Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10
// but for target-specific code rather than target-independent IR.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15
#define LLVM_CODEGEN_MACHINEDOMINATORS_H
16
 
17
#include "llvm/ADT/SmallSet.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/CodeGen/MachineBasicBlock.h"
20
#include "llvm/CodeGen/MachineFunctionPass.h"
21
#include "llvm/CodeGen/MachineInstr.h"
22
#include "llvm/CodeGen/MachineInstrBundleIterator.h"
23
#include "llvm/Support/GenericDomTree.h"
24
#include "llvm/Support/GenericDomTreeConstruction.h"
25
#include <cassert>
26
#include <memory>
27
 
28
namespace llvm {
29
class AnalysisUsage;
30
class MachineFunction;
31
class Module;
32
class raw_ostream;
33
 
34
template <>
35
inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
36
    MachineBasicBlock *MBB) {
37
  this->Roots.push_back(MBB);
38
}
39
 
40
extern template class DomTreeNodeBase<MachineBasicBlock>;
41
extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
42
extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
43
 
44
using MachineDomTree = DomTreeBase<MachineBasicBlock>;
45
using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
46
 
47
//===-------------------------------------
48
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
49
/// compute a normal dominator tree.
50
///
51
class MachineDominatorTree : public MachineFunctionPass {
52
  /// Helper structure used to hold all the basic blocks
53
  /// involved in the split of a critical edge.
54
  struct CriticalEdge {
55
    MachineBasicBlock *FromBB;
56
    MachineBasicBlock *ToBB;
57
    MachineBasicBlock *NewBB;
58
  };
59
 
60
  /// Pile up all the critical edges to be split.
61
  /// The splitting of a critical edge is local and thus, it is possible
62
  /// to apply several of those changes at the same time.
63
  mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
64
 
65
  /// Remember all the basic blocks that are inserted during
66
  /// edge splitting.
67
  /// Invariant: NewBBs == all the basic blocks contained in the NewBB
68
  /// field of all the elements of CriticalEdgesToSplit.
69
  /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
70
  /// such as BB == elt.NewBB.
71
  mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
72
 
73
  /// The DominatorTreeBase that is used to compute a normal dominator tree.
74
  std::unique_ptr<MachineDomTree> DT;
75
 
76
  /// Apply all the recorded critical edges to the DT.
77
  /// This updates the underlying DT information in a way that uses
78
  /// the fast query path of DT as much as possible.
79
  ///
80
  /// \post CriticalEdgesToSplit.empty().
81
  void applySplitCriticalEdges() const;
82
 
83
public:
84
  static char ID; // Pass ID, replacement for typeid
85
 
86
  MachineDominatorTree();
87
  explicit MachineDominatorTree(MachineFunction &MF) : MachineFunctionPass(ID) {
88
    calculate(MF);
89
  }
90
 
91
  MachineDomTree &getBase() {
92
    if (!DT)
93
      DT.reset(new MachineDomTree());
94
    applySplitCriticalEdges();
95
    return *DT;
96
  }
97
 
98
  void getAnalysisUsage(AnalysisUsage &AU) const override;
99
 
100
  MachineBasicBlock *getRoot() const {
101
    applySplitCriticalEdges();
102
    return DT->getRoot();
103
  }
104
 
105
  MachineDomTreeNode *getRootNode() const {
106
    applySplitCriticalEdges();
107
    return DT->getRootNode();
108
  }
109
 
110
  bool runOnMachineFunction(MachineFunction &F) override;
111
 
112
  void calculate(MachineFunction &F);
113
 
114
  bool dominates(const MachineDomTreeNode *A,
115
                 const MachineDomTreeNode *B) const {
116
    applySplitCriticalEdges();
117
    return DT->dominates(A, B);
118
  }
119
 
120
  void getDescendants(MachineBasicBlock *A,
121
                      SmallVectorImpl<MachineBasicBlock *> &Result) {
122
    applySplitCriticalEdges();
123
    DT->getDescendants(A, Result);
124
  }
125
 
126
  bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const {
127
    applySplitCriticalEdges();
128
    return DT->dominates(A, B);
129
  }
130
 
131
  // dominates - Return true if A dominates B. This performs the
132
  // special checks necessary if A and B are in the same basic block.
133
  bool dominates(const MachineInstr *A, const MachineInstr *B) const {
134
    applySplitCriticalEdges();
135
    const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
136
    if (BBA != BBB) return DT->dominates(BBA, BBB);
137
 
138
    // Loop through the basic block until we find A or B.
139
    MachineBasicBlock::const_iterator I = BBA->begin();
140
    for (; &*I != A && &*I != B; ++I)
141
      /*empty*/ ;
142
 
143
    return &*I == A;
144
  }
145
 
146
  bool properlyDominates(const MachineDomTreeNode *A,
147
                         const MachineDomTreeNode *B) const {
148
    applySplitCriticalEdges();
149
    return DT->properlyDominates(A, B);
150
  }
151
 
152
  bool properlyDominates(const MachineBasicBlock *A,
153
                         const MachineBasicBlock *B) const {
154
    applySplitCriticalEdges();
155
    return DT->properlyDominates(A, B);
156
  }
157
 
