Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Collect the sequence of machine instructions for a basic block.
10
//
11
//===----------------------------------------------------------------------===//
12
 
13
#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14
#define LLVM_CODEGEN_MACHINEBASICBLOCK_H
15
 
16
#include "llvm/ADT/GraphTraits.h"
17
#include "llvm/ADT/SparseBitVector.h"
18
#include "llvm/ADT/ilist.h"
19
#include "llvm/ADT/iterator_range.h"
20
#include "llvm/CodeGen/MachineInstr.h"
21
#include "llvm/CodeGen/MachineInstrBundleIterator.h"
22
#include "llvm/IR/DebugLoc.h"
23
#include "llvm/MC/LaneBitmask.h"
24
#include "llvm/Support/BranchProbability.h"
25
#include <cassert>
26
#include <cstdint>
27
#include <iterator>
28
#include <string>
29
#include <vector>
30
 
31
namespace llvm {
32
 
33
class BasicBlock;
34
class MachineFunction;
35
class MCSymbol;
36
class ModuleSlotTracker;
37
class Pass;
38
class Printable;
39
class SlotIndexes;
40
class StringRef;
41
class raw_ostream;
42
class LiveIntervals;
43
class TargetRegisterClass;
44
class TargetRegisterInfo;
45
 
46
// This structure uniquely identifies a basic block section.
47
// Possible values are
48
//  {Type: Default, Number: (unsigned)} (These are regular section IDs)
49
//  {Type: Exception, Number: 0}  (ExceptionSectionID)
50
//  {Type: Cold, Number: 0}  (ColdSectionID)
51
struct MBBSectionID {
52
  enum SectionType {
53
    Default = 0, // Regular section (these sections are distinguished by the
54
                 // Number field).
55
    Exception,   // Special section type for exception handling blocks
56
    Cold,        // Special section type for cold blocks
57
  } Type;
58
  unsigned Number;
59
 
60
  MBBSectionID(unsigned N) : Type(Default), Number(N) {}
61
 
62
  // Special unique sections for cold and exception blocks.
63
  const static MBBSectionID ColdSectionID;
64
  const static MBBSectionID ExceptionSectionID;
65
 
66
  bool operator==(const MBBSectionID &Other) const {
67
    return Type == Other.Type && Number == Other.Number;
68
  }
69
 
70
  bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); }
71
 
72
private:
73
  // This is only used to construct the special cold and exception sections.
74
  MBBSectionID(SectionType T) : Type(T), Number(0) {}
75
};
76
 
77
template <> struct ilist_traits<MachineInstr> {
78
private:
79
  friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
80
 
81
  MachineBasicBlock *Parent;
82
 
83
  using instr_iterator =
84
      simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
85
 
86
public:
87
  void addNodeToList(MachineInstr *N);
88
  void removeNodeFromList(MachineInstr *N);
89
  void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
90
                             instr_iterator Last);
91
  void deleteNode(MachineInstr *MI);
92
};
93
 
94
class MachineBasicBlock
95
    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
96
public:
97
  /// Pair of physical register and lane mask.
98
  /// This is not simply a std::pair typedef because the members should be named
99
  /// clearly as they both have an integer type.
100
  struct RegisterMaskPair {
101
  public:
102
    MCPhysReg PhysReg;
103
    LaneBitmask LaneMask;
104
 
105
    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
106
        : PhysReg(PhysReg), LaneMask(LaneMask) {}
107
  };
108
 
109
private:
110
  using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
111
 
112
  const BasicBlock *BB;
113
  int Number;
114
  MachineFunction *xParent;
115
  Instructions Insts;
116
 
117
  /// Keep track of the predecessor / successor basic blocks.
118
  std::vector<MachineBasicBlock *> Predecessors;
119
  std::vector<MachineBasicBlock *> Successors;
120
 
121
  /// Keep track of the probabilities to the successors. This vector has the
122
  /// same order as Successors, or it is empty if we don't use it (disable
123
  /// optimization).
124
  std::vector<BranchProbability> Probs;
125
  using probability_iterator = std::vector<BranchProbability>::iterator;
126
  using const_probability_iterator =
127
      std::vector<BranchProbability>::const_iterator;
128
 
129
  std::optional<uint64_t> IrrLoopHeaderWeight;
130
 
131
  /// Keep track of the physical registers that are livein of the basicblock.
132
  using LiveInVector = std::vector<RegisterMaskPair>;
133
  LiveInVector LiveIns;
134
 
135
  /// Alignment of the basic block. One if the basic block does not need to be
136
  /// aligned.
137
  Align Alignment;
138
  /// Maximum amount of bytes that can be added to align the basic block. If the
139
  /// alignment cannot be reached in this many bytes, no bytes are emitted.
140
  /// Zero to represent no maximum.
141
  unsigned MaxBytesForAlignment = 0;
142
 
143
  /// Indicate that this basic block is entered via an exception handler.
144
  bool IsEHPad = false;
145
 
146
  /// Indicate that this MachineBasicBlock is referenced somewhere other than
147
  /// as predecessor/successor, a terminator MachineInstr, or a jump table.
148
  bool MachineBlockAddressTaken = false;
149
 
150
  /// If this MachineBasicBlock corresponds to an IR-level "blockaddress"
151
  /// constant, this contains a pointer to that block.
152
  BasicBlock *AddressTakenIRBlock = nullptr;
153
 
154
  /// Indicate that this basic block needs its symbol be emitted regardless of
155
  /// whether the flow just falls-through to it.
156
  bool LabelMustBeEmitted = false;
157
 
158
  /// Indicate that this basic block is the entry block of an EH scope, i.e.,
159
  /// the block that used to have a catchpad or cleanuppad instruction in the
160
  /// LLVM IR.
161
  bool IsEHScopeEntry = false;
162
 
163
  /// Indicates if this is a target block of a catchret.
164
  bool IsEHCatchretTarget = false;
165
 
166
  /// Indicate that this basic block is the entry block of an EH funclet.
167
  bool IsEHFuncletEntry = false;
168
 
169
  /// Indicate that this basic block is the entry block of a cleanup funclet.
170
  bool IsCleanupFuncletEntry = false;
171
 
172
  /// Fixed unique ID assigned to this basic block upon creation. Used with
173
  /// basic block sections and basic block labels.
174
  std::optional<unsigned> BBID;
175
 
176
  /// With basic block sections, this stores the Section ID of the basic block.
177
  MBBSectionID SectionID{0};
178
 
179
  // Indicate that this basic block begins a section.
180
  bool IsBeginSection = false;
181
 
182
  // Indicate that this basic block ends a section.
183
  bool IsEndSection = false;
184
 
185
  /// Indicate that this basic block is the indirect dest of an INLINEASM_BR.
186
  bool IsInlineAsmBrIndirectTarget = false;
187
 
188
  /// since getSymbol is a relatively heavy-weight operation, the symbol
189
  /// is only computed once and is cached.
190
  mutable MCSymbol *CachedMCSymbol = nullptr;
191
 
