Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //==-- llvm/CodeGen/GlobalISel/Utils.h ---------------------------*- C++ -*-==// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | /// \file This file declares the API of helper functions used throughout the |
||
10 | /// GlobalISel pipeline. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_CODEGEN_GLOBALISEL_UTILS_H |
||
15 | #define LLVM_CODEGEN_GLOBALISEL_UTILS_H |
||
16 | |||
17 | #include "GISelWorkList.h" |
||
18 | #include "llvm/ADT/APFloat.h" |
||
19 | #include "llvm/ADT/StringRef.h" |
||
20 | #include "llvm/CodeGen/Register.h" |
||
21 | #include "llvm/IR/DebugLoc.h" |
||
22 | #include "llvm/Support/Alignment.h" |
||
23 | #include "llvm/Support/Casting.h" |
||
24 | #include "llvm/Support/LowLevelTypeImpl.h" |
||
25 | #include <cstdint> |
||
26 | |||
27 | namespace llvm { |
||
28 | |||
29 | class AnalysisUsage; |
||
30 | class LostDebugLocObserver; |
||
31 | class MachineBasicBlock; |
||
32 | class BlockFrequencyInfo; |
||
33 | class GISelKnownBits; |
||
34 | class MachineFunction; |
||
35 | class MachineInstr; |
||
36 | class MachineOperand; |
||
37 | class MachineOptimizationRemarkEmitter; |
||
38 | class MachineOptimizationRemarkMissed; |
||
39 | struct MachinePointerInfo; |
||
40 | class MachineRegisterInfo; |
||
41 | class MCInstrDesc; |
||
42 | class ProfileSummaryInfo; |
||
43 | class RegisterBankInfo; |
||
44 | class TargetInstrInfo; |
||
45 | class TargetLowering; |
||
46 | class TargetPassConfig; |
||
47 | class TargetRegisterInfo; |
||
48 | class TargetRegisterClass; |
||
49 | class ConstantFP; |
||
50 | class APFloat; |
||
51 | |||
52 | // Convenience macros for dealing with vector reduction opcodes. |
||
53 | #define GISEL_VECREDUCE_CASES_ALL \ |
||
54 | case TargetOpcode::G_VECREDUCE_SEQ_FADD: \ |
||
55 | case TargetOpcode::G_VECREDUCE_SEQ_FMUL: \ |
||
56 | case TargetOpcode::G_VECREDUCE_FADD: \ |
||
57 | case TargetOpcode::G_VECREDUCE_FMUL: \ |
||
58 | case TargetOpcode::G_VECREDUCE_FMAX: \ |
||
59 | case TargetOpcode::G_VECREDUCE_FMIN: \ |
||
60 | case TargetOpcode::G_VECREDUCE_ADD: \ |
||
61 | case TargetOpcode::G_VECREDUCE_MUL: \ |
||
62 | case TargetOpcode::G_VECREDUCE_AND: \ |
||
63 | case TargetOpcode::G_VECREDUCE_OR: \ |
||
64 | case TargetOpcode::G_VECREDUCE_XOR: \ |
||
65 | case TargetOpcode::G_VECREDUCE_SMAX: \ |
||
66 | case TargetOpcode::G_VECREDUCE_SMIN: \ |
||
67 | case TargetOpcode::G_VECREDUCE_UMAX: \ |
||
68 | case TargetOpcode::G_VECREDUCE_UMIN: |
||
69 | |||
70 | #define GISEL_VECREDUCE_CASES_NONSEQ \ |
||
71 | case TargetOpcode::G_VECREDUCE_FADD: \ |
||
72 | case TargetOpcode::G_VECREDUCE_FMUL: \ |
||
73 | case TargetOpcode::G_VECREDUCE_FMAX: \ |
||
74 | case TargetOpcode::G_VECREDUCE_FMIN: \ |
||
75 | case TargetOpcode::G_VECREDUCE_ADD: \ |
||
76 | case TargetOpcode::G_VECREDUCE_MUL: \ |
||
77 | case TargetOpcode::G_VECREDUCE_AND: \ |
||
78 | case TargetOpcode::G_VECREDUCE_OR: \ |
||
79 | case TargetOpcode::G_VECREDUCE_XOR: \ |
||
80 | case TargetOpcode::G_VECREDUCE_SMAX: \ |
||
81 | case TargetOpcode::G_VECREDUCE_SMIN: \ |
||
82 | case TargetOpcode::G_VECREDUCE_UMAX: \ |
||
83 | case TargetOpcode::G_VECREDUCE_UMIN: |
||
84 | |||
85 | /// Try to constrain Reg to the specified register class. If this fails, |
||
86 | /// create a new virtual register in the correct class. |
||
87 | /// |
||
88 | /// \return The virtual register constrained to the right register class. |
||
89 | Register constrainRegToClass(MachineRegisterInfo &MRI, |
||
90 | const TargetInstrInfo &TII, |
||
91 | const RegisterBankInfo &RBI, Register Reg, |
||
92 | const TargetRegisterClass &RegClass); |
||
93 | |||
