /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(), |
||
644 | /// and getFrameSize(). |
||
645 | /// This is usually computed by the prologue epilogue inserter but some |
||
646 | /// targets may call this to compute it earlier. |
||
647 | void computeMaxCallFrameSize(const MachineFunction &MF); |
||
648 | |||
649 | /// Return the maximum size of a call frame that must be |
||
650 | /// allocated for an outgoing function call. This is only available if |
||
651 | /// CallFrameSetup/Destroy pseudo instructions are used by the target, and |
||
652 | /// then only during or after prolog/epilog code insertion. |
||
653 | /// |
||
654 | unsigned getMaxCallFrameSize() const { |
||
655 | // TODO: Enable this assert when targets are fixed. |
||
656 | //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet"); |
||
657 | if (!isMaxCallFrameSizeComputed()) |
||
658 | return 0; |
||
659 | return MaxCallFrameSize; |
||
660 | } |
||
661 | bool isMaxCallFrameSizeComputed() const { |
||
662 | return MaxCallFrameSize != ~0u; |
||
663 | } |
||
664 | void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; } |
||
665 | |||
666 | /// Returns how many bytes of callee-saved registers the target pushed in the |
||
667 | /// prologue. Only used for debug info. |
||
668 | unsigned getCVBytesOfCalleeSavedRegisters() const { |
||
669 | return CVBytesOfCalleeSavedRegisters; |
||
670 | } |
||
671 | void setCVBytesOfCalleeSavedRegisters(unsigned S) { |
||
672 | CVBytesOfCalleeSavedRegisters = S; |
||
673 | } |
||
674 | |||
675 | /// Create a new object at a fixed location on the stack. |
||
676 | /// All fixed objects should be created before other objects are created for |
||
677 | /// efficiency. By default, fixed objects are not pointed to by LLVM IR |
||
678 | /// values. This returns an index with a negative value. |
||
679 | int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, |
||
680 | bool isAliased = false); |
||
681 | |||
682 | /// Create a spill slot at a fixed location on the stack. |
||
683 | /// Returns an index with a negative value. |
||
684 | int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset, |
||
685 | bool IsImmutable = false); |
||
686 | |||
687 | /// Returns true if the specified index corresponds to a fixed stack object. |
||
688 | bool isFixedObjectIndex(int ObjectIdx) const { |
||
689 | return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects); |
||
690 | } |
||
691 | |||
692 | /// Returns true if the specified index corresponds |
||
693 | /// to an object that might be pointed to by an LLVM IR value. |
||
694 | bool isAliasedObjectIndex(int ObjectIdx) const { |
||
695 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
696 | "Invalid Object Idx!"); |
||
697 | return Objects[ObjectIdx+NumFixedObjects].isAliased; |
||
698 | } |
||
699 | |||
700 | /// Returns true if the specified index corresponds to an immutable object. |
||
701 | bool isImmutableObjectIndex(int ObjectIdx) const { |
||
702 | // Tail calling functions can clobber their function arguments. |
||
703 | if (HasTailCall) |
||
704 | return false; |
||
705 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
706 | "Invalid Object Idx!"); |
||
707 | return Objects[ObjectIdx+NumFixedObjects].isImmutable; |
||
708 | } |
||
709 | |||
710 | /// Marks the immutability of an object. |
||
711 | void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) { |
||
712 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
713 | "Invalid Object Idx!"); |
||
714 | Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable; |
||
715 | } |
||
716 | |||
717 | /// Returns true if the specified index corresponds to a spill slot. |
||
718 | bool isSpillSlotObjectIndex(int ObjectIdx) const { |
||
719 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
720 | "Invalid Object Idx!"); |
||
721 | return Objects[ObjectIdx+NumFixedObjects].isSpillSlot; |
||
722 | } |
||
723 | |||
724 | bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const { |
||
725 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
726 | "Invalid Object Idx!"); |
||
727 | return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot; |
||
728 | } |
||
729 | |||
730 | /// \see StackID |
||
731 | uint8_t getStackID(int ObjectIdx) const { |
||
732 | return Objects[ObjectIdx+NumFixedObjects].StackID; |
||
733 | } |
||
734 | |||
735 | /// \see StackID |
||
736 | void setStackID(int ObjectIdx, uint8_t ID) { |
||
737 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
738 | "Invalid Object Idx!"); |