192
  /// Cached MCSymbol for this block (used if IsEHCatchRetTarget).
193
  mutable MCSymbol *CachedEHCatchretMCSymbol = nullptr;
194
 
195
  /// Marks the end of the basic block. Used during basic block sections to
196
  /// calculate the size of the basic block, or the BB section ending with it.
197
  mutable MCSymbol *CachedEndMCSymbol = nullptr;
198
 
199
  // Intrusive list support
200
  MachineBasicBlock() = default;
201
 
202
  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
203
 
204
  ~MachineBasicBlock();
205
 
206
  // MachineBasicBlocks are allocated and owned by MachineFunction.
207
  friend class MachineFunction;
208
 
209
public:
210
  /// Return the LLVM basic block that this instance corresponded to originally.
211
  /// Note that this may be NULL if this instance does not correspond directly
212
  /// to an LLVM basic block.
213
  const BasicBlock *getBasicBlock() const { return BB; }
214
 
215
  /// Remove the reference to the underlying IR BasicBlock. This is for
216
  /// reduction tools and should generally not be used.
217
  void clearBasicBlock() {
218
    BB = nullptr;
219
  }
220
 
221
  /// Return the name of the corresponding LLVM basic block, or an empty string.
222
  StringRef getName() const;
223
 
224
  /// Return a formatted string to identify this block and its parent function.
225
  std::string getFullName() const;
226
 
227
  /// Test whether this block is used as as something other than the target
228
  /// of a terminator, exception-handling target, or jump table. This is
229
  /// either the result of an IR-level "blockaddress", or some form
230
  /// of target-specific branch lowering.
231
  bool hasAddressTaken() const {
232
    return MachineBlockAddressTaken || AddressTakenIRBlock;
233
  }
234
 
235
  /// Test whether this block is used as something other than the target of a
236
  /// terminator, exception-handling target, jump table, or IR blockaddress.
237
  /// For example, its address might be loaded into a register, or
238
  /// stored in some branch table that isn't part of MachineJumpTableInfo.
239
  bool isMachineBlockAddressTaken() const { return MachineBlockAddressTaken; }
240
 
241
  /// Test whether this block is the target of an IR BlockAddress.  (There can
242
  /// more than one MBB associated with an IR BB where the address is taken.)
243
  bool isIRBlockAddressTaken() const { return AddressTakenIRBlock; }
244
 
245
  /// Retrieves the BasicBlock which corresponds to this MachineBasicBlock.
246
  BasicBlock *getAddressTakenIRBlock() const { return AddressTakenIRBlock; }
247
 
248
  /// Set this block to indicate that its address is used as something other
249
  /// than the target of a terminator, exception-handling target, jump table,
250
  /// or IR-level "blockaddress".
251
  void setMachineBlockAddressTaken() { MachineBlockAddressTaken = true; }
252
 
253
  /// Set this block to reflect that it corresponds to an IR-level basic block
254
  /// with a BlockAddress.
255
  void setAddressTakenIRBlock(BasicBlock *BB) { AddressTakenIRBlock = BB; }
256
 
257
  /// Test whether this block must have its label emitted.
258
  bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
259
 
260
  /// Set this block to reflect that, regardless how we flow to it, we need
261
  /// its label be emitted.
262
  void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
263
 
264
  /// Return the MachineFunction containing this basic block.
265
  const MachineFunction *getParent() const { return xParent; }
266
  MachineFunction *getParent() { return xParent; }
267
 
268
  using instr_iterator = Instructions::iterator;
269
  using const_instr_iterator = Instructions::const_iterator;
270
  using reverse_instr_iterator = Instructions::reverse_iterator;
271
  using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
272
 
273
  using iterator = MachineInstrBundleIterator<MachineInstr>;
274
  using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
275
  using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
276
  using const_reverse_iterator =
277
      MachineInstrBundleIterator<const MachineInstr, true>;
278
 
279
  unsigned size() const { return (unsigned)Insts.size(); }
280
  bool sizeWithoutDebugLargerThan(unsigned Limit) const;
281
  bool empty() const { return Insts.empty(); }
282
 
283
  MachineInstr       &instr_front()       { return Insts.front(); }
284
  MachineInstr       &instr_back()        { return Insts.back();  }
285
  const MachineInstr &instr_front() const { return Insts.front(); }
286
  const MachineInstr &instr_back()  const { return Insts.back();  }
287
 
288
  MachineInstr       &front()             { return Insts.front(); }
289
  MachineInstr       &back()              { return *--end();      }
290
  const MachineInstr &front()       const { return Insts.front(); }
291
  const MachineInstr &back()        const { return *--end();      }
292
 
293
  instr_iterator                instr_begin()       { return Insts.begin();  }
294
  const_instr_iterator          instr_begin() const { return Insts.begin();  }
295
  instr_iterator                  instr_end()       { return Insts.end();    }
296
  const_instr_iterator            instr_end() const { return Insts.end();    }
297
  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
298
  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
299
  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
300
  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
301
 
302
  using instr_range = iterator_range<instr_iterator>;
303
  using const_instr_range = iterator_range<const_instr_iterator>;
304
  instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
305
  const_instr_range instrs() const {
306
    return const_instr_range(instr_begin(), instr_end());
307
  }
308
 
309
  iterator                begin()       { return instr_begin();  }
310
  const_iterator          begin() const { return instr_begin();  }
311
  iterator                end  ()       { return instr_end();    }
312
  const_iterator          end  () const { return instr_end();    }
313
  reverse_iterator rbegin() {
314
    return reverse_iterator::getAtBundleBegin(instr_rbegin());
315
  }
316
  const_reverse_iterator rbegin() const {
317
    return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
318
  }
319
  reverse_iterator rend() { return reverse_iterator(instr_rend()); }
320
  const_reverse_iterator rend() const {
321
    return const_reverse_iterator(instr_rend());
322
  }
323
 
324
  /// Support for MachineInstr::getNextNode().
325
  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
326
    return &MachineBasicBlock::Insts;
327
  }
328
 
329
  inline iterator_range<iterator> terminators() {
330
    return make_range(getFirstTerminator(), end());
331
  }
332
  inline iterator_range<const_iterator> terminators() const {
333
    return make_range(getFirstTerminator(), end());
334
  }
335
 
336
  /// Returns a range that iterates over the phis in the basic block.
337
  inline iterator_range<iterator> phis() {
338
    return make_range(begin(), getFirstNonPHI());
339
  }
340
  inline iterator_range<const_iterator> phis() const {
341
    return const_cast<MachineBasicBlock *>(this)->phis();
342
  }
343
 
