Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- FastISel.h - Definition of the FastISel class ------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// \file
10
/// This file defines the FastISel class.
11
///
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_CODEGEN_FASTISEL_H
15
#define LLVM_CODEGEN_FASTISEL_H
16
 
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/SmallVector.h"
19
#include "llvm/ADT/StringRef.h"
20
#include "llvm/CodeGen/MachineBasicBlock.h"
21
#include "llvm/CodeGen/MachineInstrBuilder.h"
22
#include "llvm/CodeGen/TargetLowering.h"
23
#include "llvm/IR/Attributes.h"
24
#include "llvm/IR/CallingConv.h"
25
#include "llvm/IR/DebugLoc.h"
26
#include "llvm/IR/DerivedTypes.h"
27
#include "llvm/IR/InstrTypes.h"
28
#include "llvm/Support/MachineValueType.h"
29
#include <cstdint>
30
#include <utility>
31
 
32
namespace llvm {
33
 
34
class AllocaInst;
35
class Instruction;
36
class IntrinsicInst;
37
class BasicBlock;
38
class CallInst;
39
class Constant;
40
class ConstantFP;
41
class DataLayout;
42
class FunctionLoweringInfo;
43
class LoadInst;
44
class MachineConstantPool;
45
class MachineFrameInfo;
46
class MachineFunction;
47
class MachineInstr;
48
class MachineMemOperand;
49
class MachineOperand;
50
class MachineRegisterInfo;
51
class MCContext;
52
class MCInstrDesc;
53
class MCSymbol;
54
class TargetInstrInfo;
55
class TargetLibraryInfo;
56
class TargetMachine;
57
class TargetRegisterClass;
58
class TargetRegisterInfo;
59
class Type;
60
class User;
61
class Value;
62
 
63
/// This is a fast-path instruction selection class that generates poor
64
/// code and doesn't support illegal types or non-trivial lowering, but runs
65
/// quickly.
66
class FastISel {
67
public:
68
  using ArgListEntry = TargetLoweringBase::ArgListEntry;
69
  using ArgListTy = TargetLoweringBase::ArgListTy;
70
  struct CallLoweringInfo {
71
    Type *RetTy = nullptr;
72
    bool RetSExt : 1;
73
    bool RetZExt : 1;
74
    bool IsVarArg : 1;
75
    bool IsInReg : 1;
76
    bool DoesNotReturn : 1;
77
    bool IsReturnValueUsed : 1;
78
    bool IsPatchPoint : 1;
79
 
80
    // IsTailCall Should be modified by implementations of FastLowerCall
81
    // that perform tail call conversions.
82
    bool IsTailCall = false;
83
 
84
    unsigned NumFixedArgs = -1;
85
    CallingConv::ID CallConv = CallingConv::C;
86
    const Value *Callee = nullptr;
87
    MCSymbol *Symbol = nullptr;
88
    ArgListTy Args;
89
    const CallBase *CB = nullptr;
90
    MachineInstr *Call = nullptr;
91
    Register ResultReg;
92
    unsigned NumResultRegs = 0;
93
 
94
    SmallVector<Value *, 16> OutVals;
95
    SmallVector<ISD::ArgFlagsTy, 16> OutFlags;
96
    SmallVector<Register, 16> OutRegs;
97
    SmallVector<ISD::InputArg, 4> Ins;
98
    SmallVector<Register, 4> InRegs;
99
 
100
    CallLoweringInfo()
101
        : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false),
102
          DoesNotReturn(false), IsReturnValueUsed(true), IsPatchPoint(false) {}
103
 
104
    CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
105
                                const Value *Target, ArgListTy &&ArgsList,
106
                                const CallBase &Call) {
107
      RetTy = ResultTy;
108
      Callee = Target;
109
 
110
      IsInReg = Call.hasRetAttr(Attribute::InReg);
111
      DoesNotReturn = Call.doesNotReturn();
112
      IsVarArg = FuncTy->isVarArg();
113
      IsReturnValueUsed = !Call.use_empty();
114
      RetSExt = Call.hasRetAttr(Attribute::SExt);
115
      RetZExt = Call.hasRetAttr(Attribute::ZExt);
116
 