94 | /// Constrain the Register operand OpIdx, so that it is now constrained to the |
||
95 | /// TargetRegisterClass passed as an argument (RegClass). |
||
96 | /// If this fails, create a new virtual register in the correct class and insert |
||
97 | /// a COPY before \p InsertPt if it is a use or after if it is a definition. |
||
98 | /// In both cases, the function also updates the register of RegMo. The debug |
||
99 | /// location of \p InsertPt is used for the new copy. |
||
100 | /// |
||
101 | /// \return The virtual register constrained to the right register class. |
||
102 | Register constrainOperandRegClass(const MachineFunction &MF, |
||
103 | const TargetRegisterInfo &TRI, |
||
104 | MachineRegisterInfo &MRI, |
||
105 | const TargetInstrInfo &TII, |
||
106 | const RegisterBankInfo &RBI, |
||
107 | MachineInstr &InsertPt, |
||
108 | const TargetRegisterClass &RegClass, |
||
109 | MachineOperand &RegMO); |
||
110 | |||
111 | /// Try to constrain Reg so that it is usable by argument OpIdx of the provided |
||
112 | /// MCInstrDesc \p II. If this fails, create a new virtual register in the |
||
113 | /// correct class and insert a COPY before \p InsertPt if it is a use or after |
||
114 | /// if it is a definition. In both cases, the function also updates the register |
||
115 | /// of RegMo. |
||
116 | /// This is equivalent to constrainOperandRegClass(..., RegClass, ...) |
||
117 | /// with RegClass obtained from the MCInstrDesc. The debug location of \p |
||
118 | /// InsertPt is used for the new copy. |
||
119 | /// |
||
120 | /// \return The virtual register constrained to the right register class. |
||
121 | Register constrainOperandRegClass(const MachineFunction &MF, |
||
122 | const TargetRegisterInfo &TRI, |
||
123 | MachineRegisterInfo &MRI, |
||
124 | const TargetInstrInfo &TII, |
||
125 | const RegisterBankInfo &RBI, |
||
126 | MachineInstr &InsertPt, const MCInstrDesc &II, |
||
127 | MachineOperand &RegMO, unsigned OpIdx); |
||
128 | |||
129 | /// Mutate the newly-selected instruction \p I to constrain its (possibly |
||
130 | /// generic) virtual register operands to the instruction's register class. |
||
131 | /// This could involve inserting COPYs before (for uses) or after (for defs). |
||
132 | /// This requires the number of operands to match the instruction description. |
||
133 | /// \returns whether operand regclass constraining succeeded. |
||
134 | /// |
||
135 | // FIXME: Not all instructions have the same number of operands. We should |
||
136 | // probably expose a constrain helper per operand and let the target selector |
||
137 | // constrain individual registers, like fast-isel. |
||
138 | bool constrainSelectedInstRegOperands(MachineInstr &I, |
||
139 | const TargetInstrInfo &TII, |
||
140 | const TargetRegisterInfo &TRI, |
||
141 | const RegisterBankInfo &RBI); |
||
142 | |||
143 | /// Check if DstReg can be replaced with SrcReg depending on the register |
||
144 | /// constraints. |
||
145 | bool canReplaceReg(Register DstReg, Register SrcReg, MachineRegisterInfo &MRI); |
||
146 | |||
147 | /// Check whether an instruction \p MI is dead: it only defines dead virtual |
||
148 | /// registers, and doesn't have other side effects. |
||
149 | bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI); |
||
150 | |||
151 | /// Report an ISel error as a missed optimization remark to the LLVMContext's |
||
152 | /// diagnostic stream. Set the FailedISel MachineFunction property. |
||
153 | void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, |
||
154 | MachineOptimizationRemarkEmitter &MORE, |
||
155 | MachineOptimizationRemarkMissed &R); |
||
156 | |||