344
  // Machine-CFG iterators
345
  using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
346
  using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
347
  using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
348
  using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
349
  using pred_reverse_iterator =
350
      std::vector<MachineBasicBlock *>::reverse_iterator;
351
  using const_pred_reverse_iterator =
352
      std::vector<MachineBasicBlock *>::const_reverse_iterator;
353
  using succ_reverse_iterator =
354
      std::vector<MachineBasicBlock *>::reverse_iterator;
355
  using const_succ_reverse_iterator =
356
      std::vector<MachineBasicBlock *>::const_reverse_iterator;
357
  pred_iterator        pred_begin()       { return Predecessors.begin(); }
358
  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
359
  pred_iterator        pred_end()         { return Predecessors.end();   }
360
  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
361
  pred_reverse_iterator        pred_rbegin()
362
                                          { return Predecessors.rbegin();}
363
  const_pred_reverse_iterator  pred_rbegin() const
364
                                          { return Predecessors.rbegin();}
365
  pred_reverse_iterator        pred_rend()
366
                                          { return Predecessors.rend();  }
367
  const_pred_reverse_iterator  pred_rend()   const
368
                                          { return Predecessors.rend();  }
369
  unsigned             pred_size()  const {
370
    return (unsigned)Predecessors.size();
371
  }
372
  bool                 pred_empty() const { return Predecessors.empty(); }
373
  succ_iterator        succ_begin()       { return Successors.begin();   }
374
  const_succ_iterator  succ_begin() const { return Successors.begin();   }
375
  succ_iterator        succ_end()         { return Successors.end();     }
376
  const_succ_iterator  succ_end()   const { return Successors.end();     }
377
  succ_reverse_iterator        succ_rbegin()
378
                                          { return Successors.rbegin();  }
379
  const_succ_reverse_iterator  succ_rbegin() const
380
                                          { return Successors.rbegin();  }
381
  succ_reverse_iterator        succ_rend()
382
                                          { return Successors.rend();    }
383
  const_succ_reverse_iterator  succ_rend()   const
384
                                          { return Successors.rend();    }
385
  unsigned             succ_size()  const {
386
    return (unsigned)Successors.size();
387
  }
388
  bool                 succ_empty() const { return Successors.empty();   }
389
 
390
  inline iterator_range<pred_iterator> predecessors() {
391
    return make_range(pred_begin(), pred_end());
392
  }
393
  inline iterator_range<const_pred_iterator> predecessors() const {
394
    return make_range(pred_begin(), pred_end());
395
  }
396
  inline iterator_range<succ_iterator> successors() {
397
    return make_range(succ_begin(), succ_end());
398
  }
399
  inline iterator_range<const_succ_iterator> successors() const {
400
    return make_range(succ_begin(), succ_end());
401
  }
402
 
403
  // LiveIn management methods.
404
 
405
  /// Adds the specified register as a live in. Note that it is an error to add
406
  /// the same register to the same set more than once unless the intention is
407
  /// to call sortUniqueLiveIns after all registers are added.
408
  void addLiveIn(MCRegister PhysReg,
409
                 LaneBitmask LaneMask = LaneBitmask::getAll()) {
410
    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
411
  }
412
  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
413
    LiveIns.push_back(RegMaskPair);
414
  }
415
 
416
  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
417
  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
418
  /// LiveIn insertion.
419
  void sortUniqueLiveIns();
420
 
421
  /// Clear live in list.
422
  void clearLiveIns();
423
 
424
  /// Add PhysReg as live in to this block, and ensure that there is a copy of
425
  /// PhysReg to a virtual register of class RC. Return the virtual register
426
  /// that is a copy of the live in PhysReg.
427
  Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);
428
 
429
  /// Remove the specified register from the live in set.
430
  void removeLiveIn(MCPhysReg Reg,
431
                    LaneBitmask LaneMask = LaneBitmask::getAll());
432
 
433
  /// Return true if the specified register is in the live in set.
434
  bool isLiveIn(MCPhysReg Reg,
435
                LaneBitmask LaneMask = LaneBitmask::getAll()) const;
436
 
437
  // Iteration support for live in sets.  These sets are kept in sorted
438
  // order by their register number.
439
  using livein_iterator = LiveInVector::const_iterator;
440
 
441
  /// Unlike livein_begin, this method does not check that the liveness
442
  /// information is accurate. Still for debug purposes it may be useful
443
  /// to have iterators that won't assert if the liveness information
444
  /// is not current.
445
  livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
446
  iterator_range<livein_iterator> liveins_dbg() const {
447
    return make_range(livein_begin_dbg(), livein_end());
448
  }
449
 
450
  livein_iterator livein_begin() const;
451
  livein_iterator livein_end()   const { return LiveIns.end(); }
452
  bool            livein_empty() const { return LiveIns.empty(); }
453
  iterator_range<livein_iterator> liveins() const {
454
    return make_range(livein_begin(), livein_end());
455
  }
456
 
457
  /// Remove entry from the livein set and return iterator to the next.
458
  livein_iterator removeLiveIn(livein_iterator I);
459
 
460
  class liveout_iterator {
461
  public:
462
    using iterator_category = std::input_iterator_tag;
463
    using difference_type = std::ptrdiff_t;
464
    using value_type = RegisterMaskPair;
465
    using pointer = const RegisterMaskPair *;
466
    using reference = const RegisterMaskPair &;
467
 
468
    liveout_iterator(const MachineBasicBlock &MBB, MCPhysReg ExceptionPointer,
469
                     MCPhysReg ExceptionSelector, bool End)
470
        : ExceptionPointer(ExceptionPointer),
471
          ExceptionSelector(ExceptionSelector), BlockI(MBB.succ_begin()),
472
          BlockEnd(MBB.succ_end()) {
473
      if (End)
474
        BlockI = BlockEnd;
475
      else if (BlockI != BlockEnd) {
476
        LiveRegI = (*BlockI)->livein_begin();
477
        if (!advanceToValidPosition())
478
          return;
479
        if (LiveRegI->PhysReg == ExceptionPointer ||
480
            LiveRegI->PhysReg == ExceptionSelector)
481
          ++(*this);
482
      }
483
    }
484
 
485
    liveout_iterator &operator++() {
486
      do {
487
        ++LiveRegI;
488
        if (!advanceToValidPosition())
489
          return *this;
490
      } while ((*BlockI)->isEHPad() &&
491
               (LiveRegI->PhysReg == ExceptionPointer ||
492
                LiveRegI->PhysReg == ExceptionSelector));
493
      return *this;
494
    }
495
 
496
    liveout_iterator operator++(int) {
497
      liveout_iterator Tmp = *this;
498
      ++(*this);
499
      return Tmp;
500
    }
501
 
502
    reference operator*() const {
503
      return *LiveRegI;
504
    }
505
 
506
    pointer operator->() const {
507
      return &*LiveRegI;
508
    }
509
 
510
    bool operator==(const liveout_iterator &RHS) const {
511
      if (BlockI != BlockEnd)
512
        return BlockI == RHS.BlockI && LiveRegI == RHS.LiveRegI;
513
      return RHS.BlockI == BlockEnd;
514
    }
515
 
516
    bool operator!=(const liveout_iterator &RHS) const {
517
      return !(*this == RHS);
518
    }
519
  private:
520
    bool advanceToValidPosition() {
521
      if (LiveRegI != (*BlockI)->livein_end())
522
        return true;
523
 