117
      CallConv = Call.getCallingConv();
118
      Args = std::move(ArgsList);
119
      NumFixedArgs = FuncTy->getNumParams();
120
 
121
      CB = &Call;
122
 
123
      return *this;
124
    }
125
 
126
    CallLoweringInfo &setCallee(Type *ResultTy, FunctionType *FuncTy,
127
                                MCSymbol *Target, ArgListTy &&ArgsList,
128
                                const CallBase &Call,
129
                                unsigned FixedArgs = ~0U) {
130
      RetTy = ResultTy;
131
      Callee = Call.getCalledOperand();
132
      Symbol = Target;
133
 
134
      IsInReg = Call.hasRetAttr(Attribute::InReg);
135
      DoesNotReturn = Call.doesNotReturn();
136
      IsVarArg = FuncTy->isVarArg();
137
      IsReturnValueUsed = !Call.use_empty();
138
      RetSExt = Call.hasRetAttr(Attribute::SExt);
139
      RetZExt = Call.hasRetAttr(Attribute::ZExt);
140
 
141
      CallConv = Call.getCallingConv();
142
      Args = std::move(ArgsList);
143
      NumFixedArgs = (FixedArgs == ~0U) ? FuncTy->getNumParams() : FixedArgs;
144
 
145
      CB = &Call;
146
 
147
      return *this;
148
    }
149
 
150
    CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
151
                                const Value *Target, ArgListTy &&ArgsList,
152
                                unsigned FixedArgs = ~0U) {
153
      RetTy = ResultTy;
154
      Callee = Target;
155
      CallConv = CC;
156
      Args = std::move(ArgsList);
157
      NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
158
      return *this;
159
    }
160
 
161
    CallLoweringInfo &setCallee(const DataLayout &DL, MCContext &Ctx,
162
                                CallingConv::ID CC, Type *ResultTy,
163
                                StringRef Target, ArgListTy &&ArgsList,
164
                                unsigned FixedArgs = ~0U);
165
 
166
    CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultTy,
167
                                MCSymbol *Target, ArgListTy &&ArgsList,
168
                                unsigned FixedArgs = ~0U) {
169
      RetTy = ResultTy;
170
      Symbol = Target;
171
      CallConv = CC;
172
      Args = std::move(ArgsList);
173
      NumFixedArgs = (FixedArgs == ~0U) ? Args.size() : FixedArgs;
174
      return *this;
175
    }
176
 
177
    CallLoweringInfo &setTailCall(bool Value = true) {
178
      IsTailCall = Value;
179
      return *this;
180
    }
181
 
182
    CallLoweringInfo &setIsPatchPoint(bool Value = true) {
183
      IsPatchPoint = Value;
184
      return *this;
185
    }
186
 
187
    ArgListTy &getArgs() { return Args; }
188
 
189
    void clearOuts() {
190
      OutVals.clear();
191
      OutFlags.clear();
192
      OutRegs.clear();
193
    }
194
 
195
    void clearIns() {
196
      Ins.clear();
197
      InRegs.clear();
198
    }
199
  };
200
 
201
protected:
202
  DenseMap<const Value *, Register> LocalValueMap;
203
  FunctionLoweringInfo &FuncInfo;
204
  MachineFunction *MF;
205
  MachineRegisterInfo &MRI;
206
  MachineFrameInfo &MFI;
207
  MachineConstantPool &MCP;
208
  MIMetadata MIMD;
209
  const TargetMachine &TM;
210
  const DataLayout &DL;
211
  const TargetInstrInfo &TII;
212
  const TargetLowering &TLI;
213
  const TargetRegisterInfo &TRI;
214
  const TargetLibraryInfo *LibInfo;
215
  bool SkipTargetIndependentISel;
216
 