157 | void reportGISelFailure(MachineFunction &MF, const TargetPassConfig &TPC, |
||
158 | MachineOptimizationRemarkEmitter &MORE, |
||
159 | const char *PassName, StringRef Msg, |
||
160 | const MachineInstr &MI); |
||
161 | |||
162 | /// Report an ISel warning as a missed optimization remark to the LLVMContext's |
||
163 | /// diagnostic stream. |
||
164 | void reportGISelWarning(MachineFunction &MF, const TargetPassConfig &TPC, |
||
165 | MachineOptimizationRemarkEmitter &MORE, |
||
166 | MachineOptimizationRemarkMissed &R); |
||
167 | |||
168 | /// If \p VReg is defined by a G_CONSTANT, return the corresponding value. |
||
169 | std::optional<APInt> getIConstantVRegVal(Register VReg, |
||
170 | const MachineRegisterInfo &MRI); |
||
171 | |||
172 | /// If \p VReg is defined by a G_CONSTANT fits in int64_t returns it. |
||
173 | std::optional<int64_t> getIConstantVRegSExtVal(Register VReg, |
||
174 | const MachineRegisterInfo &MRI); |
||
175 | |||
176 | /// Simple struct used to hold a constant integer value and a virtual |
||
177 | /// register. |
||
178 | struct ValueAndVReg { |
||
179 | APInt Value; |
||
180 | Register VReg; |
||
181 | }; |
||
182 | |||
183 | /// If \p VReg is defined by a statically evaluable chain of instructions rooted |
||
184 | /// on a G_CONSTANT returns its APInt value and def register. |
||
185 | std::optional<ValueAndVReg> |
||
186 | getIConstantVRegValWithLookThrough(Register VReg, |
||
187 | const MachineRegisterInfo &MRI, |
||
188 | bool LookThroughInstrs = true); |
||
189 | |||
190 | /// If \p VReg is defined by a statically evaluable chain of instructions rooted |
||
191 | /// on a G_CONSTANT or G_FCONSTANT returns its value as APInt and def register. |
||
192 | std::optional<ValueAndVReg> getAnyConstantVRegValWithLookThrough( |
||
193 | Register VReg, const MachineRegisterInfo &MRI, |
||
194 | bool LookThroughInstrs = true, bool LookThroughAnyExt = false); |
||
195 | |||
196 | struct FPValueAndVReg { |
||
197 | APFloat Value; |
||
198 | Register VReg; |
||
199 | }; |
||
200 | |||
201 | /// If \p VReg is defined by a statically evaluable chain of instructions rooted |
||
202 | /// on a G_FCONSTANT returns its APFloat value and def register. |
||
203 | std::optional<FPValueAndVReg> |
||
204 | getFConstantVRegValWithLookThrough(Register VReg, |
||
205 | const MachineRegisterInfo &MRI, |
||
206 | bool LookThroughInstrs = true); |
||
207 | |||
208 | const ConstantFP* getConstantFPVRegVal(Register VReg, |
||
209 | const MachineRegisterInfo &MRI); |
||
210 | |||
211 | /// See if Reg is defined by an single def instruction that is |
||
212 | /// Opcode. Also try to do trivial folding if it's a COPY with |
||
213 | /// same types. Returns null otherwise. |
||
214 | MachineInstr *getOpcodeDef(unsigned Opcode, Register Reg, |
||
215 | const MachineRegisterInfo &MRI); |
||
216 | |||
217 | /// Simple struct used to hold a Register value and the instruction which |
||
218 | /// defines it. |
||
219 | struct DefinitionAndSourceRegister { |
||
220 | MachineInstr *MI; |
||
221 | Register Reg; |
||
222 | }; |
||
223 | |||
224 | /// Find the def instruction for \p Reg, and underlying value Register folding |
||
225 | /// away any copies. |
||
226 | /// |
||
227 | /// Also walks through hints such as G_ASSERT_ZEXT. |
||
228 | std::optional<DefinitionAndSourceRegister> |
||
229 | getDefSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI); |
||
230 | |||
231 | /// Find the def instruction for \p Reg, folding away any trivial copies. May |
||
232 | /// return nullptr if \p Reg is not a generic virtual register. |
||
233 | /// |
||
234 | /// Also walks through hints such as G_ASSERT_ZEXT. |
