Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | /// \file |
||
| 9 | /// Interface for Targets to specify which operations they can successfully |
||
| 10 | /// select and how the others should be expanded most efficiently. |
||
| 11 | /// |
||
| 12 | //===----------------------------------------------------------------------===// |
||
| 13 | |||
| 14 | #ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |
||
| 15 | #define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |
||
| 16 | |||
| 17 | #include "llvm/ADT/SmallBitVector.h" |
||
| 18 | #include "llvm/ADT/SmallVector.h" |
||
| 19 | #include "llvm/CodeGen/GlobalISel/LegacyLegalizerInfo.h" |
||
| 20 | #include "llvm/CodeGen/MachineMemOperand.h" |
||
| 21 | #include "llvm/CodeGen/TargetOpcodes.h" |
||
| 22 | #include "llvm/MC/MCInstrDesc.h" |
||
| 23 | #include "llvm/Support/AtomicOrdering.h" |
||
| 24 | #include "llvm/Support/CommandLine.h" |
||
| 25 | #include "llvm/Support/LowLevelTypeImpl.h" |
||
| 26 | #include <cassert> |
||
| 27 | #include <cstdint> |
||
| 28 | #include <tuple> |
||
| 29 | #include <utility> |
||
| 30 | |||
| 31 | namespace llvm { |
||
| 32 | |||
| 33 | extern cl::opt<bool> DisableGISelLegalityCheck; |
||
| 34 | |||
| 35 | class MachineFunction; |
||
| 36 | class raw_ostream; |
||
| 37 | class LegalizerHelper; |
||
| 38 | class MachineInstr; |
||
| 39 | class MachineRegisterInfo; |
||
| 40 | class MCInstrInfo; |
||
| 41 | |||
| 42 | namespace LegalizeActions { |
||
| 43 | enum LegalizeAction : std::uint8_t { |
||
| 44 | /// The operation is expected to be selectable directly by the target, and |
||
| 45 | /// no transformation is necessary. |
||
| 46 | Legal, |
||
| 47 | |||
| 48 | /// The operation should be synthesized from multiple instructions acting on |
||
| 49 | /// a narrower scalar base-type. For example a 64-bit add might be |
||
| 50 | /// implemented in terms of 32-bit add-with-carry. |
||
| 51 | NarrowScalar, |
||
| 52 | |||
| 53 | /// The operation should be implemented in terms of a wider scalar |
||
| 54 | /// base-type. For example a <2 x s8> add could be implemented as a <2 |
||
| 55 | /// x s32> add (ignoring the high bits). |
||
| 56 | WidenScalar, |
||
| 57 | |||
| 58 | /// The (vector) operation should be implemented by splitting it into |
||
| 59 | /// sub-vectors where the operation is legal. For example a <8 x s64> add |
||
| 60 | /// might be implemented as 4 separate <2 x s64> adds. There can be a leftover |
||
| 61 | /// if there are not enough elements for last sub-vector e.g. <7 x s64> add |
||
| 62 | /// will be implemented as 3 separate <2 x s64> adds and one s64 add. Leftover |
||
| 63 | /// types can be avoided by doing MoreElements first. |
||
| 64 | FewerElements, |
||
| 65 | |||
| 66 | /// The (vector) operation should be implemented by widening the input |
||
| 67 | /// vector and ignoring the lanes added by doing so. For example <2 x i8> is |
||
| 68 | /// rarely legal, but you might perform an <8 x i8> and then only look at |
||
| 69 | /// the first two results. |
||
| 70 | MoreElements, |
||
| 71 | |||
| 72 | /// Perform the operation on a different, but equivalently sized type. |
||
| 73 | Bitcast, |
||
| 74 | |||
| 75 | /// The operation itself must be expressed in terms of simpler actions on |
||
| 76 | /// this target. E.g. a SREM replaced by an SDIV and subtraction. |
||
| 77 | Lower, |
||
| 78 | |||
| 79 | /// The operation should be implemented as a call to some kind of runtime |
||
| 80 | /// support library. For example this usually happens on machines that don't |
||
| 81 | /// support floating-point operations natively. |
||
| 82 | Libcall, |
||
| 83 | |||
| 84 | /// The target wants to do something special with this combination of |
||
| 85 | /// operand and type. A callback will be issued when it is needed. |
||
| 86 | Custom, |
||
| 87 | |||
| 88 | /// This operation is completely unsupported on the target. A programming |
||
| 89 | /// error has occurred. |
||
| 90 | Unsupported, |
||
| 91 | |||
| 92 | /// Sentinel value for when no action was found in the specified table. |
||
| 93 | NotFound, |
||
| 94 | |||
| 95 | /// Fall back onto the old rules. |
||
| 96 | /// TODO: Remove this once we've migrated |
||
| 97 | UseLegacyRules, |
||
| 98 | }; |
||
| 99 | } // end namespace LegalizeActions |
||
| 100 | raw_ostream &operator<<(raw_ostream &OS, LegalizeActions::LegalizeAction Action); |
||
| 101 | |||
| 102 | using LegalizeActions::LegalizeAction; |
||
| 103 | |||
| 104 | /// The LegalityQuery object bundles together all the information that's needed |
||
| 105 | /// to decide whether a given operation is legal or not. |
||
| 106 | /// For efficiency, it doesn't make a copy of Types so care must be taken not |
||
| 107 | /// to free it before using the query. |
||
| 108 | struct LegalityQuery { |
||
| 109 | unsigned Opcode; |
||
| 110 | ArrayRef<LLT> Types; |
||
| 111 | |||
| 112 | struct MemDesc { |
||
| 113 | LLT MemoryTy; |
||
| 114 | uint64_t AlignInBits; |
||
| 115 | AtomicOrdering Ordering; |
||
| 116 | |||
| 117 | MemDesc() = default; |
||
| 118 | MemDesc(LLT MemoryTy, uint64_t AlignInBits, AtomicOrdering Ordering) |
||
| 119 | : MemoryTy(MemoryTy), AlignInBits(AlignInBits), Ordering(Ordering) {} |
||
| 120 | MemDesc(const MachineMemOperand &MMO) |
||
| 121 | : MemoryTy(MMO.getMemoryType()), |
||
| 122 | AlignInBits(MMO.getAlign().value() * 8), |
||
| 123 | Ordering(MMO.getSuccessOrdering()) {} |
||
| 124 | }; |
||
| 125 | |||
| 126 | /// Operations which require memory can use this to place requirements on the |
||
| 127 | /// memory type for each MMO. |
||
| 128 | ArrayRef<MemDesc> MMODescrs; |
||
| 129 | |||
| 130 | constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types, |
||
| 131 | const ArrayRef<MemDesc> MMODescrs) |
||
| 132 | : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {} |
||
| 133 | constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types) |
||
| 134 | : LegalityQuery(Opcode, Types, {}) {} |
||
| 135 | |||
| 136 | raw_ostream &print(raw_ostream &OS) const; |
||
| 137 | }; |
||
| 138 | |||
| 139 | /// The result of a query. It either indicates a final answer of Legal or |
||
| 140 | /// Unsupported or describes an action that must be taken to make an operation |
||
| 141 | /// more legal. |
||
| 142 | struct LegalizeActionStep { |
||
| 143 | /// The action to take or the final answer. |
||
| 144 | LegalizeAction Action; |
||
| 145 | /// If describing an action, the type index to change. Otherwise zero. |
||
| 146 | unsigned TypeIdx; |
||
| 147 | /// If describing an action, the new type for TypeIdx. Otherwise LLT{}. |
||
| 148 | LLT NewType; |
||
| 149 | |||
| 150 | LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx, |
||
| 151 | const LLT NewType) |
||
| 152 | : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {} |
||
| 153 | |||
| 154 | LegalizeActionStep(LegacyLegalizeActionStep Step) |
||
| 155 | : TypeIdx(Step.TypeIdx), NewType(Step.NewType) { |
||
| 156 | switch (Step.Action) { |
||
| 157 | case LegacyLegalizeActions::Legal: |
||
| 158 | Action = LegalizeActions::Legal; |
||
| 159 | break; |
||
| 160 | case LegacyLegalizeActions::NarrowScalar: |
||
| 161 | Action = LegalizeActions::NarrowScalar; |
||
| 162 | break; |
||
| 163 | case LegacyLegalizeActions::WidenScalar: |
||
| 164 | Action = LegalizeActions::WidenScalar; |
||
| 165 | break; |
||
| 166 | case LegacyLegalizeActions::FewerElements: |
||
| 167 | Action = LegalizeActions::FewerElements; |
||
| 168 | break; |
||
| 169 | case LegacyLegalizeActions::MoreElements: |
||
| 170 | Action = LegalizeActions::MoreElements; |
||
| 171 | break; |
||
| 172 | case LegacyLegalizeActions::Bitcast: |
||
| 173 | Action = LegalizeActions::Bitcast; |
||
| 174 | break; |
||
| 175 | case LegacyLegalizeActions::Lower: |
||
| 176 | Action = LegalizeActions::Lower; |
||
| 177 | break; |
||
| 178 | case LegacyLegalizeActions::Libcall: |
||
| 179 | Action = LegalizeActions::Libcall; |
||
| 180 | break; |
||
| 181 | case LegacyLegalizeActions::Custom: |
||
| 182 | Action = LegalizeActions::Custom; |