||
739 | Objects[ObjectIdx+NumFixedObjects].StackID = ID; |
||
740 | // If ID > 0, MaxAlignment may now be overly conservative. |
||
741 | // If ID == 0, MaxAlignment will need to be updated separately. |
||
742 | } |
||
743 | |||
744 | /// Returns true if the specified index corresponds to a dead object. |
||
745 | bool isDeadObjectIndex(int ObjectIdx) const { |
||
746 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
747 | "Invalid Object Idx!"); |
||
748 | return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL; |
||
749 | } |
||
750 | |||
751 | /// Returns true if the specified index corresponds to a variable sized |
||
752 | /// object. |
||
753 | bool isVariableSizedObjectIndex(int ObjectIdx) const { |
||
754 | assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && |
||
755 | "Invalid Object Idx!"); |
||
756 | return Objects[ObjectIdx + NumFixedObjects].Size == 0; |
||
757 | } |
||
758 | |||
759 | void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) { |
||
760 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
||
761 | "Invalid Object Idx!"); |
||
762 | Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true; |
||
763 | assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent"); |
||
764 | } |
||
765 | |||
766 | /// Create a new statically sized stack object, returning |
||
767 | /// a nonnegative identifier to represent it. |
||
768 | int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, |
||
769 | const AllocaInst *Alloca = nullptr, uint8_t ID = 0); |
||
770 | |||
771 | /// Create a new statically sized stack object that represents a spill slot, |
||
772 | /// returning a nonnegative identifier to represent it. |
||
773 | int CreateSpillStackObject(uint64_t Size, Align Alignment); |
||
774 | |||
775 | /// Remove or mark dead a statically sized stack object. |
||
776 | void RemoveStackObject(int ObjectIdx) { |
||
777 | // Mark it dead. |
||
778 | Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL; |
||
779 | } |
||
780 | |||
781 | /// Notify the MachineFrameInfo object that a variable sized object has been |
||
782 | /// created. This must be created whenever a variable sized object is |
||
783 | /// created, whether or not the index returned is actually used. |
||
784 | int CreateVariableSizedObject(Align Alignment, const AllocaInst *Alloca); |
||
785 | |||
786 | /// Returns a reference to call saved info vector for the current function. |
||
787 | const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const { |
||
788 | return CSInfo; |
||
789 | } |
||
790 | /// \copydoc getCalleeSavedInfo() |
||
791 | std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; } |
||
792 | |||
793 | /// Used by prolog/epilog inserter to set the function's callee saved |
||
794 | /// information. |
||
795 | void setCalleeSavedInfo(std::vector<CalleeSavedInfo> CSI) { |
||
796 | CSInfo = std::move(CSI); |
||
797 | } |
||
798 | |||
799 | /// Has the callee saved info been calculated yet? |
||
800 | bool isCalleeSavedInfoValid() const { return CSIValid; } |
||
801 | |||
802 | void setCalleeSavedInfoValid(bool v) { CSIValid = v; } |
||
803 | |||
804 | MachineBasicBlock *getSavePoint() const { return Save; } |
||
805 | void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; } |
||
806 | MachineBasicBlock *getRestorePoint() const { return Restore; } |
||
807 | void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; } |
||
808 | |||
809 | uint64_t getUnsafeStackSize() const { return UnsafeStackSize; } |
||
810 | void setUnsafeStackSize(uint64_t Size) { UnsafeStackSize = Size; } |
||
811 | |||
812 | /// Return a set of physical registers that are pristine. |
||
813 | /// |
||
814 | /// Pristine registers hold a value that is useless to the current function, |
||
815 | /// but that must be preserved - they are callee saved registers that are not |
||
816 | /// saved. |
||
817 | /// |
||
818 | /// Before the PrologueEpilogueInserter has placed the CSR spill code, this |
||
819 | /// method always returns an empty set. |
||
820 | BitVector getPristineRegs(const MachineFunction &MF) const; |
||
821 | |||
822 | /// Used by the MachineFunction printer to print information about |
||
823 | /// stack objects. Implemented in MachineFunction.cpp. |
||
824 | void print(const MachineFunction &MF, raw_ostream &OS) const; |
||
825 | |||
826 | /// dump - Print the function to stderr. |
||
827 | void dump(const MachineFunction &MF) const; |
||
828 | }; |
||
829 | |||
830 | } // End llvm namespace |
||
831 | |||
832 | #endif |