524
      do {
525
        ++BlockI;
526
      } while (BlockI != BlockEnd && (*BlockI)->livein_empty());
527
      if (BlockI == BlockEnd)
528
        return false;
529
 
530
      LiveRegI = (*BlockI)->livein_begin();
531
      return true;
532
    }
533
 
534
    MCPhysReg ExceptionPointer, ExceptionSelector;
535
    const_succ_iterator BlockI;
536
    const_succ_iterator BlockEnd;
537
    livein_iterator LiveRegI;
538
  };
539
 
540
  /// Iterator scanning successor basic blocks' liveins to determine the
541
  /// registers potentially live at the end of this block. There may be
542
  /// duplicates or overlapping registers in the list returned.
543
  liveout_iterator liveout_begin() const;
544
  liveout_iterator liveout_end() const {
545
    return liveout_iterator(*this, 0, 0, true);
546
  }
547
  iterator_range<liveout_iterator> liveouts() const {
548
    return make_range(liveout_begin(), liveout_end());
549
  }
550
 
551
  /// Get the clobber mask for the start of this basic block. Funclets use this
552
  /// to prevent register allocation across funclet transitions.
553
  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
554
 
555
  /// Get the clobber mask for the end of the basic block.
556
  /// \see getBeginClobberMask()
557
  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
558
 
559
  /// Return alignment of the basic block.
560
  Align getAlignment() const { return Alignment; }
561
 
562
  /// Set alignment of the basic block.
563
  void setAlignment(Align A) { Alignment = A; }
564
 
565
  void setAlignment(Align A, unsigned MaxBytes) {
566
    setAlignment(A);
567
    setMaxBytesForAlignment(MaxBytes);
568
  }
569
 
570
  /// Return the maximum amount of padding allowed for aligning the basic block.
571
  unsigned getMaxBytesForAlignment() const { return MaxBytesForAlignment; }
572
 
573
  /// Set the maximum amount of padding allowed for aligning the basic block
574
  void setMaxBytesForAlignment(unsigned MaxBytes) {
575
    MaxBytesForAlignment = MaxBytes;
576
  }
577
 
578
  /// Returns true if the block is a landing pad. That is this basic block is
579
  /// entered via an exception handler.
580
  bool isEHPad() const { return IsEHPad; }
581
 
582
  /// Indicates the block is a landing pad.  That is this basic block is entered
583
  /// via an exception handler.
584
  void setIsEHPad(bool V = true) { IsEHPad = V; }
585
 
586
  bool hasEHPadSuccessor() const;
587
 
588
  /// Returns true if this is the entry block of the function.
589
  bool isEntryBlock() const;
590
 
591
  /// Returns true if this is the entry block of an EH scope, i.e., the block
592
  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
593
  bool isEHScopeEntry() const { return IsEHScopeEntry; }
594
 
595
  /// Indicates if this is the entry block of an EH scope, i.e., the block that
596
  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
597
  void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
598
 
599
  /// Returns true if this is a target block of a catchret.
600
  bool isEHCatchretTarget() const { return IsEHCatchretTarget; }
601
 
602
  /// Indicates if this is a target block of a catchret.
603
  void setIsEHCatchretTarget(bool V = true) { IsEHCatchretTarget = V; }
604
 
605
  /// Returns true if this is the entry block of an EH funclet.
606
  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
607
 
608
  /// Indicates if this is the entry block of an EH funclet.
609
  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
610
 
611
  /// Returns true if this is the entry block of a cleanup funclet.
612
  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
613
 
614
  /// Indicates if this is the entry block of a cleanup funclet.
615
  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
616
 
617
  /// Returns true if this block begins any section.
618
  bool isBeginSection() const { return IsBeginSection; }
619
 
620
  /// Returns true if this block ends any section.
621
  bool isEndSection() const { return IsEndSection; }
622
 
623
  void setIsBeginSection(bool V = true) { IsBeginSection = V; }
624
 
625
  void setIsEndSection(bool V = true) { IsEndSection = V; }
626
 
627
  std::optional<unsigned> getBBID() const { return BBID; }
628
 
629
  /// Returns the BBID of the block when BBAddrMapVersion >= 2, otherwise
630
  /// returns `MachineBasicBlock::Number`.
631
  /// TODO: Remove this function when version 1 is deprecated and replace its
632
  /// uses with `getBBID()`.
633
  unsigned getBBIDOrNumber() const;
634
 
635
  /// Returns the section ID of this basic block.
636
  MBBSectionID getSectionID() const { return SectionID; }
637
 
638
  /// Returns the unique section ID number of this basic block.
639
  unsigned getSectionIDNum() const {
640
    return ((unsigned)MBBSectionID::SectionType::Cold) -
641
           ((unsigned)SectionID.Type) + SectionID.Number;
642
  }
643
 
644
  /// Sets the fixed BBID of this basic block.
645
  void setBBID(unsigned V) {
646
    assert(!BBID.has_value() && "Cannot change BBID.");
647
    BBID = V;
648
  }
649
 
650
  /// Sets the section ID for this basic block.
651
  void setSectionID(MBBSectionID V) { SectionID = V; }
652
 
653
  /// Returns the MCSymbol marking the end of this basic block.
654
  MCSymbol *getEndSymbol() const;
655
 
656
  /// Returns true if this block may have an INLINEASM_BR (overestimate, by
657
  /// checking if any of the successors are indirect targets of any inlineasm_br
658
  /// in the function).
659
  bool mayHaveInlineAsmBr() const;
660
 
661
  /// Returns true if this is the indirect dest of an INLINEASM_BR.
662
  bool isInlineAsmBrIndirectTarget() const {
663
    return IsInlineAsmBrIndirectTarget;
664
  }
665
 
666
  /// Indicates if this is the indirect dest of an INLINEASM_BR.
667
  void setIsInlineAsmBrIndirectTarget(bool V = true) {
668
    IsInlineAsmBrIndirectTarget = V;
669
  }
670
 
671
  /// Returns true if it is legal to hoist instructions into this block.
672
  bool isLegalToHoistInto() const;
673
 
674
  // Code Layout methods.
675
 
676
  /// Move 'this' block before or after the specified block.  This only moves
677
  /// the block, it does not modify the CFG or adjust potential fall-throughs at
678
  /// the end of the block.
679
  void moveBefore(MachineBasicBlock *NewAfter);
680
  void moveAfter(MachineBasicBlock *NewBefore);
681
 
682
  /// Returns true if this and MBB belong to the same section.
683
  bool sameSection(const MachineBasicBlock *MBB) const {
684
    return getSectionID() == MBB->getSectionID();
685
  }
686
 
687
  /// Update the terminator instructions in block to account for changes to
688
  /// block layout which may have been made. PreviousLayoutSuccessor should be
689
  /// set to the block which may have been used as fallthrough before the block
690
  /// layout was modified.  If the block previously fell through to that block,
691
  /// it may now need a branch. If it previously branched to another block, it
692
  /// may now be able to fallthrough to the current layout successor.
693
  void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor);
694
 