||
| 183 | break; |
||
| 184 | case LegacyLegalizeActions::Unsupported: |
||
| 185 | Action = LegalizeActions::Unsupported; |
||
| 186 | break; |
||
| 187 | case LegacyLegalizeActions::NotFound: |
||
| 188 | Action = LegalizeActions::NotFound; |
||
| 189 | break; |
||
| 190 | } |
||
| 191 | } |
||
| 192 | |||
| 193 | bool operator==(const LegalizeActionStep &RHS) const { |
||
| 194 | return std::tie(Action, TypeIdx, NewType) == |
||
| 195 | std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType); |
||
| 196 | } |
||
| 197 | }; |
||
| 198 | |||
| 199 | using LegalityPredicate = std::function<bool (const LegalityQuery &)>; |
||
| 200 | using LegalizeMutation = |
||
| 201 | std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>; |
||
| 202 | |||
| 203 | namespace LegalityPredicates { |
||
| 204 | struct TypePairAndMemDesc { |
||
| 205 | LLT Type0; |
||
| 206 | LLT Type1; |
||
| 207 | LLT MemTy; |
||
| 208 | uint64_t Align; |
||
| 209 | |||
| 210 | bool operator==(const TypePairAndMemDesc &Other) const { |
||
| 211 | return Type0 == Other.Type0 && Type1 == Other.Type1 && |
||
| 212 | Align == Other.Align && MemTy == Other.MemTy; |
||
| 213 | } |
||
| 214 | |||
| 215 | /// \returns true if this memory access is legal with for the access described |
||
| 216 | /// by \p Other (The alignment is sufficient for the size and result type). |
||
| 217 | bool isCompatible(const TypePairAndMemDesc &Other) const { |
||
| 218 | return Type0 == Other.Type0 && Type1 == Other.Type1 && |
||
| 219 | Align >= Other.Align && |
||
| 220 | // FIXME: This perhaps should be stricter, but the current legality |
||
| 221 | // rules are written only considering the size. |
||
| 222 | MemTy.getSizeInBits() == Other.MemTy.getSizeInBits(); |
||
| 223 | } |
||
| 224 | }; |
||
| 225 | |||
| 226 | /// True iff P0 and P1 are true. |
||
| 227 | template<typename Predicate> |
||
| 228 | Predicate all(Predicate P0, Predicate P1) { |
||
| 229 | return [=](const LegalityQuery &Query) { |
||
| 230 | return P0(Query) && P1(Query); |
||
| 231 | }; |
||
| 232 | } |
||
| 233 | /// True iff all given predicates are true. |
||
| 234 | template<typename Predicate, typename... Args> |
||
| 235 | Predicate all(Predicate P0, Predicate P1, Args... args) { |
||
| 236 | return all(all(P0, P1), args...); |
||
| 237 | } |
||
| 238 | |||
| 239 | /// True iff P0 or P1 are true. |
||
| 240 | template<typename Predicate> |
||
| 241 | Predicate any(Predicate P0, Predicate P1) { |
||
| 242 | return [=](const LegalityQuery &Query) { |
||
| 243 | return P0(Query) || P1(Query); |
||
| 244 | }; |
||
| 245 | } |
||
| 246 | /// True iff any given predicates are true. |
||
| 247 | template<typename Predicate, typename... Args> |
||
| 248 | Predicate any(Predicate P0, Predicate P1, Args... args) { |
||
| 249 | return any(any(P0, P1), args...); |
||
| 250 | } |
||
| 251 | |||
| 252 | /// True iff the given type index is the specified type. |
||
| 253 | LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit); |
||
| 254 | /// True iff the given type index is one of the specified types. |
||
| 255 | LegalityPredicate typeInSet(unsigned TypeIdx, |
||
| 256 | std::initializer_list<LLT> TypesInit); |
||
| 257 | |||
| 258 | /// True iff the given type index is not the specified type. |
||
| 259 | inline LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type) { |
||
| 260 | return [=](const LegalityQuery &Query) { |
||
| 261 | return Query.Types[TypeIdx] != Type; |
||
| 262 | }; |
||
| 263 | } |
||
| 264 | |||
| 265 | /// True iff the given types for the given pair of type indexes is one of the |
||
| 266 | /// specified type pairs. |
||
| 267 | LegalityPredicate |
||
| 268 | typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1, |
||
| 269 | std::initializer_list<std::pair<LLT, LLT>> TypesInit); |
||
| 270 | /// True iff the given types for the given pair of type indexes is one of the |
||
| 271 | /// specified type pairs. |
||
| 272 | LegalityPredicate typePairAndMemDescInSet( |
||
| 273 | unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx, |
||
| 274 | std::initializer_list<TypePairAndMemDesc> TypesAndMemDescInit); |
||
| 275 | /// True iff the specified type index is a scalar. |
||
| 276 | LegalityPredicate isScalar(unsigned TypeIdx); |
||
| 277 | /// True iff the specified type index is a vector. |
||
| 278 | LegalityPredicate isVector(unsigned TypeIdx); |
||
| 279 | /// True iff the specified type index is a pointer (with any address space). |
||
| 280 | LegalityPredicate isPointer(unsigned TypeIdx); |
||
| 281 | /// True iff the specified type index is a pointer with the specified address |
||
| 282 | /// space. |
||
| 283 | LegalityPredicate isPointer(unsigned TypeIdx, unsigned AddrSpace); |
||
| 284 | |||
| 285 | /// True if the type index is a vector with element type \p EltTy |
||
| 286 | LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy); |
||
| 287 | |||
| 288 | /// True iff the specified type index is a scalar that's narrower than the given |
||
| 289 | /// size. |
||
| 290 | LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size); |
||
| 291 | |||
| 292 | /// True iff the specified type index is a scalar that's wider than the given |
||
| 293 | /// size. |
||
| 294 | LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size); |
||
| 295 | |||
| 296 | /// True iff the specified type index is a scalar or vector with an element type |
||
| 297 | /// that's narrower than the given size. |
||
| 298 | LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size); |
||
| 299 | |||
| 300 | /// True iff the specified type index is a scalar or a vector with an element |
||
| 301 | /// type that's wider than the given size. |
||
| 302 | LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size); |
||
| 303 | |||
| 304 | /// True iff the specified type index is a scalar whose size is not a multiple |
||
| 305 | /// of Size. |
||
| 306 | LegalityPredicate sizeNotMultipleOf(unsigned TypeIdx, unsigned Size); |
||
| 307 | |||
| 308 | /// True iff the specified type index is a scalar whose size is not a power of |
||
| 309 | /// 2. |
||
| 310 | LegalityPredicate sizeNotPow2(unsigned TypeIdx); |
||
| 311 | |||
| 312 | /// True iff the specified type index is a scalar or vector whose element size |
||
| 313 | /// is not a power of 2. |
||
| 314 | LegalityPredicate scalarOrEltSizeNotPow2(unsigned TypeIdx); |
||
| 315 | |||
| 316 | /// True if the total bitwidth of the specified type index is \p Size bits. |
||
| 317 | LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size); |
||
| 318 | |||
| 319 | /// True iff the specified type indices are both the same bit size. |
||
| 320 | LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1); |
||
| 321 | |||
| 322 | /// True iff the first type index has a larger total bit size than second type |
||
| 323 | /// index. |
||
| 324 | LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1); |
||
| 325 | |||
| 326 | /// True iff the first type index has a smaller total bit size than second type |
||
| 327 | /// index. |
||
| 328 | LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1); |
||
| 329 | |||
| 330 | /// True iff the specified MMO index has a size (rounded to bytes) that is not a |
||
| 331 | /// power of 2. |
||
| 332 | LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx); |
||
| 333 | |||
| 334 | /// True iff the specified MMO index has a size that is not an even byte size, |
||
| 335 | /// or that even byte size is not a power of 2. |
||
| 336 | LegalityPredicate memSizeNotByteSizePow2(unsigned MMOIdx); |
||
| 337 | |||
| 338 | /// True iff the specified type index is a vector whose element count is not a |
||
| 339 | /// power of 2. |
||
| 340 | LegalityPredicate numElementsNotPow2(unsigned TypeIdx); |
||
| 341 | /// True iff the specified MMO index has at an atomic ordering of at Ordering or |
||
| 342 | /// stronger. |
||
| 343 | LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, |
||
| 344 | AtomicOrdering Ordering); |
||
| 345 | } // end namespace LegalityPredicates |
||