217
  /// The position of the last instruction for materializing constants
218
  /// for use in the current block. It resets to EmitStartPt when it makes sense
219
  /// (for example, it's usually profitable to avoid function calls between the
220
  /// definition and the use)
221
  MachineInstr *LastLocalValue = nullptr;
222
 
223
  /// The top most instruction in the current block that is allowed for
224
  /// emitting local variables. LastLocalValue resets to EmitStartPt when it
225
  /// makes sense (for example, on function calls)
226
  MachineInstr *EmitStartPt = nullptr;
227
 
228
public:
229
  virtual ~FastISel();
230
 
231
  /// Return the position of the last instruction emitted for
232
  /// materializing constants for use in the current block.
233
  MachineInstr *getLastLocalValue() { return LastLocalValue; }
234
 
235
  /// Update the position of the last instruction emitted for
236
  /// materializing constants for use in the current block.
237
  void setLastLocalValue(MachineInstr *I) {
238
    EmitStartPt = I;
239
    LastLocalValue = I;
240
  }
241
 
242
  /// Set the current block to which generated machine instructions will
243
  /// be appended.
244
  void startNewBlock();
245
 
246
  /// Flush the local value map.
247
  void finishBasicBlock();
248
 
249
  /// Return current debug location information.
250
  DebugLoc getCurDebugLoc() const { return MIMD.getDL(); }
251
 
252
  /// Do "fast" instruction selection for function arguments and append
253
  /// the machine instructions to the current block. Returns true when
254
  /// successful.
255
  bool lowerArguments();
256
 
257
  /// Do "fast" instruction selection for the given LLVM IR instruction
258
  /// and append the generated machine instructions to the current block.
259
  /// Returns true if selection was successful.
260
  bool selectInstruction(const Instruction *I);
261
 
262
  /// Do "fast" instruction selection for the given LLVM IR operator
263
  /// (Instruction or ConstantExpr), and append generated machine instructions
264
  /// to the current block. Return true if selection was successful.
265
  bool selectOperator(const User *I, unsigned Opcode);
266
 
267
  /// Create a virtual register and arrange for it to be assigned the
268
  /// value for the given LLVM value.
269
  Register getRegForValue(const Value *V);
270
 
271
  /// Look up the value to see if its value is already cached in a
272
  /// register. It may be defined by instructions across blocks or defined
273
  /// locally.
274
  Register lookUpRegForValue(const Value *V);
275
 
276
  /// This is a wrapper around getRegForValue that also takes care of
277
  /// truncating or sign-extending the given getelementptr index value.
278
  Register getRegForGEPIndex(const Value *Idx);
279
 
280
  /// We're checking to see if we can fold \p LI into \p FoldInst. Note
281
  /// that we could have a sequence where multiple LLVM IR instructions are
282
  /// folded into the same machineinstr.  For example we could have:
283
  ///
284
  ///   A: x = load i32 *P
285
  ///   B: y = icmp A, 42
286
  ///   C: br y, ...
287
  ///
288
  /// In this scenario, \p LI is "A", and \p FoldInst is "C".  We know about "B"
289
  /// (and any other folded instructions) because it is between A and C.
290
  ///
291
  /// If we succeed folding, return true.
292
  bool tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst);
293
 
294
  /// The specified machine instr operand is a vreg, and that vreg is
295
  /// being provided by the specified load instruction.  If possible, try to
296
  /// fold the load as an operand to the instruction, returning true if
297
  /// possible.
298
  ///
299
  /// This method should be implemented by targets.
300
  virtual bool tryToFoldLoadIntoMI(MachineInstr * /*MI*/, unsigned /*OpNo*/,
301
                                   const LoadInst * /*LI*/) {
302
    return false;
303
  }
304
 
305
  /// Reset InsertPt to prepare for inserting instructions into the
306
  /// current block.
307
  void recomputeInsertPt();
308
 
309
  /// Remove all dead instructions between the I and E.
310
  void removeDeadCode(MachineBasicBlock::iterator I,
311
                      MachineBasicBlock::iterator E);
312
 