||
235 | MachineInstr *getDefIgnoringCopies(Register Reg, |
||
236 | const MachineRegisterInfo &MRI); |
||
237 | |||
238 | /// Find the source register for \p Reg, folding away any trivial copies. It |
||
239 | /// will be an output register of the instruction that getDefIgnoringCopies |
||
240 | /// returns. May return an invalid register if \p Reg is not a generic virtual |
||
241 | /// register. |
||
242 | /// |
||
243 | /// Also walks through hints such as G_ASSERT_ZEXT. |
||
244 | Register getSrcRegIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI); |
||
245 | |||
246 | // Templated variant of getOpcodeDef returning a MachineInstr derived T. |
||
247 | /// See if Reg is defined by an single def instruction of type T |
||
248 | /// Also try to do trivial folding if it's a COPY with |
||
249 | /// same types. Returns null otherwise. |
||
250 | template <class T> |
||
251 | T *getOpcodeDef(Register Reg, const MachineRegisterInfo &MRI) { |
||
252 | MachineInstr *DefMI = getDefIgnoringCopies(Reg, MRI); |
||
253 | return dyn_cast_or_null<T>(DefMI); |
||
254 | } |
||
255 | |||
256 | /// Returns an APFloat from Val converted to the appropriate size. |
||
257 | APFloat getAPFloatFromSize(double Val, unsigned Size); |
||
258 | |||
259 | /// Modify analysis usage so it preserves passes required for the SelectionDAG |
||
260 | /// fallback. |
||
261 | void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU); |
||
262 | |||
263 | std::optional<APInt> ConstantFoldBinOp(unsigned Opcode, const Register Op1, |
||
264 | const Register Op2, |
||
265 | const MachineRegisterInfo &MRI); |
||
266 | std::optional<APFloat> ConstantFoldFPBinOp(unsigned Opcode, const Register Op1, |
||
267 | const Register Op2, |
||
268 | const MachineRegisterInfo &MRI); |
||
269 | |||
270 | /// Tries to constant fold a vector binop with sources \p Op1 and \p Op2. |
||
271 | /// Returns an empty vector on failure. |
||
272 | SmallVector<APInt> ConstantFoldVectorBinop(unsigned Opcode, const Register Op1, |
||
273 | const Register Op2, |
||
274 | const MachineRegisterInfo &MRI); |
||
275 | |||
276 | std::optional<APInt> ConstantFoldExtOp(unsigned Opcode, const Register Op1, |
||
277 | uint64_t Imm, |
||
278 | const MachineRegisterInfo &MRI); |
||
279 | |||
280 | std::optional<APFloat> ConstantFoldIntToFloat(unsigned Opcode, LLT DstTy, |
||
281 | Register Src, |
||
282 | const MachineRegisterInfo &MRI); |
||
283 | |||
284 | /// Tries to constant fold a G_CTLZ operation on \p Src. If \p Src is a vector |
||
285 | /// then it tries to do an element-wise constant fold. |
||
286 | std::optional<SmallVector<unsigned>> |
||
287 | ConstantFoldCTLZ(Register Src, const MachineRegisterInfo &MRI); |
||
288 | |||
289 | /// Test if the given value is known to have exactly one bit set. This differs |
||
290 | /// from computeKnownBits in that it doesn't necessarily determine which bit is |
||
291 | /// set. |
||
292 | bool isKnownToBeAPowerOfTwo(Register Val, const MachineRegisterInfo &MRI, |
||
293 | GISelKnownBits *KnownBits = nullptr); |
||
294 | |||
295 | /// Returns true if \p Val can be assumed to never be a NaN. If \p SNaN is true, |
||
296 | /// this returns if \p Val can be assumed to never be a signaling NaN. |
||
297 | bool isKnownNeverNaN(Register Val, const MachineRegisterInfo &MRI, |
||
298 | bool SNaN = false); |
||
299 | |||
300 | /// Returns true if \p Val can be assumed to never be a signaling NaN. |
||
301 | inline bool isKnownNeverSNaN(Register Val, const MachineRegisterInfo &MRI) { |
||
302 | return isKnownNeverNaN(Val, MRI, true); |
||
303 | } |
||
304 | |||
305 | Align inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO); |