| 346 | |||
| 347 | namespace LegalizeMutations { |
||
| 348 | /// Select this specific type for the given type index. |
||
| 349 | LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty); |
||
| 350 | |||
| 351 | /// Keep the same type as the given type index. |
||
| 352 | LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx); |
||
| 353 | |||
| 354 | /// Keep the same scalar or element type as the given type index. |
||
| 355 | LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx); |
||
| 356 | |||
| 357 | /// Keep the same scalar or element type as the given type. |
||
| 358 | LegalizeMutation changeElementTo(unsigned TypeIdx, LLT Ty); |
||
| 359 | |||
| 360 | /// Keep the same scalar or element type as \p TypeIdx, but take the number of |
||
| 361 | /// elements from \p FromTypeIdx. |
||
| 362 | LegalizeMutation changeElementCountTo(unsigned TypeIdx, unsigned FromTypeIdx); |
||
| 363 | |||
| 364 | /// Keep the same scalar or element type as \p TypeIdx, but take the number of |
||
| 365 | /// elements from \p Ty. |
||
| 366 | LegalizeMutation changeElementCountTo(unsigned TypeIdx, LLT Ty); |
||
| 367 | |||
| 368 | /// Change the scalar size or element size to have the same scalar size as type |
||
| 369 | /// index \p FromIndex. Unlike changeElementTo, this discards pointer types and |
||
| 370 | /// only changes the size. |
||
| 371 | LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx); |
||
| 372 | |||
| 373 | /// Widen the scalar type or vector element type for the given type index to the |
||
| 374 | /// next power of 2. |
||
| 375 | LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min = 0); |
||
| 376 | |||
| 377 | /// Widen the scalar type or vector element type for the given type index to |
||
| 378 | /// next multiple of \p Size. |
||
| 379 | LegalizeMutation widenScalarOrEltToNextMultipleOf(unsigned TypeIdx, |
||
| 380 | unsigned Size); |
||
| 381 | |||
| 382 | /// Add more elements to the type for the given type index to the next power of |
||
| 383 | /// 2. |
||
| 384 | LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0); |
||
| 385 | /// Break up the vector type for the given type index into the element type. |
||
| 386 | LegalizeMutation scalarize(unsigned TypeIdx); |
||
| 387 | } // end namespace LegalizeMutations |
||
| 388 | |||
| 389 | /// A single rule in a legalizer info ruleset. |
||
| 390 | /// The specified action is chosen when the predicate is true. Where appropriate |
||
| 391 | /// for the action (e.g. for WidenScalar) the new type is selected using the |
||
| 392 | /// given mutator. |
||
| 393 | class LegalizeRule { |
||
| 394 | LegalityPredicate Predicate; |
||
| 395 | LegalizeAction Action; |
||
| 396 | LegalizeMutation Mutation; |
||
| 397 | |||
| 398 | public: |
||
| 399 | LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action, |
||
| 400 | LegalizeMutation Mutation = nullptr) |
||
| 401 | : Predicate(Predicate), Action(Action), Mutation(Mutation) {} |
||
| 402 | |||
| 403 | /// Test whether the LegalityQuery matches. |
||
| 404 | bool match(const LegalityQuery &Query) const { |
||
| 405 | return Predicate(Query); |
||
| 406 | } |
||
| 407 | |||
| 408 | LegalizeAction getAction() const { return Action; } |
||
| 409 | |||
| 410 | /// Determine the change to make. |
||
| 411 | std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const { |
||
| 412 | if (Mutation) |
||
| 413 | return Mutation(Query); |
||
| 414 | return std::make_pair(0, LLT{}); |
||
| 415 | } |
||
| 416 | }; |
||
| 417 | |||
| 418 | class LegalizeRuleSet { |
||
| 419 | /// When non-zero, the opcode we are an alias of |
||
| 420 | unsigned AliasOf = 0; |
||
| 421 | /// If true, there is another opcode that aliases this one |
||
| 422 | bool IsAliasedByAnother = false; |
||
| 423 | SmallVector<LegalizeRule, 2> Rules; |
||
| 424 | |||
| 425 | #ifndef NDEBUG |
||
| 426 | /// If bit I is set, this rule set contains a rule that may handle (predicate |
||
| 427 | /// or perform an action upon (or both)) the type index I. The uncertainty |
||
| 428 | /// comes from free-form rules executing user-provided lambda functions. We |
||
| 429 | /// conservatively assume such rules do the right thing and cover all type |
||
| 430 | /// indices. The bitset is intentionally 1 bit wider than it absolutely needs |
||
| 431 | /// to be to distinguish such cases from the cases where all type indices are |
||
| 432 | /// individually handled. |
||
| 433 | SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC - |
||
| 434 | MCOI::OPERAND_FIRST_GENERIC + 2}; |
||
| 435 | SmallBitVector ImmIdxsCovered{MCOI::OPERAND_LAST_GENERIC_IMM - |
||
| 436 | MCOI::OPERAND_FIRST_GENERIC_IMM + 2}; |
||
| 437 | #endif |
||
| 438 | |||
| 439 | unsigned typeIdx(unsigned TypeIdx) { |
||
| 440 | assert(TypeIdx <= |
||
| 441 | (MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) && |
||
| 442 | "Type Index is out of bounds"); |
||
| 443 | #ifndef NDEBUG |
||
| 444 | TypeIdxsCovered.set(TypeIdx); |
||
| 445 | #endif |
||
| 446 | return TypeIdx; |
||
| 447 | } |
||
| 448 | |||
| 449 | void markAllIdxsAsCovered() { |
||
| 450 | #ifndef NDEBUG |
||
| 451 | TypeIdxsCovered.set(); |
||
| 452 | ImmIdxsCovered.set(); |
||
| 453 | #endif |
||
| 454 | } |
||
| 455 | |||
| 456 | void add(const LegalizeRule &Rule) { |
||
| 457 | assert(AliasOf == 0 && |
||
| 458 | "RuleSet is aliased, change the representative opcode instead"); |
||
| 459 | Rules.push_back(Rule); |
||
| 460 | } |
||
| 461 | |||
| 462 | static bool always(const LegalityQuery &) { return true; } |
||
| 463 | |||
| 464 | /// Use the given action when the predicate is true. |
||
| 465 | /// Action should not be an action that requires mutation. |
||
| 466 | LegalizeRuleSet &actionIf(LegalizeAction Action, |
||
| 467 | LegalityPredicate Predicate) { |
||
| 468 | add({Predicate, Action}); |
||
| 469 | return *this; |
||
| 470 | } |
||
| 471 | /// Use the given action when the predicate is true. |
||
| 472 | /// Action should be an action that requires mutation. |
||
| 473 | LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate, |
||
| 474 | LegalizeMutation Mutation) { |
||
| 475 | add({Predicate, Action, Mutation}); |
||
| 476 | return *this; |
||
| 477 | } |
||
| 478 | /// Use the given action when type index 0 is any type in the given list. |
||
| 479 | /// Action should not be an action that requires mutation. |
||
| 480 | LegalizeRuleSet &actionFor(LegalizeAction Action, |
||
| 481 | std::initializer_list<LLT> Types) { |
||
| 482 | using namespace LegalityPredicates; |
||
| 483 | return actionIf(Action, typeInSet(typeIdx(0), Types)); |
||
| 484 | } |
||
| 485 | /// Use the given action when type index 0 is any type in the given list. |
||
| 486 | /// Action should be an action that requires mutation. |
||
| 487 | LegalizeRuleSet &actionFor(LegalizeAction Action, |
||
| 488 | std::initializer_list<LLT> Types, |
||
| 489 | LegalizeMutation Mutation) { |
||
| 490 | using namespace LegalityPredicates; |
||
| 491 | return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation); |
||
| 492 | } |
||
| 493 | /// Use the given action when type indexes 0 and 1 is any type pair in the |
||
| 494 | /// given list. |
||
| 495 | /// Action should not be an action that requires mutation. |
||
| 496 | LegalizeRuleSet &actionFor(LegalizeAction Action, |
||
| 497 | std::initializer_list<std::pair<LLT, LLT>> Types) { |
||
| 498 | using namespace LegalityPredicates; |
||
| 499 | return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types)); |
||
| 500 | } |
||
| 501 | /// Use the given action when type indexes 0 and 1 is any type pair in the |
||
| 502 | /// given list. |
||
| 503 | /// Action should be an action that requires mutation. |
||
| 504 | LegalizeRuleSet &actionFor(LegalizeAction Action, |
||
| 505 | std::initializer_list<std::pair<LLT, LLT>> Types, |
||
| 506 | LegalizeMutation Mutation) { |
||
| 507 | using namespace LegalityPredicates; |
||
| 508 | return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types), |
||
| 509 | Mutation); |
||
| 510 | } |
||