313
  using SavePoint = MachineBasicBlock::iterator;
314
 
315
  /// Prepare InsertPt to begin inserting instructions into the local
316
  /// value area and return the old insert position.
317
  SavePoint enterLocalValueArea();
318
 
319
  /// Reset InsertPt to the given old insert position.
320
  void leaveLocalValueArea(SavePoint Old);
321
 
322
protected:
323
  explicit FastISel(FunctionLoweringInfo &FuncInfo,
324
                    const TargetLibraryInfo *LibInfo,
325
                    bool SkipTargetIndependentISel = false);
326
 
327
  /// This method is called by target-independent code when the normal
328
  /// FastISel process fails to select an instruction. This gives targets a
329
  /// chance to emit code for anything that doesn't fit into FastISel's
330
  /// framework. It returns true if it was successful.
331
  virtual bool fastSelectInstruction(const Instruction *I) = 0;
332
 
333
  /// This method is called by target-independent code to do target-
334
  /// specific argument lowering. It returns true if it was successful.
335
  virtual bool fastLowerArguments();
336
 
337
  /// This method is called by target-independent code to do target-
338
  /// specific call lowering. It returns true if it was successful.
339
  virtual bool fastLowerCall(CallLoweringInfo &CLI);
340
 
341
  /// This method is called by target-independent code to do target-
342
  /// specific intrinsic lowering. It returns true if it was successful.
343
  virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II);
344
 
345
  /// This method is called by target-independent code to request that an
346
  /// instruction with the given type and opcode be emitted.
347
  virtual unsigned fastEmit_(MVT VT, MVT RetVT, unsigned Opcode);
348
 
349
  /// This method is called by target-independent code to request that an
350
  /// instruction with the given type, opcode, and register operand be emitted.
351
  virtual unsigned fastEmit_r(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0);
352
 
353
  /// This method is called by target-independent code to request that an
354
  /// instruction with the given type, opcode, and register operands be emitted.
355
  virtual unsigned fastEmit_rr(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
356
                               unsigned Op1);
357
 
358
  /// This method is called by target-independent code to request that an
359
  /// instruction with the given type, opcode, and register and immediate
360
  /// operands be emitted.
361
  virtual unsigned fastEmit_ri(MVT VT, MVT RetVT, unsigned Opcode, unsigned Op0,
362
                               uint64_t Imm);
363
 
364
  /// This method is a wrapper of fastEmit_ri.
365
  ///
366
  /// It first tries to emit an instruction with an immediate operand using
367
  /// fastEmit_ri.  If that fails, it materializes the immediate into a register
368
  /// and try fastEmit_rr instead.
369
  Register fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0, uint64_t Imm,
370
                        MVT ImmType);
371
 
372
  /// This method is called by target-independent code to request that an
373
  /// instruction with the given type, opcode, and immediate operand be emitted.
374
  virtual unsigned fastEmit_i(MVT VT, MVT RetVT, unsigned Opcode, uint64_t Imm);
375
 
376
  /// This method is called by target-independent code to request that an
377
  /// instruction with the given type, opcode, and floating-point immediate
378
  /// operand be emitted.
379
  virtual unsigned fastEmit_f(MVT VT, MVT RetVT, unsigned Opcode,
380
                              const ConstantFP *FPImm);
381
 
382
  /// Emit a MachineInstr with no operands and a result register in the
383
  /// given register class.
384
  Register fastEmitInst_(unsigned MachineInstOpcode,
385
                         const TargetRegisterClass *RC);
386
 
387
  /// Emit a MachineInstr with one register operand and a result register
388
  /// in the given register class.
389
  Register fastEmitInst_r(unsigned MachineInstOpcode,
390
                          const TargetRegisterClass *RC, unsigned Op0);
391
 
392
  /// Emit a MachineInstr with two register operands and a result
393
  /// register in the given register class.
394
  Register fastEmitInst_rr(unsigned MachineInstOpcode,
395
                           const TargetRegisterClass *RC, unsigned Op0,
396
                           unsigned Op1);
397
 