695
  // Machine-CFG mutators
696
 
697
  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
698
  /// of Succ is automatically updated. PROB parameter is stored in
699
  /// Probabilities list. The default probability is set as unknown. Mixing
700
  /// known and unknown probabilities in successor list is not allowed. When all
701
  /// successors have unknown probabilities, 1 / N is returned as the
702
  /// probability for each successor, where N is the number of successors.
703
  ///
704
  /// Note that duplicate Machine CFG edges are not allowed.
705
  void addSuccessor(MachineBasicBlock *Succ,
706
                    BranchProbability Prob = BranchProbability::getUnknown());
707
 
708
  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
709
  /// of Succ is automatically updated. The probability is not provided because
710
  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
711
  /// won't be used. Using this interface can save some space.
712
  void addSuccessorWithoutProb(MachineBasicBlock *Succ);
713
 
714
  /// Set successor probability of a given iterator.
715
  void setSuccProbability(succ_iterator I, BranchProbability Prob);
716
 
717
  /// Normalize probabilities of all successors so that the sum of them becomes
718
  /// one. This is usually done when the current update on this MBB is done, and
719
  /// the sum of its successors' probabilities is not guaranteed to be one. The
720
  /// user is responsible for the correct use of this function.
721
  /// MBB::removeSuccessor() has an option to do this automatically.
722
  void normalizeSuccProbs() {
723
    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
724
  }
725
 
726
  /// Validate successors' probabilities and check if the sum of them is
727
  /// approximate one. This only works in DEBUG mode.
728
  void validateSuccProbs() const;
729
 
730
  /// Remove successor from the successors list of this MachineBasicBlock. The
731
  /// Predecessors list of Succ is automatically updated.
732
  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
733
  /// after the successor is removed.
734
  void removeSuccessor(MachineBasicBlock *Succ,
735
                       bool NormalizeSuccProbs = false);
736
 
737
  /// Remove specified successor from the successors list of this
738
  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
739
  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
740
  /// after the successor is removed.
741
  /// Return the iterator to the element after the one removed.
742
  succ_iterator removeSuccessor(succ_iterator I,
743
                                bool NormalizeSuccProbs = false);
744
 
745
  /// Replace successor OLD with NEW and update probability info.
746
  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
747
 
748
  /// Copy a successor (and any probability info) from original block to this
749
  /// block's. Uses an iterator into the original blocks successors.
750
  ///
751
  /// This is useful when doing a partial clone of successors. Afterward, the
752
  /// probabilities may need to be normalized.
753
  void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
754
 
755
  /// Split the old successor into old plus new and updates the probability
756
  /// info.
757
  void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
758
                      bool NormalizeSuccProbs = false);
759
 
760
  /// Transfers all the successors from MBB to this machine basic block (i.e.,
761
  /// copies all the successors FromMBB and remove all the successors from
762
  /// FromMBB).
763
  void transferSuccessors(MachineBasicBlock *FromMBB);
764
 
765
  /// Transfers all the successors, as in transferSuccessors, and update PHI
766
  /// operands in the successor blocks which refer to FromMBB to refer to this.
767
  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
768
 
769
  /// Return true if any of the successors have probabilities attached to them.
770
  bool hasSuccessorProbabilities() const { return !Probs.empty(); }
771
 
772
  /// Return true if the specified MBB is a predecessor of this block.
773
  bool isPredecessor(const MachineBasicBlock *MBB) const;
774
 
775
  /// Return true if the specified MBB is a successor of this block.
776
  bool isSuccessor(const MachineBasicBlock *MBB) const;
777
 
778
  /// Return true if the specified MBB will be emitted immediately after this
779
  /// block, such that if this block exits by falling through, control will
780
  /// transfer to the specified MBB. Note that MBB need not be a successor at
781
  /// all, for example if this block ends with an unconditional branch to some
782
  /// other block.
783
  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
784
 
785
  /// Return the successor of this block if it has a single successor.
786
  /// Otherwise return a null pointer.
787
  ///
788
  const MachineBasicBlock *getSingleSuccessor() const;
789
  MachineBasicBlock *getSingleSuccessor() {
790
    return const_cast<MachineBasicBlock *>(
791
        static_cast<const MachineBasicBlock *>(this)->getSingleSuccessor());
792
  }
793
 
794
  /// Return the fallthrough block if the block can implicitly
795
  /// transfer control to the block after it by falling off the end of
796
  /// it. If an explicit branch to the fallthrough block is not allowed,
797
  /// set JumpToFallThrough to be false. Non-null return is a conservative
798
  /// answer.
799
  MachineBasicBlock *getFallThrough(bool JumpToFallThrough = false);
800
 
801
  /// Return the fallthrough block if the block can implicitly
802
  /// transfer control to it's successor, whether by a branch or
803
  /// a fallthrough. Non-null return is a conservative answer.
804
  MachineBasicBlock *getLogicalFallThrough() { return getFallThrough(true); }
805
 
806
  /// Return true if the block can implicitly transfer control to the
807
  /// block after it by falling off the end of it.  This should return
808
  /// false if it can reach the block after it, but it uses an
809
  /// explicit branch to do so (e.g., a table jump).  True is a
810
  /// conservative answer.
811
  bool canFallThrough();
812
 
813
  /// Returns a pointer to the first instruction in this block that is not a
814
  /// PHINode instruction. When adding instructions to the beginning of the
815
  /// basic block, they should be added before the returned value, not before
816
  /// the first instruction, which might be PHI.
817
  /// Returns end() is there's no non-PHI instruction.
818
  iterator getFirstNonPHI();
819
 
820
  /// Return the first instruction in MBB after I that is not a PHI or a label.
821
  /// This is the correct point to insert lowered copies at the beginning of a
822
  /// basic block that must be before any debugging information.
823
  iterator SkipPHIsAndLabels(iterator I);
824
 
825
  /// Return the first instruction in MBB after I that is not a PHI, label or
826
  /// debug.  This is the correct point to insert copies at the beginning of a
827
  /// basic block.
828
  iterator SkipPHIsLabelsAndDebug(iterator I, bool SkipPseudoOp = true);
829
 
830
  /// Returns an iterator to the first terminator instruction of this basic
831
  /// block. If a terminator does not exist, it returns end().
832
  iterator getFirstTerminator();
833
  const_iterator getFirstTerminator() const {
834
    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
835
  }
836
 
837
  /// Same getFirstTerminator but it ignores bundles and return an
838
  /// instr_iterator instead.
839
  instr_iterator getFirstInstrTerminator();
840
 
841
  /// Finds the first terminator in a block by scanning forward. This can handle
842
  /// cases in GlobalISel where there may be non-terminator instructions between
843
  /// terminators, for which getFirstTerminator() will not work correctly.
844
  iterator getFirstTerminatorForward();
845
 