| 511 | /// Use the given action when type index 0 is any type in the given list and |
||
| 512 | /// imm index 0 is anything. Action should not be an action that requires |
||
| 513 | /// mutation. |
||
| 514 | LegalizeRuleSet &actionForTypeWithAnyImm(LegalizeAction Action, |
||
| 515 | std::initializer_list<LLT> Types) { |
||
| 516 | using namespace LegalityPredicates; |
||
| 517 | immIdx(0); // Inform verifier imm idx 0 is handled. |
||
| 518 | return actionIf(Action, typeInSet(typeIdx(0), Types)); |
||
| 519 | } |
||
| 520 | |||
| 521 | LegalizeRuleSet &actionForTypeWithAnyImm( |
||
| 522 | LegalizeAction Action, std::initializer_list<std::pair<LLT, LLT>> Types) { |
||
| 523 | using namespace LegalityPredicates; |
||
| 524 | immIdx(0); // Inform verifier imm idx 0 is handled. |
||
| 525 | return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types)); |
||
| 526 | } |
||
| 527 | |||
| 528 | /// Use the given action when type indexes 0 and 1 are both in the given list. |
||
| 529 | /// That is, the type pair is in the cartesian product of the list. |
||
| 530 | /// Action should not be an action that requires mutation. |
||
| 531 | LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action, |
||
| 532 | std::initializer_list<LLT> Types) { |
||
| 533 | using namespace LegalityPredicates; |
||
| 534 | return actionIf(Action, all(typeInSet(typeIdx(0), Types), |
||
| 535 | typeInSet(typeIdx(1), Types))); |
||
| 536 | } |
||
| 537 | /// Use the given action when type indexes 0 and 1 are both in their |
||
| 538 | /// respective lists. |
||
| 539 | /// That is, the type pair is in the cartesian product of the lists |
||
| 540 | /// Action should not be an action that requires mutation. |
||
| 541 | LegalizeRuleSet & |
||
| 542 | actionForCartesianProduct(LegalizeAction Action, |
||
| 543 | std::initializer_list<LLT> Types0, |
||
| 544 | std::initializer_list<LLT> Types1) { |
||
| 545 | using namespace LegalityPredicates; |
||
| 546 | return actionIf(Action, all(typeInSet(typeIdx(0), Types0), |
||
| 547 | typeInSet(typeIdx(1), Types1))); |
||
| 548 | } |
||
| 549 | /// Use the given action when type indexes 0, 1, and 2 are all in their |
||
| 550 | /// respective lists. |
||
| 551 | /// That is, the type triple is in the cartesian product of the lists |
||
| 552 | /// Action should not be an action that requires mutation. |
||
| 553 | LegalizeRuleSet &actionForCartesianProduct( |
||
| 554 | LegalizeAction Action, std::initializer_list<LLT> Types0, |
||
| 555 | std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) { |
||
| 556 | using namespace LegalityPredicates; |
||
| 557 | return actionIf(Action, all(typeInSet(typeIdx(0), Types0), |
||
| 558 | all(typeInSet(typeIdx(1), Types1), |
||
| 559 | typeInSet(typeIdx(2), Types2)))); |
||
| 560 | } |
||
| 561 | |||
| 562 | public: |
||
| 563 | LegalizeRuleSet() = default; |
||
| 564 | |||
| 565 | bool isAliasedByAnother() { return IsAliasedByAnother; } |
||
| 566 | void setIsAliasedByAnother() { IsAliasedByAnother = true; } |
||
| 567 | void aliasTo(unsigned Opcode) { |
||
| 568 | assert((AliasOf == 0 || AliasOf == Opcode) && |
||
| 569 | "Opcode is already aliased to another opcode"); |
||
| 570 | assert(Rules.empty() && "Aliasing will discard rules"); |
||
| 571 | AliasOf = Opcode; |
||
| 572 | } |
||
| 573 | unsigned getAlias() const { return AliasOf; } |
||
| 574 | |||
| 575 | unsigned immIdx(unsigned ImmIdx) { |
||
| 576 | assert(ImmIdx <= (MCOI::OPERAND_LAST_GENERIC_IMM - |
||
| 577 | MCOI::OPERAND_FIRST_GENERIC_IMM) && |
||
| 578 | "Imm Index is out of bounds"); |
||
| 579 | #ifndef NDEBUG |
||
| 580 | ImmIdxsCovered.set(ImmIdx); |
||
| 581 | #endif |
||
| 582 | return ImmIdx; |
||
| 583 | } |
||
| 584 | |||
| 585 | /// The instruction is legal if predicate is true. |
||
| 586 | LegalizeRuleSet &legalIf(LegalityPredicate Predicate) { |
||
| 587 | // We have no choice but conservatively assume that the free-form |
||
| 588 | // user-provided Predicate properly handles all type indices: |
||
| 589 | markAllIdxsAsCovered(); |
||
| 590 | return actionIf(LegalizeAction::Legal, Predicate); |
||
| 591 | } |
||
| 592 | /// The instruction is legal when type index 0 is any type in the given list. |
||
| 593 | LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) { |
||
| 594 | return actionFor(LegalizeAction::Legal, Types); |
||
| 595 | } |
||
| 596 | /// The instruction is legal when type indexes 0 and 1 is any type pair in the |
||
| 597 | /// given list. |
||
| 598 | LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) { |
||
| 599 | return actionFor(LegalizeAction::Legal, Types); |
||
| 600 | } |
||
| 601 | /// The instruction is legal when type index 0 is any type in the given list |
||
| 602 | /// and imm index 0 is anything. |
||
| 603 | LegalizeRuleSet &legalForTypeWithAnyImm(std::initializer_list<LLT> Types) { |
||
| 604 | markAllIdxsAsCovered(); |
||
| 605 | return actionForTypeWithAnyImm(LegalizeAction::Legal, Types); |
||
| 606 | } |
||
| 607 | |||
| 608 | LegalizeRuleSet &legalForTypeWithAnyImm( |
||
| 609 | std::initializer_list<std::pair<LLT, LLT>> Types) { |
||
| 610 | markAllIdxsAsCovered(); |
||
| 611 | return actionForTypeWithAnyImm(LegalizeAction::Legal, Types); |
||
| 612 | } |
||
| 613 | |||
| 614 | /// The instruction is legal when type indexes 0 and 1 along with the memory |
||
| 615 | /// size and minimum alignment is any type and size tuple in the given list. |
||
| 616 | LegalizeRuleSet &legalForTypesWithMemDesc( |
||
| 617 | std::initializer_list<LegalityPredicates::TypePairAndMemDesc> |
||
| 618 | TypesAndMemDesc) { |
||
| 619 | return actionIf(LegalizeAction::Legal, |
||
| 620 | LegalityPredicates::typePairAndMemDescInSet( |
||
| 621 | typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemDesc)); |
||
| 622 | } |
||
| 623 | /// The instruction is legal when type indexes 0 and 1 are both in the given |
||
| 624 | /// list. That is, the type pair is in the cartesian product of the list. |
||
| 625 | LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) { |
||
| 626 | return actionForCartesianProduct(LegalizeAction::Legal, Types); |
||
| 627 | } |
||
| 628 | /// The instruction is legal when type indexes 0 and 1 are both their |
||
| 629 | /// respective lists. |
||
| 630 | LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0, |
||
| 631 | std::initializer_list<LLT> Types1) { |
||
| 632 | return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1); |
||
| 633 | } |
||
| 634 | /// The instruction is legal when type indexes 0, 1, and 2 are both their |
||
| 635 | /// respective lists. |
||
| 636 | LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0, |
||
| 637 | std::initializer_list<LLT> Types1, |
||
| 638 | std::initializer_list<LLT> Types2) { |
||
| 639 | return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1, |
||
| 640 | Types2); |
||
| 641 | } |
||
| 642 | |||
| 643 | LegalizeRuleSet &alwaysLegal() { |
||
| 644 | using namespace LegalizeMutations; |
||
| 645 | markAllIdxsAsCovered(); |
||
| 646 | return actionIf(LegalizeAction::Legal, always); |
||
| 647 | } |
||
| 648 | |||
| 649 | /// The specified type index is coerced if predicate is true. |
||
| 650 | LegalizeRuleSet &bitcastIf(LegalityPredicate Predicate, |
||
| 651 | LegalizeMutation Mutation) { |
||
| 652 | // We have no choice but conservatively assume that lowering with a |
||
| 653 | // free-form user provided Predicate properly handles all type indices: |
||
| 654 | markAllIdxsAsCovered(); |
||
| 655 | return actionIf(LegalizeAction::Bitcast, Predicate, Mutation); |
||
| 656 | } |
||
| 657 | |||
| 658 | /// The instruction is lowered. |
||
| 659 | LegalizeRuleSet &lower() { |
||
| 660 | using namespace LegalizeMutations; |
||
| 661 | // We have no choice but conservatively assume that predicate-less lowering |
||
| 662 | // properly handles all type indices by design: |
||
| 663 | markAllIdxsAsCovered(); |
||
| 664 | return actionIf(LegalizeAction::Lower, always); |
||
| 665 | } |
||
| 666 | /// The instruction is lowered if predicate is true. Keep type index 0 as the |