398
  /// Emit a MachineInstr with three register operands and a result
399
  /// register in the given register class.
400
  Register fastEmitInst_rrr(unsigned MachineInstOpcode,
401
                            const TargetRegisterClass *RC, unsigned Op0,
402
                            unsigned Op1, unsigned Op2);
403
 
404
  /// Emit a MachineInstr with a register operand, an immediate, and a
405
  /// result register in the given register class.
406
  Register fastEmitInst_ri(unsigned MachineInstOpcode,
407
                           const TargetRegisterClass *RC, unsigned Op0,
408
                           uint64_t Imm);
409
 
410
  /// Emit a MachineInstr with one register operand and two immediate
411
  /// operands.
412
  Register fastEmitInst_rii(unsigned MachineInstOpcode,
413
                            const TargetRegisterClass *RC, unsigned Op0,
414
                            uint64_t Imm1, uint64_t Imm2);
415
 
416
  /// Emit a MachineInstr with a floating point immediate, and a result
417
  /// register in the given register class.
418
  Register fastEmitInst_f(unsigned MachineInstOpcode,
419
                          const TargetRegisterClass *RC,
420
                          const ConstantFP *FPImm);
421
 
422
  /// Emit a MachineInstr with two register operands, an immediate, and a
423
  /// result register in the given register class.
424
  Register fastEmitInst_rri(unsigned MachineInstOpcode,
425
                            const TargetRegisterClass *RC, unsigned Op0,
426
                            unsigned Op1, uint64_t Imm);
427
 
428
  /// Emit a MachineInstr with a single immediate operand, and a result
429
  /// register in the given register class.
430
  Register fastEmitInst_i(unsigned MachineInstOpcode,
431
                          const TargetRegisterClass *RC, uint64_t Imm);
432
 
433
  /// Emit a MachineInstr for an extract_subreg from a specified index of
434
  /// a superregister to a specified type.
435
  Register fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0, uint32_t Idx);
436
 
437
  /// Emit MachineInstrs to compute the value of Op with all but the
438
  /// least significant bit set to zero.
439
  Register fastEmitZExtFromI1(MVT VT, unsigned Op0);
440
 
441
  /// Emit an unconditional branch to the given block, unless it is the
442
  /// immediate (fall-through) successor, and update the CFG.
443
  void fastEmitBranch(MachineBasicBlock *MSucc, const DebugLoc &DbgLoc);
444
 
445
  /// Emit an unconditional branch to \p FalseMBB, obtains the branch weight
446
  /// and adds TrueMBB and FalseMBB to the successor list.
447
  void finishCondBranch(const BasicBlock *BranchBB, MachineBasicBlock *TrueMBB,
448
                        MachineBasicBlock *FalseMBB);
449
 
450
  /// Update the value map to include the new mapping for this
451
  /// instruction, or insert an extra copy to get the result in a previous
452
  /// determined register.
453
  ///
454
  /// NOTE: This is only necessary because we might select a block that uses a
455
  /// value before we select the block that defines the value. It might be
456
  /// possible to fix this by selecting blocks in reverse postorder.
457
  void updateValueMap(const Value *I, Register Reg, unsigned NumRegs = 1);
458
 
459
  Register createResultReg(const TargetRegisterClass *RC);
460
 
461
  /// Try to constrain Op so that it is usable by argument OpNum of the
462
  /// provided MCInstrDesc. If this fails, create a new virtual register in the
463
  /// correct class and COPY the value there.
464
  Register constrainOperandRegClass(const MCInstrDesc &II, Register Op,
465
                                    unsigned OpNum);
466
 
467
  /// Emit a constant in a register using target-specific logic, such as
468
  /// constant pool loads.
469
  virtual unsigned fastMaterializeConstant(const Constant *C) { return 0; }
470
 
471
  /// Emit an alloca address in a register using target-specific logic.
472
  virtual unsigned fastMaterializeAlloca(const AllocaInst *C) { return 0; }
473
 
474
  /// Emit the floating-point constant +0.0 in a register using target-
475
  /// specific logic.
476
  virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF) {
477
    return 0;
478
  }
479
 