||
306 | |||
307 | /// Return a virtual register corresponding to the incoming argument register \p |
||
308 | /// PhysReg. This register is expected to have class \p RC, and optional type \p |
||
309 | /// RegTy. This assumes all references to the register will use the same type. |
||
310 | /// |
||
311 | /// If there is an existing live-in argument register, it will be returned. |
||
312 | /// This will also ensure there is a valid copy |
||
313 | Register getFunctionLiveInPhysReg(MachineFunction &MF, |
||
314 | const TargetInstrInfo &TII, |
||
315 | MCRegister PhysReg, |
||
316 | const TargetRegisterClass &RC, |
||
317 | const DebugLoc &DL, LLT RegTy = LLT()); |
||
318 | |||
319 | /// Return the least common multiple type of \p OrigTy and \p TargetTy, by changing the |
||
320 | /// number of vector elements or scalar bitwidth. The intent is a |
||
321 | /// G_MERGE_VALUES, G_BUILD_VECTOR, or G_CONCAT_VECTORS can be constructed from |
||
322 | /// \p OrigTy elements, and unmerged into \p TargetTy |
||
323 | LLVM_READNONE |
||
324 | LLT getLCMType(LLT OrigTy, LLT TargetTy); |
||
325 | |||
326 | LLVM_READNONE |
||
327 | /// Return smallest type that covers both \p OrigTy and \p TargetTy and is |
||
328 | /// multiple of TargetTy. |
||
329 | LLT getCoverTy(LLT OrigTy, LLT TargetTy); |
||
330 | |||
331 | /// Return a type where the total size is the greatest common divisor of \p |
||
332 | /// OrigTy and \p TargetTy. This will try to either change the number of vector |
||
333 | /// elements, or bitwidth of scalars. The intent is the result type can be used |
||
334 | /// as the result of a G_UNMERGE_VALUES from \p OrigTy, and then some |
||
335 | /// combination of G_MERGE_VALUES, G_BUILD_VECTOR and G_CONCAT_VECTORS (possibly |
||
336 | /// with intermediate casts) can re-form \p TargetTy. |
||
337 | /// |
||
338 | /// If these are vectors with different element types, this will try to produce |
||
339 | /// a vector with a compatible total size, but the element type of \p OrigTy. If |
||
340 | /// this can't be satisfied, this will produce a scalar smaller than the |
||
341 | /// original vector elements. |
||
342 | /// |
||
343 | /// In the worst case, this returns LLT::scalar(1) |
||
344 | LLVM_READNONE |
||
345 | LLT getGCDType(LLT OrigTy, LLT TargetTy); |
||
346 | |||
347 | /// Represents a value which can be a Register or a constant. |
||
348 | /// |
||
349 | /// This is useful in situations where an instruction may have an interesting |
||
350 | /// register operand or interesting constant operand. For a concrete example, |
||
351 | /// \see getVectorSplat. |
||
352 | class RegOrConstant { |
||
353 | int64_t Cst; |
||
354 | Register Reg; |
||
355 | bool IsReg; |
||
356 | |||
357 | public: |
||
358 | explicit RegOrConstant(Register Reg) : Reg(Reg), IsReg(true) {} |
||
359 | explicit RegOrConstant(int64_t Cst) : Cst(Cst), IsReg(false) {} |
||
360 | bool isReg() const { return IsReg; } |
||
361 | bool isCst() const { return !IsReg; } |
||
362 | Register getReg() const { |
||
363 | assert(isReg() && "Expected a register!"); |
||
364 | return Reg; |
||
365 | } |
||
366 | int64_t getCst() const { |
||
367 | assert(isCst() && "Expected a constant!"); |
||
368 | return Cst; |
||
369 | } |
||
370 | }; |
||
371 | |||
372 | /// \returns The splat index of a G_SHUFFLE_VECTOR \p MI when \p MI is a splat. |
||
373 | /// If \p MI is not a splat, returns std::nullopt. |
||
374 | std::optional<int> getSplatIndex(MachineInstr &MI); |
||
375 | |||
376 | /// \returns the scalar integral splat value of \p Reg if possible. |
||
377 | std::optional<APInt> getIConstantSplatVal(const Register Reg, |
||