||
| 667 | /// same type. |
||
| 668 | LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) { |
||
| 669 | using namespace LegalizeMutations; |
||
| 670 | // We have no choice but conservatively assume that lowering with a |
||
| 671 | // free-form user provided Predicate properly handles all type indices: |
||
| 672 | markAllIdxsAsCovered(); |
||
| 673 | return actionIf(LegalizeAction::Lower, Predicate); |
||
| 674 | } |
||
| 675 | /// The instruction is lowered if predicate is true. |
||
| 676 | LegalizeRuleSet &lowerIf(LegalityPredicate Predicate, |
||
| 677 | LegalizeMutation Mutation) { |
||
| 678 | // We have no choice but conservatively assume that lowering with a |
||
| 679 | // free-form user provided Predicate properly handles all type indices: |
||
| 680 | markAllIdxsAsCovered(); |
||
| 681 | return actionIf(LegalizeAction::Lower, Predicate, Mutation); |
||
| 682 | } |
||
| 683 | /// The instruction is lowered when type index 0 is any type in the given |
||
| 684 | /// list. Keep type index 0 as the same type. |
||
| 685 | LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) { |
||
| 686 | return actionFor(LegalizeAction::Lower, Types); |
||
| 687 | } |
||
| 688 | /// The instruction is lowered when type index 0 is any type in the given |
||
| 689 | /// list. |
||
| 690 | LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types, |
||
| 691 | LegalizeMutation Mutation) { |
||
| 692 | return actionFor(LegalizeAction::Lower, Types, Mutation); |
||
| 693 | } |
||
| 694 | /// The instruction is lowered when type indexes 0 and 1 is any type pair in |
||
| 695 | /// the given list. Keep type index 0 as the same type. |
||
| 696 | LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) { |
||
| 697 | return actionFor(LegalizeAction::Lower, Types); |
||
| 698 | } |
||
| 699 | /// The instruction is lowered when type indexes 0 and 1 is any type pair in |
||
| 700 | /// the given list. |
||
| 701 | LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types, |
||
| 702 | LegalizeMutation Mutation) { |
||
| 703 | return actionFor(LegalizeAction::Lower, Types, Mutation); |
||
| 704 | } |
||
| 705 | /// The instruction is lowered when type indexes 0 and 1 are both in their |
||
| 706 | /// respective lists. |
||
| 707 | LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, |
||
| 708 | std::initializer_list<LLT> Types1) { |
||
| 709 | using namespace LegalityPredicates; |
||
| 710 | return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1); |
||
| 711 | } |
||
| 712 | /// The instruction is lowered when when type indexes 0, 1, and 2 are all in |
||
| 713 | /// their respective lists. |
||
| 714 | LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, |
||
| 715 | std::initializer_list<LLT> Types1, |
||
| 716 | std::initializer_list<LLT> Types2) { |
||
| 717 | using namespace LegalityPredicates; |
||
| 718 | return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1, |
||
| 719 | Types2); |
||
| 720 | } |
||
| 721 | |||
| 722 | /// The instruction is emitted as a library call. |
||
| 723 | LegalizeRuleSet &libcall() { |
||
| 724 | using namespace LegalizeMutations; |
||
| 725 | // We have no choice but conservatively assume that predicate-less lowering |
||
| 726 | // properly handles all type indices by design: |
||
| 727 | markAllIdxsAsCovered(); |
||
| 728 | return actionIf(LegalizeAction::Libcall, always); |
||
| 729 | } |
||
| 730 | |||
| 731 | /// Like legalIf, but for the Libcall action. |
||
| 732 | LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) { |
||
| 733 | // We have no choice but conservatively assume that a libcall with a |
||
| 734 | // free-form user provided Predicate properly handles all type indices: |
||
| 735 | markAllIdxsAsCovered(); |
||
| 736 | return actionIf(LegalizeAction::Libcall, Predicate); |
||
| 737 | } |
||
| 738 | LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) { |
||
| 739 | return actionFor(LegalizeAction::Libcall, Types); |
||
| 740 | } |
||
| 741 | LegalizeRuleSet & |
||
| 742 | libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) { |
||
| 743 | return actionFor(LegalizeAction::Libcall, Types); |
||
| 744 | } |
||
| 745 | LegalizeRuleSet & |
||
| 746 | libcallForCartesianProduct(std::initializer_list<LLT> Types) { |
||
| 747 | return actionForCartesianProduct(LegalizeAction::Libcall, Types); |
||
| 748 | } |
||
| 749 | LegalizeRuleSet & |
||
| 750 | libcallForCartesianProduct(std::initializer_list<LLT> Types0, |
||
| 751 | std::initializer_list<LLT> Types1) { |
||
| 752 | return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1); |
||
| 753 | } |
||
| 754 | |||
| 755 | /// Widen the scalar to the one selected by the mutation if the predicate is |
||
| 756 | /// true. |
||
| 757 | LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate, |
||
| 758 | LegalizeMutation Mutation) { |
||
| 759 | // We have no choice but conservatively assume that an action with a |
||
| 760 | // free-form user provided Predicate properly handles all type indices: |
||
| 761 | markAllIdxsAsCovered(); |
||
| 762 | return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation); |
||
| 763 | } |
||
| 764 | /// Narrow the scalar to the one selected by the mutation if the predicate is |
||
| 765 | /// true. |
||
| 766 | LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate, |
||
| 767 | LegalizeMutation Mutation) { |
||
| 768 | // We have no choice but conservatively assume that an action with a |
||
| 769 | // free-form user provided Predicate properly handles all type indices: |
||
| 770 | markAllIdxsAsCovered(); |
||
| 771 | return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation); |
||
| 772 | } |
||
| 773 | /// Narrow the scalar, specified in mutation, when type indexes 0 and 1 is any |
||
| 774 | /// type pair in the given list. |
||
| 775 | LegalizeRuleSet & |
||
| 776 | narrowScalarFor(std::initializer_list<std::pair<LLT, LLT>> Types, |
||
| 777 | LegalizeMutation Mutation) { |
||
| 778 | return actionFor(LegalizeAction::NarrowScalar, Types, Mutation); |
||
| 779 | } |
||
| 780 | |||
| 781 | /// Add more elements to reach the type selected by the mutation if the |
||
| 782 | /// predicate is true. |
||
| 783 | LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate, |
||
| 784 | LegalizeMutation Mutation) { |
||
| 785 | // We have no choice but conservatively assume that an action with a |
||
| 786 | // free-form user provided Predicate properly handles all type indices: |
||
| 787 | markAllIdxsAsCovered(); |
||
| 788 | return actionIf(LegalizeAction::MoreElements, Predicate, Mutation); |
||
| 789 | } |
||
| 790 | /// Remove elements to reach the type selected by the mutation if the |
||
| 791 | /// predicate is true. |
||
| 792 | LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate, |
||
| 793 | LegalizeMutation Mutation) { |
||
| 794 | // We have no choice but conservatively assume that an action with a |
||
| 795 | // free-form user provided Predicate properly handles all type indices: |
||
| 796 | markAllIdxsAsCovered(); |
||
| 797 | return actionIf(LegalizeAction::FewerElements, Predicate, Mutation); |
||
| 798 | } |
||
| 799 | |||
| 800 | /// The instruction is unsupported. |
||
| 801 | LegalizeRuleSet &unsupported() { |
||
| 802 | markAllIdxsAsCovered(); |
||
| 803 | return actionIf(LegalizeAction::Unsupported, always); |
||
| 804 | } |
||
| 805 | LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) { |
||
| 806 | return actionIf(LegalizeAction::Unsupported, Predicate); |
||
| 807 | } |
||
| 808 | |||
| 809 | LegalizeRuleSet &unsupportedFor(std::initializer_list<LLT> Types) { |
||
| 810 | return actionFor(LegalizeAction::Unsupported, Types); |
||
| 811 | } |
||
| 812 | |||
| 813 | LegalizeRuleSet &unsupportedIfMemSizeNotPow2() { |
||
| 814 | return actionIf(LegalizeAction::Unsupported, |
||
| 815 | LegalityPredicates::memSizeInBytesNotPow2(0)); |
||
| 816 | } |
||
| 817 | |||
| 818 | /// Lower a memory operation if the memory size, rounded to bytes, is not a |
||