846
  /// Returns an iterator to the first non-debug instruction in the basic block,
847
  /// or end(). Skip any pseudo probe operation if \c SkipPseudoOp is true.
848
  /// Pseudo probes are like debug instructions which do not turn into real
849
  /// machine code. We try to use the function to skip both debug instructions
850
  /// and pseudo probe operations to avoid API proliferation. This should work
851
  /// most of the time when considering optimizing the rest of code in the
852
  /// block, except for certain cases where pseudo probes are designed to block
853
  /// the optimizations. For example, code merge like optimizations are supposed
854
  /// to be blocked by pseudo probes for better AutoFDO profile quality.
855
  /// Therefore, they should be considered as a valid instruction when this
856
  /// function is called in a context of such optimizations. On the other hand,
857
  /// \c SkipPseudoOp should be true when it's used in optimizations that
858
  /// unlikely hurt profile quality, e.g., without block merging. The default
859
  /// value of \c SkipPseudoOp is set to true to maximize code quality in
860
  /// general, with an explict false value passed in in a few places like branch
861
  /// folding and if-conversion to favor profile quality.
862
  iterator getFirstNonDebugInstr(bool SkipPseudoOp = true);
863
  const_iterator getFirstNonDebugInstr(bool SkipPseudoOp = true) const {
864
    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr(
865
        SkipPseudoOp);
866
  }
867
 
868
  /// Returns an iterator to the last non-debug instruction in the basic block,
869
  /// or end(). Skip any pseudo operation if \c SkipPseudoOp is true.
870
  /// Pseudo probes are like debug instructions which do not turn into real
871
  /// machine code. We try to use the function to skip both debug instructions
872
  /// and pseudo probe operations to avoid API proliferation. This should work
873
  /// most of the time when considering optimizing the rest of code in the
874
  /// block, except for certain cases where pseudo probes are designed to block
875
  /// the optimizations. For example, code merge like optimizations are supposed
876
  /// to be blocked by pseudo probes for better AutoFDO profile quality.
877
  /// Therefore, they should be considered as a valid instruction when this
878
  /// function is called in a context of such optimizations. On the other hand,
879
  /// \c SkipPseudoOp should be true when it's used in optimizations that
880
  /// unlikely hurt profile quality, e.g., without block merging. The default
881
  /// value of \c SkipPseudoOp is set to true to maximize code quality in
882
  /// general, with an explict false value passed in in a few places like branch
883
  /// folding and if-conversion to favor profile quality.
884
  iterator getLastNonDebugInstr(bool SkipPseudoOp = true);
885
  const_iterator getLastNonDebugInstr(bool SkipPseudoOp = true) const {
886
    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr(
887
        SkipPseudoOp);
888
  }
889
 
890
  /// Convenience function that returns true if the block ends in a return
891
  /// instruction.
892
  bool isReturnBlock() const {
893
    return !empty() && back().isReturn();
894
  }
895
 
896
  /// Convenience function that returns true if the bock ends in a EH scope
897
  /// return instruction.
898
  bool isEHScopeReturnBlock() const {
899
    return !empty() && back().isEHScopeReturn();
900
  }
901
 
902
  /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be
903
  /// inserted after this block, and all instructions after \p SplitInst moved
904
  /// to it (\p SplitInst will be in the original block). If \p LIS is provided,
905
  /// LiveIntervals will be appropriately updated. \return the newly inserted
906
  /// block.
907
  ///
908
  /// If \p UpdateLiveIns is true, this will ensure the live ins list is
909
  /// accurate, including for physreg uses/defs in the original block.
910
  MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true,
911
                             LiveIntervals *LIS = nullptr);
912
 
913
  /// Split the critical edge from this block to the given successor block, and
914
  /// return the newly created block, or null if splitting is not possible.
915
  ///
916
  /// This function updates LiveVariables, MachineDominatorTree, and
917
  /// MachineLoopInfo, as applicable.
918
  MachineBasicBlock *
919
  SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P,
920
                    std::vector<SparseBitVector<>> *LiveInSets = nullptr);
921
 
922
  /// Check if the edge between this block and the given successor \p
923
  /// Succ, can be split. If this returns true a subsequent call to
924
  /// SplitCriticalEdge is guaranteed to return a valid basic block if
925
  /// no changes occurred in the meantime.
926
  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
927
 
928
  void pop_front() { Insts.pop_front(); }
929
  void pop_back() { Insts.pop_back(); }
930
  void push_back(MachineInstr *MI) { Insts.push_back(MI); }
931
 
932
  /// Insert MI into the instruction list before I, possibly inside a bundle.
933
  ///
934
  /// If the insertion point is inside a bundle, MI will be added to the bundle,
935
  /// otherwise MI will not be added to any bundle. That means this function
936
  /// alone can't be used to prepend or append instructions to bundles. See
937
  /// MIBundleBuilder::insert() for a more reliable way of doing that.
938
  instr_iterator insert(instr_iterator I, MachineInstr *M);
939
 
940
  /// Insert a range of instructions into the instruction list before I.
941
  template<typename IT>
942
  void insert(iterator I, IT S, IT E) {
943
    assert((I == end() || I->getParent() == this) &&
944
           "iterator points outside of basic block");
945
    Insts.insert(I.getInstrIterator(), S, E);
946
  }
947
 
948
  /// Insert MI into the instruction list before I.
949
  iterator insert(iterator I, MachineInstr *MI) {
950
    assert((I == end() || I->getParent() == this) &&
951
           "iterator points outside of basic block");
952
    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
953
           "Cannot insert instruction with bundle flags");
954
    return Insts.insert(I.getInstrIterator(), MI);
955
  }
956
 
957
  /// Insert MI into the instruction list after I.
958
  iterator insertAfter(iterator I, MachineInstr *MI) {
959
    assert((I == end() || I->getParent() == this) &&
960
           "iterator points outside of basic block");
961
    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
962
           "Cannot insert instruction with bundle flags");
963
    return Insts.insertAfter(I.getInstrIterator(), MI);
964
  }
965
 
966
  /// If I is bundled then insert MI into the instruction list after the end of
967
  /// the bundle, otherwise insert MI immediately after I.
968
  instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
969
    assert((I == instr_end() || I->getParent() == this) &&
970
           "iterator points outside of basic block");
971
    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
972
           "Cannot insert instruction with bundle flags");
973
    while (I->isBundledWithSucc())
974
      ++I;
975
    return Insts.insertAfter(I, MI);
976
  }
977
 
978
  /// Remove an instruction from the instruction list and delete it.
979
  ///
980
  /// If the instruction is part of a bundle, the other instructions in the
981
  /// bundle will still be bundled after removing the single instruction.
982
  instr_iterator erase(instr_iterator I);
983
 
984
  /// Remove an instruction from the instruction list and delete it.
985
  ///
986
  /// If the instruction is part of a bundle, the other instructions in the
987
  /// bundle will still be bundled after removing the single instruction.
988
  instr_iterator erase_instr(MachineInstr *I) {
989
    return erase(instr_iterator(I));
990
  }
991
 
992
  /// Remove a range of instructions from the instruction list and delete them.
993
  iterator erase(iterator I, iterator E) {
994
    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
995
  }
996
 