480
  /// Check if \c Add is an add that can be safely folded into \c GEP.
481
  ///
482
  /// \c Add can be folded into \c GEP if:
483
  /// - \c Add is an add,
484
  /// - \c Add's size matches \c GEP's,
485
  /// - \c Add is in the same basic block as \c GEP, and
486
  /// - \c Add has a constant operand.
487
  bool canFoldAddIntoGEP(const User *GEP, const Value *Add);
488
 
489
  /// Create a machine mem operand from the given instruction.
490
  MachineMemOperand *createMachineMemOperandFor(const Instruction *I) const;
491
 
492
  CmpInst::Predicate optimizeCmpPredicate(const CmpInst *CI) const;
493
 
494
  bool lowerCallTo(const CallInst *CI, MCSymbol *Symbol, unsigned NumArgs);
495
  bool lowerCallTo(const CallInst *CI, const char *SymName,
496
                   unsigned NumArgs);
497
  bool lowerCallTo(CallLoweringInfo &CLI);
498
 
499
  bool lowerCall(const CallInst *I);
500
  /// Select and emit code for a binary operator instruction, which has
501
  /// an opcode which directly corresponds to the given ISD opcode.
502
  bool selectBinaryOp(const User *I, unsigned ISDOpcode);
503
  bool selectFNeg(const User *I, const Value *In);
504
  bool selectGetElementPtr(const User *I);
505
  bool selectStackmap(const CallInst *I);
506
  bool selectPatchpoint(const CallInst *I);
507
  bool selectCall(const User *I);
508
  bool selectIntrinsicCall(const IntrinsicInst *II);
509
  bool selectBitCast(const User *I);
510
  bool selectFreeze(const User *I);
511
  bool selectCast(const User *I, unsigned Opcode);
512
  bool selectExtractValue(const User *U);
513
  bool selectXRayCustomEvent(const CallInst *II);
514
  bool selectXRayTypedEvent(const CallInst *II);
515
 
516
  bool shouldOptForSize(const MachineFunction *MF) const {
517
    // TODO: Implement PGSO.
518
    return MF->getFunction().hasOptSize();
519
  }
520
 
521
private:
522
  /// Handle PHI nodes in successor blocks.
523
  ///
524
  /// Emit code to ensure constants are copied into registers when needed.
525
  /// Remember the virtual registers that need to be added to the Machine PHI
526
  /// nodes as input.  We cannot just directly add them, because expansion might
527
  /// result in multiple MBB's for one BB.  As such, the start of the BB might
528
  /// correspond to a different MBB than the end.
529
  bool handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
530
 
531
  /// Helper for materializeRegForValue to materialize a constant in a
532
  /// target-independent way.
533
  Register materializeConstant(const Value *V, MVT VT);
534
 
535
  /// Helper for getRegForVale. This function is called when the value
536
  /// isn't already available in a register and must be materialized with new
537
  /// instructions.
538
  Register materializeRegForValue(const Value *V, MVT VT);
539
 
540
  /// Clears LocalValueMap and moves the area for the new local variables
541
  /// to the beginning of the block. It helps to avoid spilling cached variables
542
  /// across heavy instructions like calls.
543
  void flushLocalValueMap();
544
 
545
  /// Removes dead local value instructions after SavedLastLocalvalue.
546
  void removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue);
547
 
548
  /// Insertion point before trying to select the current instruction.
549
  MachineBasicBlock::iterator SavedInsertPt;
550
 
551
  /// Add a stackmap or patchpoint intrinsic call's live variable
552
  /// operands to a stackmap or patchpoint machine instruction.
553
  bool addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
554
                           const CallInst *CI, unsigned StartIdx);
555
  bool lowerCallOperands(const CallInst *CI, unsigned ArgIdx, unsigned NumArgs,
556
                         const Value *Callee, bool ForceRetVoidTy,
557
                         CallLoweringInfo &CLI);
558
};
559
 
560
} // end namespace llvm
561
 
562
#endif // LLVM_CODEGEN_FASTISEL_H