| 819 | /// power of 2. For example, this will not trigger for s1 or s7, but will for |
||
| 820 | /// s24. |
||
| 821 | LegalizeRuleSet &lowerIfMemSizeNotPow2() { |
||
| 822 | return actionIf(LegalizeAction::Lower, |
||
| 823 | LegalityPredicates::memSizeInBytesNotPow2(0)); |
||
| 824 | } |
||
| 825 | |||
| 826 | /// Lower a memory operation if the memory access size is not a round power of |
||
| 827 | /// 2 byte size. This is stricter than lowerIfMemSizeNotPow2, and more likely |
||
| 828 | /// what you want (e.g. this will lower s1, s7 and s24). |
||
| 829 | LegalizeRuleSet &lowerIfMemSizeNotByteSizePow2() { |
||
| 830 | return actionIf(LegalizeAction::Lower, |
||
| 831 | LegalityPredicates::memSizeNotByteSizePow2(0)); |
||
| 832 | } |
||
| 833 | |||
| 834 | LegalizeRuleSet &customIf(LegalityPredicate Predicate) { |
||
| 835 | // We have no choice but conservatively assume that a custom action with a |
||
| 836 | // free-form user provided Predicate properly handles all type indices: |
||
| 837 | markAllIdxsAsCovered(); |
||
| 838 | return actionIf(LegalizeAction::Custom, Predicate); |
||
| 839 | } |
||
| 840 | LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) { |
||
| 841 | return actionFor(LegalizeAction::Custom, Types); |
||
| 842 | } |
||
| 843 | |||
| 844 | /// The instruction is custom when type indexes 0 and 1 is any type pair in the |
||
| 845 | /// given list. |
||
| 846 | LegalizeRuleSet &customFor(std::initializer_list<std::pair<LLT, LLT>> Types) { |
||
| 847 | return actionFor(LegalizeAction::Custom, Types); |
||
| 848 | } |
||
| 849 | |||
| 850 | LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) { |
||
| 851 | return actionForCartesianProduct(LegalizeAction::Custom, Types); |
||
| 852 | } |
||
| 853 | /// The instruction is custom when type indexes 0 and 1 are both in their |
||
| 854 | /// respective lists. |
||
| 855 | LegalizeRuleSet & |
||
| 856 | customForCartesianProduct(std::initializer_list<LLT> Types0, |
||
| 857 | std::initializer_list<LLT> Types1) { |
||
| 858 | return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1); |
||
| 859 | } |
||
| 860 | /// The instruction is custom when when type indexes 0, 1, and 2 are all in |
||
| 861 | /// their respective lists. |
||
| 862 | LegalizeRuleSet & |
||
| 863 | customForCartesianProduct(std::initializer_list<LLT> Types0, |
||
| 864 | std::initializer_list<LLT> Types1, |
||
| 865 | std::initializer_list<LLT> Types2) { |
||
| 866 | return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1, |
||
| 867 | Types2); |
||
| 868 | } |
||
| 869 | |||
| 870 | /// Unconditionally custom lower. |
||
| 871 | LegalizeRuleSet &custom() { |
||
| 872 | return customIf(always); |
||
| 873 | } |
||
| 874 | |||
| 875 | /// Widen the scalar to the next power of two that is at least MinSize. |
||
| 876 | /// No effect if the type is not a scalar or is a power of two. |
||
| 877 | LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx, |
||
| 878 | unsigned MinSize = 0) { |
||
| 879 | using namespace LegalityPredicates; |
||
| 880 | return actionIf( |
||
| 881 | LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)), |
||
| 882 | LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize)); |
||
| 883 | } |
||
| 884 | |||
| 885 | /// Widen the scalar to the next multiple of Size. No effect if the |
||
| 886 | /// type is not a scalar or is a multiple of Size. |
||
| 887 | LegalizeRuleSet &widenScalarToNextMultipleOf(unsigned TypeIdx, |
||
| 888 | unsigned Size) { |
||
| 889 | using namespace LegalityPredicates; |
||
| 890 | return actionIf( |
||
| 891 | LegalizeAction::WidenScalar, sizeNotMultipleOf(typeIdx(TypeIdx), Size), |
||
| 892 | LegalizeMutations::widenScalarOrEltToNextMultipleOf(TypeIdx, Size)); |
||
| 893 | } |
||
| 894 | |||
| 895 | /// Widen the scalar or vector element type to the next power of two that is |
||
| 896 | /// at least MinSize. No effect if the scalar size is a power of two. |
||
| 897 | LegalizeRuleSet &widenScalarOrEltToNextPow2(unsigned TypeIdx, |
||
| 898 | unsigned MinSize = 0) { |
||
| 899 | using namespace LegalityPredicates; |
||
| 900 | return actionIf( |
||
| 901 | LegalizeAction::WidenScalar, scalarOrEltSizeNotPow2(typeIdx(TypeIdx)), |
||
| 902 | LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize)); |
||
| 903 | } |
||
| 904 | |||
| 905 | LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) { |
||
| 906 | using namespace LegalityPredicates; |
||
| 907 | return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)), |
||
| 908 | Mutation); |
||
| 909 | } |
||
| 910 | |||
| 911 | LegalizeRuleSet &scalarize(unsigned TypeIdx) { |
||
| 912 | using namespace LegalityPredicates; |
||
| 913 | return actionIf(LegalizeAction::FewerElements, isVector(typeIdx(TypeIdx)), |
||
| 914 | LegalizeMutations::scalarize(TypeIdx)); |
||
| 915 | } |
||
| 916 | |||
| 917 | LegalizeRuleSet &scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx) { |
||
| 918 | using namespace LegalityPredicates; |
||
| 919 | return actionIf(LegalizeAction::FewerElements, |
||
| 920 | all(Predicate, isVector(typeIdx(TypeIdx))), |
||
| 921 | LegalizeMutations::scalarize(TypeIdx)); |
||
| 922 | } |
||
| 923 | |||
| 924 | /// Ensure the scalar or element is at least as wide as Ty. |
||
| 925 | LegalizeRuleSet &minScalarOrElt(unsigned TypeIdx, const LLT Ty) { |
||
| 926 | using namespace LegalityPredicates; |
||
| 927 | using namespace LegalizeMutations; |
||
| 928 | return actionIf(LegalizeAction::WidenScalar, |
||
| 929 | scalarOrEltNarrowerThan(TypeIdx, Ty.getScalarSizeInBits()), |
||
| 930 | changeElementTo(typeIdx(TypeIdx), Ty)); |
||
| 931 | } |
||
| 932 | |||
| 933 | /// Ensure the scalar or element is at least as wide as Ty. |
||
| 934 | LegalizeRuleSet &minScalarOrEltIf(LegalityPredicate Predicate, |
||
| 935 | unsigned TypeIdx, const LLT Ty) { |
||
| 936 | using namespace LegalityPredicates; |
||
| 937 | using namespace LegalizeMutations; |
||
| 938 | return actionIf(LegalizeAction::WidenScalar, |
||
| 939 | all(Predicate, scalarOrEltNarrowerThan( |
||
| 940 | TypeIdx, Ty.getScalarSizeInBits())), |
||
| 941 | changeElementTo(typeIdx(TypeIdx), Ty)); |
||
| 942 | } |
||
| 943 | |||
| 944 | /// Ensure the scalar is at least as wide as Ty. |
||
| 945 | LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT Ty) { |
||
| 946 | using namespace LegalityPredicates; |
||
| 947 | using namespace LegalizeMutations; |
||
| 948 | return actionIf(LegalizeAction::WidenScalar, |
||
| 949 | scalarNarrowerThan(TypeIdx, Ty.getSizeInBits()), |
||
| 950 | changeTo(typeIdx(TypeIdx), Ty)); |
||
| 951 | } |
||
| 952 | |||
| 953 | /// Ensure the scalar is at least as wide as Ty if condition is met. |
||
| 954 | LegalizeRuleSet &minScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, |
||
| 955 | const LLT Ty) { |
||
| 956 | using namespace LegalityPredicates; |
||
| 957 | using namespace LegalizeMutations; |
||
| 958 | return actionIf( |
||
| 959 | LegalizeAction::WidenScalar, |
||
| 960 | [=](const LegalityQuery &Query) { |
||
| 961 | const LLT QueryTy = Query.Types[TypeIdx]; |
||
| 962 | return QueryTy.isScalar() && |
||
| 963 | QueryTy.getSizeInBits() < Ty.getSizeInBits() && |
||
| 964 | Predicate(Query); |
||
| 965 | }, |
||
| 966 | changeTo(typeIdx(TypeIdx), Ty)); |
||
| 967 | } |
||
| 968 | |||
| 969 | /// Ensure the scalar is at most as wide as Ty. |
||
| 970 | LegalizeRuleSet &maxScalarOrElt(unsigned TypeIdx, const LLT Ty) { |
||
| 971 | using namespace LegalityPredicates; |
||
| 972 | using namespace LegalizeMutations; |
||
| 973 | return actionIf(LegalizeAction::NarrowScalar, |
||
| 974 | scalarOrEltWiderThan(TypeIdx, Ty.getScalarSizeInBits()), |
||
| 975 | changeElementTo(typeIdx(TypeIdx), Ty)); |
||
| 976 | } |
||
| 977 | |||
| 978 | /// Ensure the scalar is at most as wide as Ty. |
||
| 979 | LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT Ty) { |
||
| 980 | using namespace LegalityPredicates; |
||
| 981 | using namespace LegalizeMutations; |
||
| 982 | return actionIf(LegalizeAction::NarrowScalar, |
||
| 983 | scalarWiderThan(TypeIdx, Ty.getSizeInBits()), |
||