997
  /// Remove an instruction or bundle from the instruction list and delete it.
998
  ///
999
  /// If I points to a bundle of instructions, they are all erased.
1000
  iterator erase(iterator I) {
1001
    return erase(I, std::next(I));
1002
  }
1003
 
1004
  /// Remove an instruction from the instruction list and delete it.
1005
  ///
1006
  /// If I is the head of a bundle of instructions, the whole bundle will be
1007
  /// erased.
1008
  iterator erase(MachineInstr *I) {
1009
    return erase(iterator(I));
1010
  }
1011
 
1012
  /// Remove the unbundled instruction from the instruction list without
1013
  /// deleting it.
1014
  ///
1015
  /// This function can not be used to remove bundled instructions, use
1016
  /// remove_instr to remove individual instructions from a bundle.
1017
  MachineInstr *remove(MachineInstr *I) {
1018
    assert(!I->isBundled() && "Cannot remove bundled instructions");
1019
    return Insts.remove(instr_iterator(I));
1020
  }
1021
 
1022
  /// Remove the possibly bundled instruction from the instruction list
1023
  /// without deleting it.
1024
  ///
1025
  /// If the instruction is part of a bundle, the other instructions in the
1026
  /// bundle will still be bundled after removing the single instruction.
1027
  MachineInstr *remove_instr(MachineInstr *I);
1028
 
1029
  void clear() {
1030
    Insts.clear();
1031
  }
1032
 
1033
  /// Take an instruction from MBB 'Other' at the position From, and insert it
1034
  /// into this MBB right before 'Where'.
1035
  ///
1036
  /// If From points to a bundle of instructions, the whole bundle is moved.
1037
  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
1038
    // The range splice() doesn't allow noop moves, but this one does.
1039
    if (Where != From)
1040
      splice(Where, Other, From, std::next(From));
1041
  }
1042
 
1043
  /// Take a block of instructions from MBB 'Other' in the range [From, To),
1044
  /// and insert them into this MBB right before 'Where'.
1045
  ///
1046
  /// The instruction at 'Where' must not be included in the range of
1047
  /// instructions to move.
1048
  void splice(iterator Where, MachineBasicBlock *Other,
1049
              iterator From, iterator To) {
1050
    Insts.splice(Where.getInstrIterator(), Other->Insts,
1051
                 From.getInstrIterator(), To.getInstrIterator());
1052
  }
1053
 
1054
  /// This method unlinks 'this' from the containing function, and returns it,
1055
  /// but does not delete it.
1056
  MachineBasicBlock *removeFromParent();
1057
 
1058
  /// This method unlinks 'this' from the containing function and deletes it.
1059
  void eraseFromParent();
1060
 
1061
  /// Given a machine basic block that branched to 'Old', change the code and
1062
  /// CFG so that it branches to 'New' instead.
1063
  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
1064
 
1065
  /// Update all phi nodes in this basic block to refer to basic block \p New
1066
  /// instead of basic block \p Old.
1067
  void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);
1068
 
1069
  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1070
  /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
1071
  DebugLoc findDebugLoc(instr_iterator MBBI);
1072
  DebugLoc findDebugLoc(iterator MBBI) {
1073
    return findDebugLoc(MBBI.getInstrIterator());
1074
  }
1075
 
1076
  /// Has exact same behavior as @ref findDebugLoc (it also
1077
  /// searches from the first to the last MI of this MBB) except
1078
  /// that this takes reverse iterator.
1079
  DebugLoc rfindDebugLoc(reverse_instr_iterator MBBI);
1080
  DebugLoc rfindDebugLoc(reverse_iterator MBBI) {
1081
    return rfindDebugLoc(MBBI.getInstrIterator());
1082
  }
1083
 
1084
  /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1085
  /// instructions.  Return UnknownLoc if there is none.
1086
  DebugLoc findPrevDebugLoc(instr_iterator MBBI);
1087
  DebugLoc findPrevDebugLoc(iterator MBBI) {
1088
    return findPrevDebugLoc(MBBI.getInstrIterator());
1089
  }
1090
 
1091
  /// Has exact same behavior as @ref findPrevDebugLoc (it also
1092
  /// searches from the last to the first MI of this MBB) except
1093
  /// that this takes reverse iterator.
1094
  DebugLoc rfindPrevDebugLoc(reverse_instr_iterator MBBI);
1095
  DebugLoc rfindPrevDebugLoc(reverse_iterator MBBI) {
1096
    return rfindPrevDebugLoc(MBBI.getInstrIterator());
1097
  }
1098
 
1099
  /// Find and return the merged DebugLoc of the branch instructions of the
1100
  /// block. Return UnknownLoc if there is none.
1101
  DebugLoc findBranchDebugLoc();
1102
 
1103
  /// Possible outcome of a register liveness query to computeRegisterLiveness()
1104
  enum LivenessQueryResult {
1105
    LQR_Live,   ///< Register is known to be (at least partially) live.
1106
    LQR_Dead,   ///< Register is known to be fully dead.
1107
    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
1108
  };
1109
 
1110
  /// Return whether (physical) register \p Reg has been defined and not
1111
  /// killed as of just before \p Before.
1112
  ///
1113
  /// Search is localised to a neighborhood of \p Neighborhood instructions
1114
  /// before (searching for defs or kills) and \p Neighborhood instructions
1115
  /// after (searching just for defs) \p Before.
1116
  ///
1117
  /// \p Reg must be a physical register.
1118
  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
1119
                                              MCRegister Reg,
1120
                                              const_iterator Before,
1121
                                              unsigned Neighborhood = 10) const;
1122
 
1123
  // Debugging methods.
1124
  void dump() const;
1125
  void print(raw_ostream &OS, const SlotIndexes * = nullptr,
1126
             bool IsStandalone = true) const;
1127
  void print(raw_ostream &OS, ModuleSlotTracker &MST,
1128
             const SlotIndexes * = nullptr, bool IsStandalone = true) const;
1129
 
1130
  enum PrintNameFlag {
1131
    PrintNameIr = (1 << 0), ///< Add IR name where available
1132
    PrintNameAttributes = (1 << 1), ///< Print attributes
1133
  };
1134
 
1135
  void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr,
1136
                 ModuleSlotTracker *moduleSlotTracker = nullptr) const;
1137
 
1138
  // Printing method used by LoopInfo.
1139
  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
1140
 
1141
  /// MachineBasicBlocks are uniquely numbered at the function level, unless
1142
  /// they're not in a MachineFunction yet, in which case this will return -1.
1143
  int getNumber() const { return Number; }
1144
  void setNumber(int N) { Number = N; }
1145
 
1146
  /// Return the MCSymbol for this basic block.
1147
  MCSymbol *getSymbol() const;
1148
 
1149
  /// Return the EHCatchret Symbol for this basic block.
1150
  MCSymbol *getEHCatchretSymbol() const;
1151
 
1152
  std::optional<uint64_t> getIrrLoopHeaderWeight() const {
1153
    return IrrLoopHeaderWeight;
1154
  }
1155
 