378 | const MachineRegisterInfo &MRI); |
||
379 | |||
380 | /// \returns the scalar integral splat value defined by \p MI if possible. |
||
381 | std::optional<APInt> getIConstantSplatVal(const MachineInstr &MI, |
||
382 | const MachineRegisterInfo &MRI); |
||
383 | |||
384 | /// \returns the scalar sign extended integral splat value of \p Reg if |
||
385 | /// possible. |
||
386 | std::optional<int64_t> getIConstantSplatSExtVal(const Register Reg, |
||
387 | const MachineRegisterInfo &MRI); |
||
388 | |||
389 | /// \returns the scalar sign extended integral splat value defined by \p MI if |
||
390 | /// possible. |
||
391 | std::optional<int64_t> getIConstantSplatSExtVal(const MachineInstr &MI, |
||
392 | const MachineRegisterInfo &MRI); |
||
393 | |||
394 | /// Returns a floating point scalar constant of a build vector splat if it |
||
395 | /// exists. When \p AllowUndef == true some elements can be undef but not all. |
||
396 | std::optional<FPValueAndVReg> getFConstantSplat(Register VReg, |
||
397 | const MachineRegisterInfo &MRI, |
||
398 | bool AllowUndef = true); |
||
399 | |||
400 | /// Return true if the specified register is defined by G_BUILD_VECTOR or |
||
401 | /// G_BUILD_VECTOR_TRUNC where all of the elements are \p SplatValue or undef. |
||
402 | bool isBuildVectorConstantSplat(const Register Reg, |
||
403 | const MachineRegisterInfo &MRI, |
||
404 | int64_t SplatValue, bool AllowUndef); |
||
405 | |||
406 | /// Return true if the specified instruction is a G_BUILD_VECTOR or |
||
407 | /// G_BUILD_VECTOR_TRUNC where all of the elements are \p SplatValue or undef. |
||
408 | bool isBuildVectorConstantSplat(const MachineInstr &MI, |
||
409 | const MachineRegisterInfo &MRI, |
||
410 | int64_t SplatValue, bool AllowUndef); |
||
411 | |||
412 | /// Return true if the specified instruction is a G_BUILD_VECTOR or |
||
413 | /// G_BUILD_VECTOR_TRUNC where all of the elements are 0 or undef. |
||
414 | bool isBuildVectorAllZeros(const MachineInstr &MI, |
||
415 | const MachineRegisterInfo &MRI, |
||
416 | bool AllowUndef = false); |
||
417 | |||
418 | /// Return true if the specified instruction is a G_BUILD_VECTOR or |
||
419 | /// G_BUILD_VECTOR_TRUNC where all of the elements are ~0 or undef. |
||
420 | bool isBuildVectorAllOnes(const MachineInstr &MI, |
||
421 | const MachineRegisterInfo &MRI, |
||
422 | bool AllowUndef = false); |
||
423 | |||
424 | /// Return true if the specified instruction is known to be a constant, or a |
||
425 | /// vector of constants. |
||
426 | /// |
||
427 | /// If \p AllowFP is true, this will consider G_FCONSTANT in addition to |
||
428 | /// G_CONSTANT. If \p AllowOpaqueConstants is true, constant-like instructions |
||
429 | /// such as G_GLOBAL_VALUE will also be considered. |
||
430 | bool isConstantOrConstantVector(const MachineInstr &MI, |
||
431 | const MachineRegisterInfo &MRI, |
||
432 | bool AllowFP = true, |
||
433 | bool AllowOpaqueConstants = true); |
||
434 | |||
435 | /// Return true if the value is a constant 0 integer or a splatted vector of a |
||
436 | /// constant 0 integer (with no undefs if \p AllowUndefs is false). This will |
||
437 | /// handle G_BUILD_VECTOR and G_BUILD_VECTOR_TRUNC as truncation is not an issue |
||
438 | /// for null values. |
||
439 | bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, |
||
440 | bool AllowUndefs = false); |
||
441 | |||
442 | /// Return true if the value is a constant -1 integer or a splatted vector of a |
||
443 | /// constant -1 integer (with no undefs if \p AllowUndefs is false). |
||
444 | bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, |
||
445 | const MachineRegisterInfo &MRI, |