| 984 | changeTo(typeIdx(TypeIdx), Ty)); |
||
| 985 | } |
||
| 986 | |||
| 987 | /// Conditionally limit the maximum size of the scalar. |
||
| 988 | /// For example, when the maximum size of one type depends on the size of |
||
| 989 | /// another such as extracting N bits from an M bit container. |
||
| 990 | LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, |
||
| 991 | const LLT Ty) { |
||
| 992 | using namespace LegalityPredicates; |
||
| 993 | using namespace LegalizeMutations; |
||
| 994 | return actionIf( |
||
| 995 | LegalizeAction::NarrowScalar, |
||
| 996 | [=](const LegalityQuery &Query) { |
||
| 997 | const LLT QueryTy = Query.Types[TypeIdx]; |
||
| 998 | return QueryTy.isScalar() && |
||
| 999 | QueryTy.getSizeInBits() > Ty.getSizeInBits() && |
||
| 1000 | Predicate(Query); |
||
| 1001 | }, |
||
| 1002 | changeElementTo(typeIdx(TypeIdx), Ty)); |
||
| 1003 | } |
||
| 1004 | |||
| 1005 | /// Limit the range of scalar sizes to MinTy and MaxTy. |
||
| 1006 | LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT MinTy, |
||
| 1007 | const LLT MaxTy) { |
||
| 1008 | assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types"); |
||
| 1009 | return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy); |
||
| 1010 | } |
||
| 1011 | |||
| 1012 | /// Limit the range of scalar sizes to MinTy and MaxTy. |
||
| 1013 | LegalizeRuleSet &clampScalarOrElt(unsigned TypeIdx, const LLT MinTy, |
||
| 1014 | const LLT MaxTy) { |
||
| 1015 | return minScalarOrElt(TypeIdx, MinTy).maxScalarOrElt(TypeIdx, MaxTy); |
||
| 1016 | } |
||
| 1017 | |||
| 1018 | /// Widen the scalar to match the size of another. |
||
| 1019 | LegalizeRuleSet &minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx) { |
||
| 1020 | typeIdx(TypeIdx); |
||
| 1021 | return widenScalarIf( |
||
| 1022 | [=](const LegalityQuery &Query) { |
||
| 1023 | return Query.Types[LargeTypeIdx].getScalarSizeInBits() > |
||
| 1024 | Query.Types[TypeIdx].getSizeInBits(); |
||
| 1025 | }, |
||
| 1026 | LegalizeMutations::changeElementSizeTo(TypeIdx, LargeTypeIdx)); |
||
| 1027 | } |
||
| 1028 | |||
| 1029 | /// Narrow the scalar to match the size of another. |
||
| 1030 | LegalizeRuleSet &maxScalarSameAs(unsigned TypeIdx, unsigned NarrowTypeIdx) { |
||
| 1031 | typeIdx(TypeIdx); |
||
| 1032 | return narrowScalarIf( |
||
| 1033 | [=](const LegalityQuery &Query) { |
||
| 1034 | return Query.Types[NarrowTypeIdx].getScalarSizeInBits() < |
||
| 1035 | Query.Types[TypeIdx].getSizeInBits(); |
||
| 1036 | }, |
||
| 1037 | LegalizeMutations::changeElementSizeTo(TypeIdx, NarrowTypeIdx)); |
||
| 1038 | } |
||
| 1039 | |||
| 1040 | /// Change the type \p TypeIdx to have the same scalar size as type \p |
||
| 1041 | /// SameSizeIdx. |
||
| 1042 | LegalizeRuleSet &scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx) { |
||
| 1043 | return minScalarSameAs(TypeIdx, SameSizeIdx) |
||
| 1044 | .maxScalarSameAs(TypeIdx, SameSizeIdx); |
||
| 1045 | } |
||
| 1046 | |||
| 1047 | /// Conditionally widen the scalar or elt to match the size of another. |
||
| 1048 | LegalizeRuleSet &minScalarEltSameAsIf(LegalityPredicate Predicate, |
||
| 1049 | unsigned TypeIdx, unsigned LargeTypeIdx) { |
||
| 1050 | typeIdx(TypeIdx); |
||
| 1051 | return widenScalarIf( |
||
| 1052 | [=](const LegalityQuery &Query) { |
||
| 1053 | return Query.Types[LargeTypeIdx].getScalarSizeInBits() > |
||
| 1054 | Query.Types[TypeIdx].getScalarSizeInBits() && |
||
| 1055 | Predicate(Query); |
||
| 1056 | }, |
||
| 1057 | [=](const LegalityQuery &Query) { |
||
| 1058 | LLT T = Query.Types[LargeTypeIdx]; |
||
| 1059 | if (T.isVector() && T.getElementType().isPointer()) |
||
| 1060 | T = T.changeElementType(LLT::scalar(T.getScalarSizeInBits())); |
||
| 1061 | return std::make_pair(TypeIdx, T); |
||
| 1062 | }); |
||
| 1063 | } |
||
| 1064 | |||
| 1065 | /// Conditionally narrow the scalar or elt to match the size of another. |
||
| 1066 | LegalizeRuleSet &maxScalarEltSameAsIf(LegalityPredicate Predicate, |
||
| 1067 | unsigned TypeIdx, |
||
| 1068 | unsigned SmallTypeIdx) { |
||
| 1069 | typeIdx(TypeIdx); |
||
| 1070 | return narrowScalarIf( |
||
| 1071 | [=](const LegalityQuery &Query) { |
||
| 1072 | return Query.Types[SmallTypeIdx].getScalarSizeInBits() < |
||
| 1073 | Query.Types[TypeIdx].getScalarSizeInBits() && |
||
| 1074 | Predicate(Query); |
||
| 1075 | }, |
||
| 1076 | [=](const LegalityQuery &Query) { |
||
| 1077 | LLT T = Query.Types[SmallTypeIdx]; |
||
| 1078 | return std::make_pair(TypeIdx, T); |
||
| 1079 | }); |
||
| 1080 | } |
||
| 1081 | |||
| 1082 | /// Add more elements to the vector to reach the next power of two. |
||
| 1083 | /// No effect if the type is not a vector or the element count is a power of |
||
| 1084 | /// two. |
||
| 1085 | LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) { |
||
| 1086 | using namespace LegalityPredicates; |
||
| 1087 | return actionIf(LegalizeAction::MoreElements, |
||
| 1088 | numElementsNotPow2(typeIdx(TypeIdx)), |
||
| 1089 | LegalizeMutations::moreElementsToNextPow2(TypeIdx)); |
||
| 1090 | } |
||
| 1091 | |||
| 1092 | /// Limit the number of elements in EltTy vectors to at least MinElements. |
||
| 1093 | LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT EltTy, |
||
| 1094 | unsigned MinElements) { |
||
| 1095 | // Mark the type index as covered: |
||
| 1096 | typeIdx(TypeIdx); |
||
| 1097 | return actionIf( |
||
| 1098 | LegalizeAction::MoreElements, |
||
| 1099 | [=](const LegalityQuery &Query) { |
||
| 1100 | LLT VecTy = Query.Types[TypeIdx]; |
||
| 1101 | return VecTy.isVector() && VecTy.getElementType() == EltTy && |
||
| 1102 | VecTy.getNumElements() < MinElements; |
||
| 1103 | }, |
||
| 1104 | [=](const LegalityQuery &Query) { |
||
| 1105 | LLT VecTy = Query.Types[TypeIdx]; |
||
| 1106 | return std::make_pair( |
||
| 1107 | TypeIdx, LLT::fixed_vector(MinElements, VecTy.getElementType())); |
||
| 1108 | }); |
||
| 1109 | } |
||
| 1110 | |||
| 1111 | /// Set number of elements to nearest larger multiple of NumElts. |
||
| 1112 | LegalizeRuleSet &alignNumElementsTo(unsigned TypeIdx, const LLT EltTy, |
||
| 1113 | unsigned NumElts) { |
||
| 1114 | typeIdx(TypeIdx); |
||
| 1115 | return actionIf( |
||
| 1116 | LegalizeAction::MoreElements, |
||
| 1117 | [=](const LegalityQuery &Query) { |
||
| 1118 | LLT VecTy = Query.Types[TypeIdx]; |
||
| 1119 | return VecTy.isVector() && VecTy.getElementType() == EltTy && |
||
| 1120 | (VecTy.getNumElements() % NumElts != 0); |
||
| 1121 | }, |
||
| 1122 | [=](const LegalityQuery &Query) { |
||
| 1123 | LLT VecTy = Query.Types[TypeIdx]; |
||
| 1124 | unsigned NewSize = alignTo(VecTy.getNumElements(), NumElts); |
||
| 1125 | return std::make_pair( |
||
| 1126 | TypeIdx, LLT::fixed_vector(NewSize, VecTy.getElementType())); |
||
| 1127 | }); |
||
| 1128 | } |
||
| 1129 | |||
| 1130 | /// Limit the number of elements in EltTy vectors to at most MaxElements. |
||
| 1131 | LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, |
||
| 1132 | unsigned MaxElements) { |
||
| 1133 | // Mark the type index as covered: |
||
| 1134 | typeIdx(TypeIdx); |
||
| 1135 | return actionIf( |
||
| 1136 | LegalizeAction::FewerElements, |
||
| 1137 | [=](const LegalityQuery &Query) { |
||
| 1138 | LLT VecTy = Query.Types[TypeIdx]; |
||
| 1139 | return VecTy.isVector() && VecTy.getElementType() == EltTy && |
||
| 1140 | VecTy.getNumElements() > MaxElements; |
||
| 1141 | }, |
||
| 1142 | [=](const LegalityQuery &Query) { |
||
| 1143 | LLT VecTy = Query.Types[TypeIdx]; |
||
| 1144 | LLT NewTy = LLT::scalarOrVector(ElementCount::getFixed(MaxElements), |
||
| 1145 | VecTy.getElementType()); |
||
| 1146 | return std::make_pair(TypeIdx, NewTy); |
||
| 1147 | }); |
||
| 1148 | } |
||
| 1149 | /// Limit the number of elements for the given vectors to at least MinTy's |
||
| 1150 | /// number of elements and at most MaxTy's number of elements. |
||
| 1151 | /// |
||
| 1152 | /// No effect if the type is not a vector or does not have the same element |
||
| 1153 | /// type as the constraints. |
||
| 1154 | /// The element type of MinTy and MaxTy must match. |