1156
  void setIrrLoopHeaderWeight(uint64_t Weight) {
1157
    IrrLoopHeaderWeight = Weight;
1158
  }
1159
 
1160
  /// Return probability of the edge from this block to MBB. This method should
1161
  /// NOT be called directly, but by using getEdgeProbability method from
1162
  /// MachineBranchProbabilityInfo class.
1163
  BranchProbability getSuccProbability(const_succ_iterator Succ) const;
1164
 
1165
private:
1166
  /// Return probability iterator corresponding to the I successor iterator.
1167
  probability_iterator getProbabilityIterator(succ_iterator I);
1168
  const_probability_iterator
1169
  getProbabilityIterator(const_succ_iterator I) const;
1170
 
1171
  friend class MachineBranchProbabilityInfo;
1172
  friend class MIPrinter;
1173
 
1174
  // Methods used to maintain doubly linked list of blocks...
1175
  friend struct ilist_callback_traits<MachineBasicBlock>;
1176
 
1177
  // Machine-CFG mutators
1178
 
1179
  /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
1180
  /// unless you know what you're doing, because it doesn't update Pred's
1181
  /// successors list. Use Pred->addSuccessor instead.
1182
  void addPredecessor(MachineBasicBlock *Pred);
1183
 
1184
  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
1185
  /// unless you know what you're doing, because it doesn't update Pred's
1186
  /// successors list. Use Pred->removeSuccessor instead.
1187
  void removePredecessor(MachineBasicBlock *Pred);
1188
};
1189
 
1190
raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
1191
 
1192
/// Prints a machine basic block reference.
1193
///
1194
/// The format is:
1195
///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
1196
///
1197
/// Usage: OS << printMBBReference(MBB) << '\n';
1198
Printable printMBBReference(const MachineBasicBlock &MBB);
1199
 
1200
// This is useful when building IndexedMaps keyed on basic block pointers.
1201
struct MBB2NumberFunctor {
1202
  using argument_type = const MachineBasicBlock *;
1203
  unsigned operator()(const MachineBasicBlock *MBB) const {
1204
    return MBB->getNumber();
1205
  }
1206
};
1207
 
1208
//===--------------------------------------------------------------------===//
1209
// GraphTraits specializations for machine basic block graphs (machine-CFGs)
1210
//===--------------------------------------------------------------------===//
1211
 
1212
// Provide specializations of GraphTraits to be able to treat a
1213
// MachineFunction as a graph of MachineBasicBlocks.
1214
//
1215
 
1216
template <> struct GraphTraits<MachineBasicBlock *> {
1217
  using NodeRef = MachineBasicBlock *;
1218
  using ChildIteratorType = MachineBasicBlock::succ_iterator;
1219
 
1220
  static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
1221
  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1222
  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1223
};
1224
 
1225
template <> struct GraphTraits<const MachineBasicBlock *> {
1226
  using NodeRef = const MachineBasicBlock *;
1227
  using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
1228
 
1229
  static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
1230
  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1231
  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1232
};
1233
 
1234
// Provide specializations of GraphTraits to be able to treat a
1235
// MachineFunction as a graph of MachineBasicBlocks and to walk it
1236
// in inverse order.  Inverse order for a function is considered
1237
// to be when traversing the predecessor edges of a MBB
1238
// instead of the successor edges.
1239
//
1240
template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
1241
  using NodeRef = MachineBasicBlock *;
1242
  using ChildIteratorType = MachineBasicBlock::pred_iterator;
1243
 
1244
  static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
1245
    return G.Graph;
1246
  }
1247
 
1248
  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1249
  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1250
};
1251
 
1252
template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
1253
  using NodeRef = const MachineBasicBlock *;
1254
  using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
1255
 
1256
  static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
1257
    return G.Graph;
1258
  }
1259
 
1260
  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1261
  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1262
};
1263
 
1264
/// MachineInstrSpan provides an interface to get an iteration range
1265
/// containing the instruction it was initialized with, along with all
1266
/// those instructions inserted prior to or following that instruction
1267
/// at some point after the MachineInstrSpan is constructed.
1268
class MachineInstrSpan {
1269
  MachineBasicBlock &MBB;
1270
  MachineBasicBlock::iterator I, B, E;
1271
 
1272
public:
1273
  MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
1274
      : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
1275
        E(std::next(I)) {
1276
    assert(I == BB->end() || I->getParent() == BB);
1277
  }
1278
 
1279
  MachineBasicBlock::iterator begin() {
1280
    return B == MBB.end() ? MBB.begin() : std::next(B);
1281
  }
1282
  MachineBasicBlock::iterator end() { return E; }
1283
  bool empty() { return begin() == end(); }
1284
 
1285
  MachineBasicBlock::iterator getInitial() { return I; }
1286
};
1287
 
1288
/// Increment \p It until it points to a non-debug instruction or to \p End
1289
/// and return the resulting iterator. This function should only be used
1290
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1291
/// const_instr_iterator} and the respective reverse iterators.
1292
template <typename IterT>
1293
inline IterT skipDebugInstructionsForward(IterT It, IterT End,
1294
                                          bool SkipPseudoOp = true) {
1295
  while (It != End &&
1296
         (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
1297
    ++It;
1298
  return It;
1299
}
1300
 
1301
/// Decrement \p It until it points to a non-debug instruction or to \p Begin
1302
/// and return the resulting iterator. This function should only be used
1303
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
1304
/// const_instr_iterator} and the respective reverse iterators.
1305
template <class IterT>
1306
inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin,
1307
                                           bool SkipPseudoOp = true) {
1308
  while (It != Begin &&
1309
         (It->isDebugInstr() || (SkipPseudoOp && It->isPseudoProbe())))
1310
    --It;
1311
  return It;
1312
}
1313
 
1314
/// Increment \p It, then continue incrementing it while it points to a debug
1315
/// instruction. A replacement for std::next.
1316
template <typename IterT>
1317
inline IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp = true) {
1318
  return skipDebugInstructionsForward(std::next(It), End, SkipPseudoOp);
1319
}
1320
 
1321
/// Decrement \p It, then continue decrementing it while it points to a debug
1322
/// instruction. A replacement for std::prev.
1323
template <typename IterT>
1324
inline IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp = true) {
1325
  return skipDebugInstructionsBackward(std::prev(It), Begin, SkipPseudoOp);
1326
}
1327
 
1328
/// Construct a range iterator which begins at \p It and moves forwards until
1329
/// \p End is reached, skipping any debug instructions.
1330
template <typename IterT>
1331
inline auto instructionsWithoutDebug(IterT It, IterT End,
1332
                                     bool SkipPseudoOp = true) {
1333
  return make_filter_range(make_range(It, End), [=](const MachineInstr &MI) {
1334
    return !MI.isDebugInstr() && !(SkipPseudoOp && MI.isPseudoProbe());
1335
  });
1336
}
1337
 
1338
} // end namespace llvm
1339
 
1340
#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H