||
446 | bool AllowUndefs = false); |
||
447 | |||
448 | /// \returns a value when \p MI is a vector splat. The splat can be either a |
||
449 | /// Register or a constant. |
||
450 | /// |
||
451 | /// Examples: |
||
452 | /// |
||
453 | /// \code |
||
454 | /// %reg = COPY $physreg |
||
455 | /// %reg_splat = G_BUILD_VECTOR %reg, %reg, ..., %reg |
||
456 | /// \endcode |
||
457 | /// |
||
458 | /// If called on the G_BUILD_VECTOR above, this will return a RegOrConstant |
||
459 | /// containing %reg. |
||
460 | /// |
||
461 | /// \code |
||
462 | /// %cst = G_CONSTANT iN 4 |
||
463 | /// %constant_splat = G_BUILD_VECTOR %cst, %cst, ..., %cst |
||
464 | /// \endcode |
||
465 | /// |
||
466 | /// In the above case, this will return a RegOrConstant containing 4. |
||
467 | std::optional<RegOrConstant> getVectorSplat(const MachineInstr &MI, |
||
468 | const MachineRegisterInfo &MRI); |
||
469 | |||
470 | /// Determines if \p MI defines a constant integer or a build vector of |
||
471 | /// constant integers. Treats undef values as constants. |
||
472 | bool isConstantOrConstantVector(MachineInstr &MI, |
||
473 | const MachineRegisterInfo &MRI); |
||
474 | |||
475 | /// Determines if \p MI defines a constant integer or a splat vector of |
||
476 | /// constant integers. |
||
477 | /// \returns the scalar constant or std::nullopt. |
||
478 | std::optional<APInt> |
||
479 | isConstantOrConstantSplatVector(MachineInstr &MI, |
||
480 | const MachineRegisterInfo &MRI); |
||
481 | |||
482 | /// Attempt to match a unary predicate against a scalar/splat constant or every |
||
483 | /// element of a constant G_BUILD_VECTOR. If \p ConstVal is null, the source |
||
484 | /// value was undef. |
||
485 | bool matchUnaryPredicate(const MachineRegisterInfo &MRI, Register Reg, |
||
486 | std::function<bool(const Constant *ConstVal)> Match, |
||
487 | bool AllowUndefs = false); |
||
488 | |||
489 | /// Returns true if given the TargetLowering's boolean contents information, |
||
490 | /// the value \p Val contains a true value. |
||
491 | bool isConstTrueVal(const TargetLowering &TLI, int64_t Val, bool IsVector, |
||
492 | bool IsFP); |
||
493 | /// \returns true if given the TargetLowering's boolean contents information, |
||
494 | /// the value \p Val contains a false value. |
||
495 | bool isConstFalseVal(const TargetLowering &TLI, int64_t Val, bool IsVector, |
||
496 | bool IsFP); |
||
497 | |||
498 | /// Returns an integer representing true, as defined by the |
||
499 | /// TargetBooleanContents. |
||
500 | int64_t getICmpTrueVal(const TargetLowering &TLI, bool IsVector, bool IsFP); |
||
501 | |||
502 | /// Returns true if the given block should be optimized for size. |
||
503 | bool shouldOptForSize(const MachineBasicBlock &MBB, ProfileSummaryInfo *PSI, |
||
504 | BlockFrequencyInfo *BFI); |
||
505 | |||
506 | using SmallInstListTy = GISelWorkList<4>; |
||
507 | void saveUsesAndErase(MachineInstr &MI, MachineRegisterInfo &MRI, |
||
508 | LostDebugLocObserver *LocObserver, |
||
509 | SmallInstListTy &DeadInstChain); |
||
510 | void eraseInstrs(ArrayRef<MachineInstr *> DeadInstrs, MachineRegisterInfo &MRI, |
||
511 | LostDebugLocObserver *LocObserver = nullptr); |
||
512 | void eraseInstr(MachineInstr &MI, MachineRegisterInfo &MRI, |
||
513 | LostDebugLocObserver *LocObserver = nullptr); |
||
514 | |||
515 | /// Assuming the instruction \p MI is going to be deleted, attempt to salvage |
||
516 | /// debug users of \p MI by writing the effect of \p MI in a DIExpression. |
||
517 | void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI); |
||
518 | |||
519 | } // End namespace llvm. |
||
520 | #endif |