158
  /// findNearestCommonDominator - Find nearest common dominator basic block
159
  /// for basic block A and B. If there is no such block then return NULL.
160
  MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
161
                                                MachineBasicBlock *B) {
162
    applySplitCriticalEdges();
163
    return DT->findNearestCommonDominator(A, B);
164
  }
165
 
166
  MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
167
    applySplitCriticalEdges();
168
    return DT->getNode(BB);
169
  }
170
 
171
  /// getNode - return the (Post)DominatorTree node for the specified basic
172
  /// block.  This is the same as using operator[] on this class.
173
  ///
174
  MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
175
    applySplitCriticalEdges();
176
    return DT->getNode(BB);
177
  }
178
 
179
  /// addNewBlock - Add a new node to the dominator tree information.  This
180
  /// creates a new node as a child of DomBB dominator node,linking it into
181
  /// the children list of the immediate dominator.
182
  MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
183
                                  MachineBasicBlock *DomBB) {
184
    applySplitCriticalEdges();
185
    return DT->addNewBlock(BB, DomBB);
186
  }
187
 
188
  /// changeImmediateDominator - This method is used to update the dominator
189
  /// tree information when a node's immediate dominator changes.
190
  ///
191
  void changeImmediateDominator(MachineBasicBlock *N,
192
                                MachineBasicBlock *NewIDom) {
193
    applySplitCriticalEdges();
194
    DT->changeImmediateDominator(N, NewIDom);
195
  }
196
 
197
  void changeImmediateDominator(MachineDomTreeNode *N,
198
                                MachineDomTreeNode *NewIDom) {
199
    applySplitCriticalEdges();
200
    DT->changeImmediateDominator(N, NewIDom);
201
  }
202
 
203
  /// eraseNode - Removes a node from  the dominator tree. Block must not
204
  /// dominate any other blocks. Removes node from its immediate dominator's
205
  /// children list. Deletes dominator node associated with basic block BB.
206
  void eraseNode(MachineBasicBlock *BB) {
207
    applySplitCriticalEdges();
208
    DT->eraseNode(BB);
209
  }
210
 
211
  /// splitBlock - BB is split and now it has one successor. Update dominator
212
  /// tree to reflect this change.
213
  void splitBlock(MachineBasicBlock* NewBB) {
214
    applySplitCriticalEdges();
215
    DT->splitBlock(NewBB);
216
  }
217
 
218
  /// isReachableFromEntry - Return true if A is dominated by the entry
219
  /// block of the function containing it.
220
  bool isReachableFromEntry(const MachineBasicBlock *A) {
221
    applySplitCriticalEdges();
222
    return DT->isReachableFromEntry(A);
223
  }
224
 
225
  void releaseMemory() override;
226
 
227
  void verifyAnalysis() const override;
228
 
229
  void print(raw_ostream &OS, const Module*) const override;
230
 
231
  /// Record that the critical edge (FromBB, ToBB) has been
232
  /// split with NewBB.
233
  /// This is best to use this method instead of directly update the
234
  /// underlying information, because this helps mitigating the
235
  /// number of time the DT information is invalidated.
236
  ///
237
  /// \note Do not use this method with regular edges.
238
  ///
239
  /// \note To benefit from the compile time improvement incurred by this
240
  /// method, the users of this method have to limit the queries to the DT
241
  /// interface between two edges splitting. In other words, they have to
242
  /// pack the splitting of critical edges as much as possible.
243
  void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
244
                              MachineBasicBlock *ToBB,
245
                              MachineBasicBlock *NewBB) {
246
    bool Inserted = NewBBs.insert(NewBB).second;
247
    (void)Inserted;
248
    assert(Inserted &&
249
           "A basic block inserted via edge splitting cannot appear twice");
250
    CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
251
  }
252
};
253
 
254
//===-------------------------------------
255
/// DominatorTree GraphTraits specialization so the DominatorTree can be
256
/// iterable by generic graph iterators.
257
///
258
 
259
template <class Node, class ChildIterator>
260
struct MachineDomTreeGraphTraitsBase {
261
  using NodeRef = Node *;
262
  using ChildIteratorType = ChildIterator;
263
 
264
  static NodeRef getEntryNode(NodeRef N) { return N; }
265
  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
266
  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
267
};
268
 
269
template <class T> struct GraphTraits;
270
 
271
template <>
272
struct GraphTraits<MachineDomTreeNode *>
273
    : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
274
                                           MachineDomTreeNode::const_iterator> {
275
};
276
 
277
template <>
278
struct GraphTraits<const MachineDomTreeNode *>
279
    : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
280
                                           MachineDomTreeNode::const_iterator> {
281
};
282
 
283
template <> struct GraphTraits<MachineDominatorTree*>
284
  : public GraphTraits<MachineDomTreeNode *> {
285
  static NodeRef getEntryNode(MachineDominatorTree *DT) {
286
    return DT->getRootNode();
287
  }
288
};
289
 
290
} // end namespace llvm
291
 
292
#endif // LLVM_CODEGEN_MACHINEDOMINATORS_H