||
| 1155 | LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT MinTy, |
||
| 1156 | const LLT MaxTy) { |
||
| 1157 | assert(MinTy.getElementType() == MaxTy.getElementType() && |
||
| 1158 | "Expected element types to agree"); |
||
| 1159 | |||
| 1160 | const LLT EltTy = MinTy.getElementType(); |
||
| 1161 | return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements()) |
||
| 1162 | .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements()); |
||
| 1163 | } |
||
| 1164 | |||
| 1165 | /// Express \p EltTy vectors strictly using vectors with \p NumElts elements |
||
| 1166 | /// (or scalars when \p NumElts equals 1). |
||
| 1167 | /// First pad with undef elements to nearest larger multiple of \p NumElts. |
||
| 1168 | /// Then perform split with all sub-instructions having the same type. |
||
| 1169 | /// Using clampMaxNumElements (non-strict) can result in leftover instruction |
||
| 1170 | /// with different type (fewer elements then \p NumElts or scalar). |
||
| 1171 | /// No effect if the type is not a vector. |
||
| 1172 | LegalizeRuleSet &clampMaxNumElementsStrict(unsigned TypeIdx, const LLT EltTy, |
||
| 1173 | unsigned NumElts) { |
||
| 1174 | return alignNumElementsTo(TypeIdx, EltTy, NumElts) |
||
| 1175 | .clampMaxNumElements(TypeIdx, EltTy, NumElts); |
||
| 1176 | } |
||
| 1177 | |||
| 1178 | /// Fallback on the previous implementation. This should only be used while |
||
| 1179 | /// porting a rule. |
||
| 1180 | LegalizeRuleSet &fallback() { |
||
| 1181 | add({always, LegalizeAction::UseLegacyRules}); |
||
| 1182 | return *this; |
||
| 1183 | } |
||
| 1184 | |||
| 1185 | /// Check if there is no type index which is obviously not handled by the |
||
| 1186 | /// LegalizeRuleSet in any way at all. |
||
| 1187 | /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set. |
||
| 1188 | bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const; |
||
| 1189 | /// Check if there is no imm index which is obviously not handled by the |
||
| 1190 | /// LegalizeRuleSet in any way at all. |
||
| 1191 | /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set. |
||
| 1192 | bool verifyImmIdxsCoverage(unsigned NumImmIdxs) const; |
||
| 1193 | |||
| 1194 | /// Apply the ruleset to the given LegalityQuery. |
||
| 1195 | LegalizeActionStep apply(const LegalityQuery &Query) const; |
||
| 1196 | }; |
||
| 1197 | |||
| 1198 | class LegalizerInfo { |
||
| 1199 | public: |
||
| 1200 | virtual ~LegalizerInfo() = default; |
||
| 1201 | |||
| 1202 | const LegacyLegalizerInfo &getLegacyLegalizerInfo() const { |
||
| 1203 | return LegacyInfo; |
||
| 1204 | } |
||
| 1205 | LegacyLegalizerInfo &getLegacyLegalizerInfo() { return LegacyInfo; } |
||
| 1206 | |||
| 1207 | unsigned getOpcodeIdxForOpcode(unsigned Opcode) const; |
||
| 1208 | unsigned getActionDefinitionsIdx(unsigned Opcode) const; |
||
| 1209 | |||
| 1210 | /// Perform simple self-diagnostic and assert if there is anything obviously |
||
| 1211 | /// wrong with the actions set up. |
||
| 1212 | void verify(const MCInstrInfo &MII) const; |
||
| 1213 | |||
| 1214 | /// Get the action definitions for the given opcode. Use this to run a |
||
| 1215 | /// LegalityQuery through the definitions. |
||
| 1216 | const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const; |
||
| 1217 | |||
| 1218 | /// Get the action definition builder for the given opcode. Use this to define |
||
| 1219 | /// the action definitions. |
||
| 1220 | /// |
||
| 1221 | /// It is an error to request an opcode that has already been requested by the |
||
| 1222 | /// multiple-opcode variant. |
||
| 1223 | LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode); |
||
| 1224 | |||
| 1225 | /// Get the action definition builder for the given set of opcodes. Use this |
||
| 1226 | /// to define the action definitions for multiple opcodes at once. The first |
||
| 1227 | /// opcode given will be considered the representative opcode and will hold |
||
| 1228 | /// the definitions whereas the other opcodes will be configured to refer to |
||
| 1229 | /// the representative opcode. This lowers memory requirements and very |
||
| 1230 | /// slightly improves performance. |
||
| 1231 | /// |
||
| 1232 | /// It would be very easy to introduce unexpected side-effects as a result of |
||
| 1233 | /// this aliasing if it were permitted to request different but intersecting |
||
| 1234 | /// sets of opcodes but that is difficult to keep track of. It is therefore an |
||
| 1235 | /// error to request the same opcode twice using this API, to request an |
||
| 1236 | /// opcode that already has definitions, or to use the single-opcode API on an |
||
| 1237 | /// opcode that has already been requested by this API. |
||
| 1238 | LegalizeRuleSet & |
||
| 1239 | getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes); |
||
| 1240 | void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom); |
||
| 1241 | |||
| 1242 | /// Determine what action should be taken to legalize the described |
||
| 1243 | /// instruction. Requires computeTables to have been called. |
||
| 1244 | /// |
||
| 1245 | /// \returns a description of the next legalization step to perform. |
||
| 1246 | LegalizeActionStep getAction(const LegalityQuery &Query) const; |
||
| 1247 | |||
| 1248 | /// Determine what action should be taken to legalize the given generic |
||
| 1249 | /// instruction. |
||
| 1250 | /// |
||
| 1251 | /// \returns a description of the next legalization step to perform. |
||
| 1252 | LegalizeActionStep getAction(const MachineInstr &MI, |
||
| 1253 | const MachineRegisterInfo &MRI) const; |
||
| 1254 | |||
| 1255 | bool isLegal(const LegalityQuery &Query) const { |
||
| 1256 | return getAction(Query).Action == LegalizeAction::Legal; |
||
| 1257 | } |
||
| 1258 | |||
| 1259 | bool isLegalOrCustom(const LegalityQuery &Query) const { |
||
| 1260 | auto Action = getAction(Query).Action; |
||
| 1261 | return Action == LegalizeAction::Legal || Action == LegalizeAction::Custom; |
||
| 1262 | } |
||
| 1263 | |||
| 1264 | bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; |
||
| 1265 | bool isLegalOrCustom(const MachineInstr &MI, |
||
| 1266 | const MachineRegisterInfo &MRI) const; |
||
| 1267 | |||
| 1268 | /// Called for instructions with the Custom LegalizationAction. |
||
| 1269 | virtual bool legalizeCustom(LegalizerHelper &Helper, |
||
| 1270 | MachineInstr &MI) const { |
||
| 1271 | llvm_unreachable("must implement this if custom action is used"); |
||
| 1272 | } |
||
| 1273 | |||
| 1274 | /// \returns true if MI is either legal or has been legalized and false if not |
||
| 1275 | /// legal. |
||
| 1276 | /// Return true if MI is either legal or has been legalized and false |
||
| 1277 | /// if not legal. |
||
| 1278 | virtual bool legalizeIntrinsic(LegalizerHelper &Helper, |
||
| 1279 | MachineInstr &MI) const { |
||
| 1280 | return true; |
||
| 1281 | } |
||
| 1282 | |||
| 1283 | /// Return the opcode (SEXT/ZEXT/ANYEXT) that should be performed while |
||
| 1284 | /// widening a constant of type SmallTy which targets can override. |
||
| 1285 | /// For eg, the DAG does (SmallTy.isByteSized() ? G_SEXT : G_ZEXT) which |
||
| 1286 | /// will be the default. |
||
| 1287 | virtual unsigned getExtOpcodeForWideningConstant(LLT SmallTy) const; |
||
| 1288 | |||
| 1289 | private: |
||
| 1290 | static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START; |
||
| 1291 | static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END; |
||
| 1292 | |||
| 1293 | LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1]; |
||
| 1294 | LegacyLegalizerInfo LegacyInfo; |
||
| 1295 | }; |
||
| 1296 | |||
| 1297 | #ifndef NDEBUG |
||
| 1298 | /// Checks that MIR is fully legal, returns an illegal instruction if it's not, |
||
| 1299 | /// nullptr otherwise |
||
| 1300 | const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF); |
||
| 1301 | #endif |
||
| 1302 | |||
| 1303 | } // end namespace llvm. |
||
| 1304 | |||
| 1305 | #endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |